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Abstract— Diverse image-based tracking schemes of robot
moving in free motion have been proposed, and experimentally
validated, whose position and velocity image tracking errors
converge to zero. However, visual servoing for constrained
motion robot tasks has not been addressed so as to provide
control schemes that guarantee simultaneous tracking of
position, velocity and contact force trajectories for dynamic
robot models. The main difficulty may steam from the fact
that camera information cannot be used to drive force tra-
jectories.Recognizing this fact, in this paper a unique error
manifold that includes position-velocity errors and force errors
in orthogonal complements is proposed under the framework
of passivity, to yield a synergetic scheme that fuses camera,
encoder and force sensor signals. This seemingly fusion of all
tracking errors into a unique error variable allows to propose
a new control system which guarantees local exponential
tracking of all error trajectories. A neural network, driven by
an orthogonalized second order sliding mode surface is derived
to compensate approximately for nonlinear robot dynamics.
Residual errors that arises because of the finite size o the
neural network are finally eliminated via two sliding modes.
Simulations results are presented and discussed.

Index Terms— Visual Servoing, Neural Network Control,
Force Control, Multifusion Sensor, Robot Manipulator

I. INTRODUCTION

Model-based hybrid vision/force control approaches have

been reported [1], [6], [10], [2], [5], [14], but none of

them shows robustness to uncertainties, robot parameters

nor camera parameters. In a different path, [15] presents

an interesting scheme of hybrid vision force control in an

uncalibrated environment, with a very complex control law.

With respect to force control, [11] proposed a judicious

design of the extended error based on the orthogonalization

principle which establishes the orthogonal decomposition of

the error space to include all error signals into a unique error

variable, however these schemes have not been extended, or

combined, beyond constrained robots with state feedback.

Recently, and based on our previous results on adaptive

force control with unknown model [12], and dynamic visual

servoing [13], we proposed an adaptive hybrid visual servo-

ing [3], which guarantees simultaneous tracking of position,

velocity and force trajectories. However, all these schemes

depend on the exact knowledge of the model, which is

difficult to model in relevant practical applications.

A natural choice to get ride of the regressor is a neural

network-based controller, because the ability of the neural

network to approximate the regressor. However, usually

”small size” neural network does not approximate exactly
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the input-output map of nonlinear systems, and furthermore,

it may require a very dense network to deliver bounded

approximate error. Therefore, we must proceed with caution

since the holonomic constraint of a DAE 1 system, such a

constrained robot, must be fulfilled for all time, and the

approximation error of the neural network may provoke

inconsistency of the DAE system. That is, synthesizing an

image-based neural network for constrained robots is not

straightforward.

A. The problem

The problem we are interested in may be resumed as

follows: Design a control system that guarantees fast image-
based tracking of constrained robots, subject to unknown
regressor. This problem is still an open in the literature.

B. Contribution

A neural network-based control for simultaneous tracking

of visual position and contact force trajectories of unknown

constrained robots is proposed. The key is the orthogo-

nalization of the extended error, which induces chattering-

free second order sliding modes in each orthogonal com-

plements. These orthogonal sliding modes tune the neural

network so as to provide fast and well posed approximate

compensation of nonlinear robot dynamics. The residual

error that arises from this bounded compensation is yet

eliminated with the sliding modes in each orthogonal sub-

space. Finally, local exponential tracking of image-based

position error and contact force error arises.

The low dimensional neural networkrequires only one

layer with one neuron per degree of freedom, and four

weights per neuron. The underlying reason that allows

to obtain this result is the derivation a new image-based

orthogonalized principle. Thus, similar results to the case of

nonvisual-based orthogonalized principle are obtained. This

nontrivial extension of force control merges our previous

results on force control, second order sliding mode, and

dynamic visual servoing. Simulations allows to visualize the

expected closed loop performance predicted by the theory.

