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Abstract—Networked Medical Systems (NMS) promise better
data exchange in medical infrastructures such as operating rooms
in hospitals and clinics. However, the heterogeneous interfaces
of medical systems and varied requirements on NMS such as
real-time constraints, increase the communication complexity
considering network architectures, communication protocols and
software/hardware components. In this paper, a robot-assisted eye
surgery is used as a clinical use case. Based on this use case and
its communication types, non-functional requirements on NMS
are derived.

An approach for abstraction is proposed which targets at reduc-
ing the communication-related complexity in NMS. Complexity
reduction in this case means that a multi-interface middleware
in NMS abstracts the detailed knowledge required for imple-
mentation of different communication types such as real-time
communication. The middleware architecture is divided into two
main parts: Communication Abstraction Provider (CAP) and
Communication Abstraction Bridge (CAB). CAP is the central
component of the middleware which connects the medical systems
using CAB:s.

In this paper, the focus is on the complexity reduction of
the real-time communication part. For this purpose, real-time
communication protocols are investigated and evaluated for
application in the CAP/CAB architecture. The result of the
evaluation shows that Ethernet POWERLINK is the most suitable
real-time communication protocol for the CAP/CAB architecture.

I. INTRODUCTION

Networked Medical Systems (NMS) offer higher flexibil-
ity in exchanging data between medical systems. A NMS
is defined as a network with the following node types: 1-
Medical systems, which provide one or more interfaces for
communication with the rest of the network, 2- IT-systems
which are used by medical systems to store and restore medical
data of medical systems [1], 3- Middle-ware, which is used
by medical systems and IT-systems to communicate with each
other [2]. Depending on the medical applications and use cases,
various types of data are exchanged in a NMS. For instance, a
surgery robot needs motion controlling data from a controller
device using a real-time communication. Transmitting high
quality video data from a medical device such as an endoscope
to a monitor in real-time, is another use case in the operating
rooms. Not each communication must real-time. For example,
exchanging configuration parameters between medical sys-
tems or storing patients’ data is done using a non-real-time

communication providing high bandwidth. Considering these
different use cases, various communication systems can be
used. The term communication system in this paper refers to a
system which includes communication hardware, software and
protocol. Examples for common used communication systems
for the mentioned use cases are Controller Area Network
(CAN) [3] for rapidly and priority based transmitting data,
High Definition Multimedia Interface (HDMI) [4] for sending
and receiving high quality video data, Transmission Control
Protocol/Internet Protocol (TCP/IP) [5] for exchanging non-
real-time data between medical systems and IT systems such as
Digital Imaging and Communications in Medicine (DICOM)
[1] and Picture Archiving and Communication System (PACS)
[6].

The heterogeneous interfaces of medical systems and varied
requirements on NMS such as real-time constraints, increase
the communication complexity considering network architec-
tures, communication protocols and software/hardware com-
ponents. The high communication complexity in NMS limits
the integration of new medical systems into existing NMS.
Connecting a new medical system to another medical system,
requires deep knowledge about the target medical system
which is not always available. Only knowledge about the target
medical system is not enough and for implementation of a
specific communication e.g. real-time communication, detailed
knowledge and experiences in the specific communication
protocol, hardware and operating system is required.

In this paper, an abstraction-based approach is proposed for
reduction of communication complexity in NMS. A real world
use case is used to derive non-functional requirements on NMS
which is covered by the proposed approach. This approach
includes a middleware consisting of two parts: Communication
Abstraction Provider (CAP) and Communication Abstraction
Bridge (CAB). CAP is the central component of the middle-
ware which connects the medical systems using CABs. Using
CAP and CAB, a developer just has to write the application
code of a specific connection between two medical system.
This application contains the communication logic and is
based on the description of medical systems that have to be
connected. The developer does not have to deal with the com-
plex low level implementation details. If an already connected
medical system has to be used for another connection, then
a developer has to change only the application code without
any modification in the lower layers. In this paper, the focus
is on the real-time-related part of CAP/CAB approach. The



starting point of implementation of the real-time-related part
is investigating and evaluation of available real-time protocols.
The paper is structured as follows: In the next section, an eye
surgery use case is presented which is the basis for deriv-
ing non-functional requirements on NMS. In section III the
core components of the CAP/CAB abstraction are explained.
The real-time communication protocols are investigated and
evaluated in section IV and the implementation challenges
are discussed in section V Conclusion and future work are
included in the final section VI.

