A Model-Based Code Generator in the Context of Safety-Critical Systems

Christian Buckl, Matthias Regensburger, Alois Knoll, Gerhard Schrott
Department of Informatics
Technische Universitit Miinchen
Garching b. Miinchen, Germany
{buckl,regensbu,knoll,schrott} @in.tum.de

Abstract

Most of the existing model-based development tools
focus on the pure application functionality. Non-
functional features like the automatic generation of
fault-tolerance mechanisms are not covered. One main
reason is the inadequacy of the models being used.
In addition, the code generator must be extendible to
cope with the huge heterogeneity of safety-critical sys-
tems. In this abstract', we propose a template-based
code generator and a meta-model using the concept
of logical execution times as execution semantics. We
will the main concepts, the possibilites and limitations
of this approach.

1 Introduction

Model-based design has become state of the art in
software engineering. The possibility to generate code
automatically from the model accelerates the devel-
opment process and is therefore very attractive. For
this, several tools like Matlab/Simulink or SCADE
are available. These tools focus predominantly on the
functional aspects of the applications like the control
functions. However, major parts especially of fault-
tolerant embedded systems are related to system as-
pects. We understand by the term system aspects all
non-functional aspects related to the distribution of
the embedded system and the need for fault-tolerance:
process management, scheduling, inter-process com-
munication, communication within the distributed sys-

I'This work is funded by the German Federal Ministry of Edu-
cation and Research BMBF under grant 01ISF12A

tem and the fault-tolerance mechanisms. In general,
these aspects are not addressed by existing tools and
have to be implemented manually.

Two main reasons can be identified why tools do not
cover code generation for system aspects: the absence
of adequate models and the platform dependency of
system level code.

Model: Concerning the models, the widely used Uni-
fied Modeling Language UML, for example, lacks the
precision and rigor needed for code generation. Only
a few models, such as class or state machine diagrams,
can be used for automatic code generation. Especially
in the context of safety-critical systems, several re-
quirements like composability of diverse components,
determinism in execution and error containment are
posed on the model. A solution to this problem is the
usage of domain specific languages (DSL).

Since several aspects of the whole system must be de-
scribed, we decided to split up the model into five dis-
tinct sub models, each describing one aspect of the
system [2]. The safety model specifies the safety func-
tions of the system and the relevant certification guide-
line. Within a hardware model, the topology of the
distributed system and network can be described. The
software model is used to model the system architec-
ture (software processes, communication points, inter-
action with the environment). We use the concept of
logical execution times[3] to guarantee replica deter-
minsm and separate the state of the system from the
system behavior, thus allowing the automatic realiza-
tion of state synchronization. The faults that should
be tolerated by the system, as well as the behavior of
affected components is specified within a fault model.
Finally, a fault-tolerance model is used to specify the



tests for error detection and the fault-tolerance mech-
anisms like triple-modular redundancy (TMR) or hot-
standby.

Code Generation Architecture: The second prob-
lem is the platform? dependency of system level code.
Since safety-critical real-time software is typically em-
bedded in a larger system, a huge heterogeneity of the
used platforms exists. Due to this variety, it is not pos-
sible to design a code generator for system aspects that
supports a priori all these platforms. Rather, the code
generator must allow easy extension both of the under-
lying model and of the code generation ability, even by
the user. Template-based code generators can be used
to achieve this extensibility regarding the code gener-
ation ability.

The actual functionality, e.g. the control functions,
must be implemented by the application developer.
Here, several tools like Matlab/Simulink are available.
Figure 1 depicts the phases of a typical development
process and marks the process steps where our tool is
deployed.

Safety
Model
Validation

e —

Specification of
Software Safety
Requirements

Validation Audit f ="

General Safety
Requirements

Specification of
-»

E/E/PES-
Architecture

Software
Architecture

Integration
Testing

lﬁ

Integration
Tests
(Module)

Software
System Design

Module Design }<* Module Tests

L !

User Models
Tool
upported

Coding

User Code

Figure 1. Tool in the Context of the V-Model

Possibilities and Limitations: Classic fault-tolerance
mechanisms can be implemented in an application in-
dependent manner and therefore, also generated auto-
matically. Examples are hot-standby or TMR systems
where voting, temporal and state synchronization, as
well as the exclusion of erroneous and the integration
of repaired units can be realized automatically. Be-

By the term platform, we understand the combination of hard-
ware, operating system and programming language

sides general problems like voting, there are in a typ-
ical application also other problems that can not be
solved in a generic way. One typical example is the
emergency stop, where a safe shutdown of the system
must be guaranteed. To support the developer how-
ever, it is possible to model these application depen-
dent mechanisms within our tool. Tests can be mod-
elled in multiple ways to detect faults. The reaction
to detected faults can then be realized by the run-time
system (e.g. excluding the erroneous unit in a TMR
system or switching to the backup unit in a hot-standby
system) or by switching the application mode to a user
defined mode realizing the emergency stop.

Another example is the interaction with the environ-
ment. Typically, it is not possible to detect actuator
errors immediately. Rather, the validity must be tested
by observing the reactions of the controlled system.
This can be realized by the specification of appropri-
ate tests within our tool.

Development Status and Future Work: We are cur-
rently implementing the code generator in collabo-
rating with the German certification authority TUV.
A previous version of our code generator limited to
the design of triple modular redundancy systems[1]
showed the potentials of our approach: up to 95% of
the whole code could be generated automatically with
our tool. The approach will be tested in several lab ap-
plications, e.g. an elevator control. In addition, the ap-
plication of our tool in an industrial project is planned
for the end of 2007.

References

[1] C. Buckl, A. Knoll, and G. Schrott. The Zerberus
Language: Describing the Functional Model of De-
pendable Real-Time Systems. In Dependable Comput-
ing, Second Latin-American Symposium, LADC 2005,
Salvador, Brazil, October 25-28, 2005, Proceedings,
Lecture Notes in Computer Science, pages 101-120.
Springer, Oct. 2005.

[2] C. Buckl, M. Regensburger, A. Knoll, and G. Schrott.
Models for automatic generation of safety-critical real-
time systems. In Second International Conference
on Availability, Reliability and Security (ARES 2007),
pages 580-587. IEEE Computer Society, Apr 2007.

[3] H. Kopetz and G. Bauer. The Time-Triggered Archi-
tecture. Proceedings of the IEEE, 91(1):112 — 126, Jan.
2003.