1Dynamical Algebraic System (DAE) robots carry out two motion task,
where the end-effector is in contact to a rigid unconformable surface,
exerting force on it and in its orthogonal direction, the end effector
move. constrained motion task are defined as the exertion of a desired
profile of force in the constrained force degrees of freedom (f -DOF),
while simultaneously moving along the unconstrained position degrees of
freedom (p-DOF). The dynamics that arises in such motion are defined
by the set of n(=f +p) DOF coupled to an algebraic constrain. Together
renders a DAE of order 2
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II. NONLINEAR ROBOT DYNAMICS

A. Visual Kinematics

Direct and differential kinematics of a serial n−link rigid

robot manipulator are given, respectively, by

xb = f (q) ẋb = J(q)q̇ (1)

where xb ∈ ℜn represents the position of robot end effector

in operational workspace, in our case the cartesian space,

q ∈ ℜn is the vector of generalized joint displacements,

finally f (·) : ℜn → ℜn, and J(q) as the analytical jacobian.

In this case, consider the camera model, using thin lens

without aberration, [8] presented the widely accepted fixed

(static) camera configuration, whose basic mathematical

description of this system consists of a composition of four

transformations defined as follows

• Joint to Cartesian transformation

• Cartesian to Camera transformation

• Camera to CCD transformation

• CCD to Image transformation

Then we have the following forward visual kinematics. Note

that the visual position xs ∈ ℜ2 of robot end effector in

image space (screen) is given by

xs = α0
λ f

λ f − z

[
−1 0

0 1

]
R0xb +β (2)

= αRxb +β (3)

where α0 is the scale factor 2, R0 ∈ R2×2 stands for the 2x2

upper square matrix of Rθ ∈ SO(3), that is

R0 =
[

−cos(θ) sin(θ)
sin(θ) cos(θ)

]
(4)

and

R =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
α = α0

λ f

λ f − z
(5)

β = α0
λ f

λ f − z

[ vOb1
vOb2

]
+

[
uc
vc

]
(6)

where λ f is the focal distance along optical axis, z stands

for the depth of field, uc,vc define the translation of camera

center to image center, and vOb1,−
vOb2 define the distance

between optical axe and the robot base �Z. In this way, the

differential camera model is then

ẋs = αRẋb (7)

Notice that the constant transformation αR maps statically

robot cartesian velocities into visual cartesian velocities,

and the visual flow ẋs does not contain any independent

input. Now, using equation (1)∼(7), we have a equation

that relates image velocities with joint velocities as follows

ẋs = αRJ(q)q̇ (8)

2Without lose of generality, α0 can be considered as a scalar matrix
2×2.

where ẋs ∈ ℜ2 determines the visual robot end effector

velocity and notice that αRJ(q) maps joint velocities to

visual cartesian velocities. To obtain the inverse differential

visual kinematics, solve equation (8) for q̇

q̇ = JRinvẋs (9)

where, the simplification JRinv = J (q)−1 R−1α−1 =
J (q)−1 R−1

α , has been used. With JRinv ∈ ℜn×n whose

entries are function of robot and camera parameters.

B. Constrained Robot Dynamics

Using the Constrained Lagrangian (Lc = K − P +
ϕ(q)T λ ), the constrained robot dynamics arises as a set

of differential algebraic equations as follows

H(q)q̈+(B0 +C(q, q̇))q̇+g(q) = τ + JT
ϕ (q)λ (10)

ϕ(x,w) = 0 (11)

where H(q) ∈ Rn×n is the symmetric positive definite ma-

nipulator inertia matrix, B0 ∈ ℜnxn stands for a diagonal

positive definite matrix composed of damping friction for

each joint, C(q, q̇)q̇ ∈ Rn stands for the vector of centripetal

and coriolis torques, g(q)∈ Rn is the vector of gravitational

torques, λ ∈ Rn is a vector of Lagrange multipliers or

contact forces, and finally ϕ(x,w) is the kinematic restric-

tion, as a rigid surface and frictionless, where, ϕ = (x,w) :

ℜn → ℜ is a given scalar function, with x = (x1,x2,x3)
T

denoting a position of a fixed coordinated system and

w = (w1,w2,w3)
T

its associated Euler angles.