II. AN USE CASE AND NON-FUNCTIONAL
REQUIREMENTS ON NMS

To derive requirements on NMS, real world use cases are
required. In this paper, a robot-assisted eye surgery is used
as use case. From the used medical systems in this use case
and the type of required communication type between them,
the general non-functional requirements on NMS are derived.
These requirements are verified comparing other real world
use cases' with eye surgery use case.

Motion controlling of the surgery robot has to fulfill hard
real-time requirements. Non-deterministic delays in controlling
robot’s actions will have disastrous consequences for the eye
under operation. A maximum robot’s response time of less
than one millisecond has to be guaranteed. Calculating the
maximum response time begins with moving the input device
(space mouse), generating motion controlling data such as
robot position data, sending the generated data to the robot,
processing the received data and calculating the new position
of the robot and ends with positioning of the robot. All
these actions have to be done within 1 millisecond. Because
involving a human in this interaction, a maximum response
time of 30-60 ms is satisfying (based on the surgeons expe-
riences in the OR.NET project which deals with deals with
dynamic networking in operating rooms). But why 1 ms is
required? The answer is that for each operating robot, a safety
mechanism has to be implemented. For instance, If the surgeon
enters dangerous area while operating the eye, a sensor has
to recognize that and send stop message to the robot. In this
safety mechanism, 1 ms maximum response time of robot after
receiving the stop message has to be guaranteed. Else, the
surgeon can damage the eye under operation. This value can
be higher and more flexible depending on specific use cases
but the worst case situation is assumed.

For the eye surgery robot a video feedback systems is planned.
The video from the camera is sent to this feedback system. It
analyses the incoming video data and give a feedback to the
robot. Analyzing this video data helps e.g. the co-surgeon to
be sure that an action is done successfully or not. A maximum
delay streaming the video must not be exceeded. This value
is variable and is also based on surgeons’ experiences in the
OR.NET project.

Storing or loading of patient data in standard IT infrastructures
such as DICOM or PACS, has to be supported. Transmitting
these big data to or from these IT systems requires a commu-
nication with high bandwidth. These IT-systems are based on
Ethernet and TCP/IP technologies. A minimum bandwidth of
1 Gigabit/s or optional 10 Gigabit/s has to be supported.
Wireless communication offers a high flexibility in the network
topology [7]. In the eye surgery use case, for each medical

'See www.ornet.org for more information.

system an interface for wireless communication in future is
required.

Hot-plugging availability is required if e.g. the robot controller
devices is disconnected and reconnected to the NMS. Failure
by reconnecting the medical systems means low safety for
the operating room while operating. Table I depicts the list
of derived non-functional requirements.

TABLE 1. DERIVED NON-FUNCTIONAL REQUIREMENTS

Non-functional requirement

Cycle time < 1ms for motion controlling

Real-time video streaming with an acceptable maximum delay for surgeons
1 Gigabit/s bandwidth for big data

Wireless communication

Hot-plugging availability
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III. REDUCING COMMUNICATION-RELATED
COMPLEXITY IN NMS

In this section, an approach for abstraction is introduced
which targets at reducing the communication-related complex-
ity in NMS. The communication-related complexity is defined
as the knowledge basis that is required for implementation
of a specific communication between two medical systems.
For example, in the robot-assisted eye surgery use case, for
implementation of the real-time communication between the
space mouse and the surgery robot, low level knowledge about
real-time operating systems, hardware components (embedded
system) and real-time communication protocols is required.
Complexity reduction in this case means that a multi-interface
middleware in NMS abstracts the detailed knowledge required
for implementation of the real-time communication. A med-
ical system manufacturer produces mouse spaces or similar
controller devices for robot controlling. This devices support
only USB interfaces. Another robot manufacturer produces
eye surgery robots with an UART interface. The following
concrete steps should be done to use the space mouse with
the robot: Firstly, a USB to UART converter is required which
supports real-time concerting. Secondly, the USB data should
be restructured so that the robot can read it. Thirdly, the
protocol converter has to know the meaning of USB data
(specific only for this mouse) and has to know what the robots
can understand (also only specific for this ). For instance,
the mouse produces parameters X and Y with their values.
But the robot can only understand the parameters left and
write. For implementation of this scenario deeper knowledge
about converter hardware (interfaces, etc.), eventually real-
time operating system installed on the converter hardware
(for supporting real-time data converting) and the real-time
communication protocol (In case that they are not connected
directly but through an existing network infrastructure) are
required.

If the mouse is required to connect to another robot for con-
trolling it, all mentioned steps should be repeated. Considering
NMS and heterogeneous medical systems, this challenge get
even bigger. It is imaginable that e.g. the robot has multiple
real-time interfaces: one interface for controlling and another
interface for connection to a sensor which senses the eye
environment and sends stop signal to the robot if the surgeon
is in a dangerous area. A interface-to-interface implementation
of the real-time connection in NMS (with a lot of involved
medical systems in the network) as described above, leads to



a complex and chaotic network regarding the used hardware for
real-time communication, real-time communication protocol
and network topology.

A middleware-based approach is proposed for reduction of
the mentioned communication complexity. This middleware is
divided into two main parts:

e  Communication Abstraction Provider (CAP)

e  Communication Abstraction Bridge (CAB)

Medical systems use CABs for using the offered interfaces of
CAP. CAP is the central component of the middleware which
connects the medical systems using CABs. According to the
derived non-functional requirements in the previous section,
CAP and CAB offer four type of interfaces. CAP and CAB
support a real-time communication interface (RT), a wireless
communication interface (WLAN), an interface for non-real-
time communication interface dealing with big data (NRT)
and an interface for real-time video streaming (RT-Video).
Similar to real-time communication, the abstraction reduces the
complexity of WLAN, Video and NRT communication. This
approach will fulfill the derived requirements in the previous
section. Figure 1 demonstrates an overview of the introduced
approach using the eye surgery use case. The space mouse and
the surgery robot are connected to the RT interface of CAP
using CAB. A developer has only to define the meaning of
the input data for the robot using CAB. Defining the meaning
of data means that the developer only has to develop the
application logic of e.g. the real-time communication between
mouse and the robot. The video camera and the display are
connected to the RT-Video interface for transmitting video
data. All data available in CAP inclusive the big data can
be transmitted to the Internet or other IP-based (Internet
Protocol) information systems such as DICOM Server using
NRT interface.

Figure 1. Reducing communication complexity in the eye surgery NMS using
Communication Abstraction Provider (CAP) and Communication Abstraction
Bridge (CAB)

The RT Unit in CAP deals with organization of real-time
communication between different CABs. RT Unit consists
of a hardware which is capable for realization of real-time
communication. Such a hardware has to support a processor
with enough capacity for running the real-time communication
protocol. It also has to support multiple interfaces for real-time
communication between different CABs. It plays the role of

a master which synchronizes the real-time network. On the
top of the CAPs’ hardware, a real-time operating system is
required which has to guarantee the execution of the real-
time communication stack using e.g. scheduling priorities.
The real-time communication stack runs on the real-time
operating system required for deterministic communication
between medical systems.

Each real-time medical system has to be connected to a CAB.
Each CAB supports a set of heterogeneous interfaces such as
USB, UART, etc. Protocol Converter Unit (PCU) is a process
in CAB and responsible for mapping the communication
interfaces of the top and bottom of CAB. The focus of this
paper is on the real-time-related part of the PCU. PCU consists
of Real-time Communication Programming Library (RCPL).
RCPL is a library which supports a Real-time Application
Programming Interface (RTAPI). RTAPI is the interface to the
low-level communication with the real-time operating system
on CAB. Using RTAPI, access to the Ethernet controller is pos-
sible. RCPL offers an abstraction of low-level implementation
complexity. In this way, a medical system can open and handle
a real-time connection to other medical systems through CAB
and CAP for sending and receiving without the need of deeper
knowledge about low-level implementation details.
Considering the eye surgery use case, the space mouse is
described as a controller device which provides e.g. values
for X and Y axis. These values are sent to the robot applying
RCPL and RTAPI for a real-time communication. Similar to
CAP, each CAB provides at least one real-time interface.
Using this interface, data can be received or sent from one
medical system to another medical system. CAP plays the
role of a master which guarantees the real-time communication
between CAB’s. Figure 2 offers a look inside the CAP/CAB
architecture considering the real-time communication. In this
sample and according to the eye surgery use case, medical
system 1 (space mouse) is communicating with medical system
2 (surgery robot) in real-time using the CAP and two CABs
and the medical systems do not support the same interface
(IF-2 and IF-3 refer to USB and URAT). The CAP/CAB
concepts does not deal with the inner communication of
the medical systems. This concept assumes that the inner
communication of a medical system is deterministic so that
the communication between a medical system and its CAB is
deterministic. This assumption is justified because the medical
system provider is aware that its system or device is going
to be used for a deterministic communication. If this is not
the case, nothing else in NMS can guarantee a deterministic
behavior of the medical system. The implementation real-
time part of the CAP/CAB architecture consists of three main
steps: First, real-time communication protocols have to be
investigated and evaluated to select the most suitable protocol.
Second, hardware in form of embedded systems have to be
investigated and evaluated for implementation of CAP and
CAB. The inner components of CAP and CAB (specially PCU
and RCPL) have to be implemented. Figure 3 demonstrates
the final goal of implementation of CAP/CAB architecture
regarding to the real-time communication. Manufactures pro-
duce medical systems and their description. The CAP/CAB
developing tool offers Hardware, Real-time operation system, a
real-time communication protocol stack, PCU on the top of the
real-time protocol stack which implements RCPL and RTAPI
and an environment for implementation of the communication
logic between medical systems. A developer only writes the
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Figure 2. CAP and CAB with more details about physical interfaces and the
interaction of sub units