C. Parametrization of Robot Dynamics

The robot dynamic model complies with the property

known as dynamic linear parametrization, this is, the robot

dynamic is lineally parameterizable in terms of a known

regressor Yb =Yb (q, q̇, q̈)∈ℜn×p1 and an unknown constant

vector θb ∈ ℜp1 of robot parameters, as follows

H(q)q̈r +(B0 +C(q, q̇))q̇r +g(q) = Ybθb (12)

Adding and subtracting the lineal model parametrization to

equation (10), we have the open loop error equation as

H(q)Ṡq = τ + JT
ϕ (q)λ −Ybθb − (B0 +C(q, q̇))Sq (13)

with S defined by

Sq = q̇− q̇r (14)

which is called as the joint error surface, and q̇r is a nominal

reference of joint velocities, and is, so far, not yet defined.

Notice that (14) can be written, using (9), by Sq = JRinvẋs−
q̇r thus, we are tempted to design q̇r = f (JRinvẋsd ,λd), for

ẋsd the desired reference of image velocity trajectory, and

λd the desired contact force. To this end, let first design a

Visual Orthogonalization Principle to obtain a unique error

variable composed of both visual position and force errors.
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III. OPEN LOOP ERROR EQUATION

A. Visual Orthogonalization Principle.

Since ϕ(q) = 0∀t, then its time derivative yields

d
dt

ϕ (q) =
∂ϕ (q)

∂q
dq
dt

≡ Jϕ(q)q̇ .= 0 (15)

This means that Jϕ (q) is orthogonal to q̇. That is, q̇ belongs

to the orthogonal projection matrix Q of Jϕ (q) [11]

Q = I −
JT

ϕ∥∥Jϕ (x)
∥∥2

Jϕ (16)

Clearly, Q spans the tangent plane at the contact point, thus

Qq̇ = q̇ (17)

and

QJT
ϕ = 0

Therefore, Jϕ and Q are orthogonal complements since Rn

is generated by the direct sum of two orthogonal sub-spaces,

since rank (im(Q)) = m≡ n−r and rank
(
im

(
Jϕ

))
= r, such

as m + r = n. In other words, These facts are fundamental

to solve the problem.

B. Nominal Orthogonalized References

Notice that the visual orthogonalization principle is es-
tablished in visual space at the velocity level, we need to

introduce an orthogonalized reference signal q̇r = q̇s + q̇ f at

the velocity level, where q̇T
s q̇ f = 0. Thus consider

q̇r = QJRinvẋr +βJT
ϕ q̇r f (18)

where β > 0 and ẋr and q̇r f stand for the visual position

nominal reference and force nominal reference, respectively.

1) Visual position nominal reference: Using definition of

(9),consider

ẋr = ẋsd −α∆xs +Ssd − γs

∫ t

t0
sign(Ssδ ) (19)

where, α > 0,γs > 0 are positive definite feedback gains, ẋsd
stands for desired visual trajectory velocity, ∆xs = xs − xsd
is the visual position error, and

Ssδ = Ss −Ssd , Ss = ∆ẋs +α∆xs, Ssd = Ss (t0)e−κst

where ∆ẋs = ẋs − ẋsd , defines visual velocity error, κs is

a positive constant and the function sign(y) stands for

sign function of vector y, and finally defining
∫ t

t0 sign(Y )≡∫ t
t0 sign(Y (ζ ))dζ .

2) Force nominal reference: Let the nominal force ref-

erence be

q̇r f = ∆F −SdF + γF

∫ t

t0
sign(SFδ ) (20)

for γF > 0 is a positive definite gain and

SFδ = SF −SFd , SF = ∆F, SFd = SF(t0)e−κF t

with κF > 0,∆F =
∫ t

t0 ∆λ and ∆λ = λ −λd .