application code (the communication logic between medical
systems). In the mentioned mouse and robot example, if the
same space mouse should be used for real-time communication
to another medical system, only the application has to be
modified by the developer.

Manufacturer Description Description Manufacturer
o
2 4;‘) \ / Ji
[ o F
|

Developer
Application ‘/ \ Application

Abstraction

RCPL RCPL
RT Protocol 2 2 RT Protocol
Real-time OS © © Real-time OS
Hardware Hardware
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Figure 3. Final goal of CAP/CAB implementation regarding to the real-
time communication. Developer uses all available components and writes the
application code for two real-time communicating medical systems. The result
can be e.g. two boot-able memory cards which can be put into the CABs
of the two medical systems. After booting the CABs, the desired real-time
communication between two medical systems is available.

IV. INVESTIGATING AND EVALUATION OF REAL-TIME
COMMUNICATION PROTOCOLS

As the first step of implementation of the real-time-related
part of the CAP/CAB architecture, real-time communication
protocols are investigated and evaluated. Based on the
following criteria, the protocols are evaluated:

Maximum transmission latency: a maximum transmission
latency of less than 1 milliseconds (ms) has to be supported. It
means that, if a medical system sends a real-time message to
another one then the receiver has to receive this message and
handle it within 1 ms. This is defined as the cycle time in this
paper. This constraints come from the timing requirements of
the eye surgery use case. The minimum achievable cycle time

of the protocols is evaluated.

Open source: in order to support an open source
implementation of CAP/CAB, the used real-time protocol has
to be open source.

Hot-plug-ability: if a real-time connection line is broken
(whatever happened) the real-time medical system has to be
able to be connected again with a minimum of delay.

Cost: the real-time protocol and its
(hardware/software) has to be economical.

components

Support: support is an important factor for implementation
and maintenance of the CAP/CAB.

Future extensibility: the real-time protocol and its
components (hardware/software) has to be extensible in
future. For instance, the protocol has to be based on
widespread technologies which will exists also in future.

A first investigation of real-time communication protocols
shows that the Ethernet-based protocols have advantages
over the others. The main reason are low costs and future
extensibility. Ethernet is widespread and this leads to lower
costs of Ethernet components in comparison to other less
widespread protocols. Because of the existence of numerous
real-time protocols, only newest (state of the technology)
protocols are investigated (4 Ethernet-based and 2 older and
not Ethernet-based protocols).

PROFINET [8] is an Ethernet-based real-time communication
protocol which support only a minimum cycle time of 5-10
ms. It is not open source and is proprietary protocol provided
by Siemens. It provides also hot-plug-ability. Siemens offers
a good support for this protocol. Because all components of
this protocol are proprietary, its cost is high. It is based on the
Ethernet technology and provides high future extensibility.

EtherCAT [9] is an Ethernet-based protocol and supports low
cycle time (0,011 ms). It is a proprietary protocol provided
by Beckhoff and is not hot-plug-able. There is an open source
implementation of EtherCAT Master. Similar to PROFINET
the costs are high (specially for Slaves). It also provide high
future extensibility because of the Ethernet technology.