C. Joint Error Surface

Substituting (18), (19), (20) into (14), by using (9),

we obtain the following visual orthogonalized joint error

surface

Sq = q̇− q̇r

= QJRinv(ẋs − ẋr)+βJT
ϕ q̇r f

= QJRinvSvs −βJT
ϕ Sv f

where

Svs = Ssδ + γs

∫
sign(Ssδ )

Sv f = SFδ + γF

∫
sign(SFδ )

D. Open Loop Error Dynamics

Since q̈r is discontinuous, and neural network can approx-

imate only continuous mappings, then we need to rewrite

it follows

q̈r = Q̇JRinvẋr +QJ̇Rinvẋr +QJRinvẍr

+β J̇T
ϕ q̇r f +βJT

ϕ q̈r f (21)

= q̈cont + q̈disc (22)

where

q̈cont = Q̇JRinvẋr +QJ̇Rinvẋr +QJRinv ∗

(ẍsd −α∆ẋs + Ṡsd − γs tanh(λpSsδ ))+
β J̇T

ϕ q̇r f +βJT
ϕ (∆F − ṠdF + γF tanh(λ f SFδ ))

q̈disc = QJRinvZp −βJT
ϕ Z f (23)

with Zp = tanh(λpSsδ ) − sgn(Ssδ ),Z f = tanh(λ f SFδ ) −
sgn(SFδ ) for tanh(∗) as the continuous hyperbolic tangent

function of (∗) and λp,λ f ∈ ℜnxn > 0. The continuous

function tanh(.) is used as approximation of discontinuous

function sgn(.), such that tanh(0) = 0 and tanh(λpSqp) →
sgn(Sqp), tanh(λ f Sq f )→ sgn(Sq f ) when λ →∞. Notice that

Zp,Z f have the following properties: Z ≥ −1, Z ≤ +1,

ZSq→0− = −1, ZSq→0+ = +1 and ZSq→±∞ = 0. Finally, note

that Ycont = Yb(q, q̇, q̇r, q̈r) is continuous due to (q̇r, q̈cont) ∈
C 1and Zp, Z f are discontinuous, but bounded. Substituting

(18) into (12) give rise to

H(q)q̈r +(B0 +C(q, q̇))q̇r +G(q) = YcontΘ+ τd (24)

where τd = H(q)q̈disc is considered as an endogenous

bounded disturbance, which cannot be compensated by the

neural network since it is discontinuous. Then, (24) into

(10) the open loop error equation finally arises

H(q)Ṡq +(B0 +C(q, q̇))Sq = τ−YcontΘ+JT
ϕ (q)λ +τd (25)

At this stage, before to design τ , it remain to discuss the

design of the neural network scheme as an associator to

approximately compensate for YcontΘ.
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IV. NEURAL NETWORK APPROXIMATOR

Let K be a closed bounded subset of ℜn and a real vector

valued functions f (∗) be defined on K as f : K ⊂ ℜn → R.

We would like to approximate function f (∗) by using tree

structure [7] in which many neurons on one layer feed a

single neuron on the next layer, is a generic architecture

for networks satisfying the Stone-Weierstrass theorem with

linear functions for the input and output layers. The input-

output relationship for this generic architecture is given

as Y = f (x) = φ(∑n
i=1 W T X) where W , X y Y represent

the weights, inputs to the unit and output from the unit,

respectively. It’s important to notice that the tree structure

has one or more hidden layers followed by a linear output

neuron by means of which its possible to create multilayer

neural network with an arbitrary number of neurons in each

hidden layer. In this work we use φ as a linear function i.e.

function approximation is parameterized by static adaline

neural network.

Based on the Stone-Weierstrass theorem [7] show that

any smooth functions f (x) ∈ Cm(S), where S is a compact

set simply connected set of ℜn, can be approximated by a

sufficiently large dimensional neural network, given as

f̂ (x) = φ(WT
1 X)

where the bounded weight vector W is optimal (in a sense

that f (x)− f̂ (x) = 0) and X belong to a compact set K ⊂
ℜ2n, that is S := {x : ‖x‖ ≤ S}. And, if the approximation

is done with a low dimensional neural network, then a

bounded functional reconstruction error ε(x) appears

f̂ (x) = φ(WT
2 X)+ ε(x)

where WT
2 is a subset of WT

1 and ‖ε(x)‖ ≤ εN , con εN > 0.