POWERLINK [10] is also Ethernet-based and supports
a minimum cycle time about 0,2 ms. It is an open source

PROFINET EtherCAT Powerlink | EtherNet/IP | PROFIBUS | CANopen
Min. cycletime [ 5-10ms €@ [0,011ms [ 02ms v [10ms @ |15ms €| NotRT @
Open source No © | Only Master @ | Yes v | No O | No O|Yes Vv
Hot-plug- Yes v’ | No Q| Yes v | Yes v | Yes v|Yes
ability
Cost High © | High ©|low V| High Q [High Oflow
Support Yes v | Yes V| Yes v | Yes v | Yes v|Yes
Future Yes v | Yes V'] Yes v | Yes v’ | No Q| No [x)
extensibility

Figure 4. Investigation and Evaluation of real-time communication protocols.
Powerlink is the winner technology in this evaluation [13], [12], [14], [15],
[16], [17].



protocol and hot-plug-able. There is support website with
forums and discussions about porting this technology. It is
open source and based on the standard Ethernet hardware and
its costs are low and it is high extensible in future.

EtherNet/IP [11] (IP means Industrial Protocol) provides
a minimum cycle time of 10 ms and is not available as open
source. Hence, the costs of the protocol stacks are high. It is
hot-plug-able and is because of Ethernet extensible in future.
There is no free support of the protocol.

PROFIBUS [12] is the ancestor technology of PROFINET
with the difference that PROFIBUS is not based on the
Ethernet technology and provides lower bandwidth of 12
Mbit/s but offers a shorter minimum cycle time of 1-5 ms.

CANopen [13] is an communication protocol provided
originally by Bosch. The specification of CANopen is free
and there is an open source implementation of it. It is
a non-cyclic protocol and does not fulfill hard real-time
requirements. It supports hot-plug-ability and low hardware
costs. Because of the 1 Mbit/s bandwidth, CANopen is not
extensible for future. The evaluation result is presented in
Figure 4.

The Ethernet-based technology POWERLINK fulfills all
requirements and is selected for the further implementation
of the rel-time realted part of the CAP/CAB concept.

V. IMPLEMENTATION CHALLENGES

The first step of the implementation of the CAP/CAB real-
time-related part with POWERLINK is selecting hardware and
real-time operating system for CAB and CAP. Beaglebone
Black [18] is selected as the test hardware. The reason for se-
lecting this embedded board are: high computational capacity
(1 GHz CPU and 512 MB memory) and numerous communi-
cation interfaces such as UART, Ethernet, USB, HMDI, etc.
QNX [19] and Xenomai [20] are selected as test real-time
operating systems. QNX is in comparison to Xenomai a
microkernel real-time operating system. The main challenge
implementing the test real-time communication on Xenomai
is the required real-time driver for the Ethernet controller.
POWERLINK only supports real-time drivers for a limited
number of Ethernet controllers out of the box. The Ethernet
controller of Beaglebone Black is not supported.

For soft real-time communication the standard Ethernet driver
is enough using the POWERLINK stack in the user space. In
this case, increasing the protocol stack priority leads to low
latency. But for a hard real-time communication, running the
protocol stack in the user space is not satisfying. Because a
minimum cycle time of 1 ms is not supported in the user space.
To overcome the challenge of writing real-time driver for the
Ethernet controller of Beaglebone Black, another test scenario
is in progress.

In the microkernel QNX architecture, although all processes
and drivers are in the user space, hard-real time processing is
guaranteed because of its microkernel architecture.

VI. CONCLUSION AND FUTURE WORK

Networked Medical Systems (NMS) offer more flexibility
exchanging data in medical infrastructures. Heterogeneous

interfaces in NMS and non-functional requirements on it,
increase the communication complexity from the application
layer down to the lowest hardware layer. An eye surgery use
cases is used to derive the non-functional requirements on
NMS.

An abstraction-based approach for reducing the communica-
tion complexity in NMS is proposed. It abstracts the appli-
cation layer from the lower layers. In this paper, the focus
is on the real-time-related part of the approach. For this
purpose, a set of existing real-time communication protocols
have been investigated and evaluated. The result demonstrated
that POWERLINK is the most suitable protocol for application
in the proposed approach. The implementation challenges
considering POWERLINK on the test hardware Beaglebone
Black are discussed.

Future work will focus on further investigation and evaluation
of the components of the proposed approach such as suitable
hardware for CAP/CAB and real-time operating systems. Si-
multaneously, PCU and RCPL will be developed based on the
lower layers. The proof of the concept will be a demonstrator
which includes: a NMS supporting a simplified real-time
communication using the proposed abstraction-based approach
in this paper. The final step will be developing of other three
communication types: WLAN, NRT and Video streaming.
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