In this paper, the unknown nonlinear function f (x) =
YcontΘ, is approximated by static adaline neural network

with output f̂ (x,Wn2) = WT
n2X where WT

n2 ∈ ℜn2 is the

matrix of adjustable weights and n2 denotes a low number

of weights, with n2 � n1. The main reason for selecting

this type of neural network is that this network provides

very easy way to approximate f (x) without worrying about

its accuracy. Besides this, the size n2 of the network can be

obtained roughly by checking carefully the dynamics of a

general n-link rigid arm. Now, let consider the approxima-

tion of f (x) as follows3

f̂ (x) = YcontΘ̂ = ŴT
X + ε(x) (26)

where YcontΘ ∈ ℜnxp, Θ ∈ ℜpx1 stand for the function to be

approximated

X = (q, q̇, q̇r, q̈cont) ∈ R2n

In this way, using low dimensional neural network, the

estimation of f (x) is f̂ (x), where f̂ (x) stands for the online

estimation of YcontΘ. Now we are ready to design the neural

network adaptive controller.

3Without of generality, in the rest of the paper we refer Wn2 as W,
omitting its subindex

Remark 1. The difference of our approach with respect

to [4], [9] and many others, is that we propose a low

dimensional neural network, based on linear associator and

still we are able to prove convergence, in contrast to those

references that guarantee only bounded tracking.

Remark 2. Notice that the dimension of the neural net-

work is very low, it is composed of decentralized neurons,

that is the neurons of the i degree of freedom depend only

on data of the state i and variables related only to i. For

instance, for a two degrees of freedom system, n2 = 2, thus

2n = 4, so we have two neurons with a four weights each

one.

Our controller presented in the next section, will compen-

sate YcontΘ with a low dimensional neural network, while

the approximation error of the neural network and Zp, Z f
in τd , will be compensated with an orthogonalized second

order sliding mode inner loop. Notice that endogenous

bounded terms Zp, Z f and τd are casted as disturbances.

V. CONTROL DESIGN

Substituting (26) in (25) becomes

H(q)Ṡq +(B0 +C(q, q̇))Sq = τ −WT X+JT
ϕ (q)λ − τ̄d (27)

where τ̄d = ε(x)− τd . Now consider the following state

feedback continuous control law

τ = −KdSq +ŴT
X + JT

ϕ (q)[−λd +η∆F]+

γF JT
ϕ (q)[sgn(SFδ )+η

∫ t

t0
sgn(SFδ )] (28)

˙̂W = −ΓXT Sq (29)

with Kd = KT
+ ∈ℜnxn, Γ = ΓT ∈ℜpxp diagonals and definite

positives, λd is desired contact force. Substituting (28)-(29)

into (27) the closed loop equation becomes

H(q)Ṡq = −[K +C(q, q̇)]Sq −∆WX +
JT

ϕ (q)[Ṡv f +ηSv f ]+ τ̄d (30)

∆Ẇ = ΓXT Sq (31)

where τ̄ = τ̄d −γ2JT
ϕ (q)Z, Z = tanh(µSFδ )−sgn(SFδ ), K =

Kd + B0, ∆W = W − Ŵ , Ŵ ∈ ℜnxp stands for the neural

network weights, X ∈ ℜpx1 stands for the input to the

network, and Γ = ΓT ∈ℜpxp
+ . Now, we can state the stability

properties in the next theorem.

Theorem. (Second Order Sliding Mode Constrained
Visual Neural Network) Consider a constrained robot

manipulator (10)-(11) under the continuous model free

second order sliding mode scheme (28)-(29), and assume

that the feedback gains Kd ,η ,β are large enough, and errors

on initial condition are small enough. Then the closed loop

system yields local exponential convergence of visual and

force tracking errors. Furthermore, a second order sliding

mode is enforced for all time with a low dimensional neural

network, and with smooth control effort.

Proof. See Appendix section.
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A. Discussion

Remark 3. We have proved that J (q)(t0) is not singular

for all time, because JRinv = J−1 (q)R−1
α (θ) at a given initial

conditions, and because desired trajectories belong to robot

workspace Ω, and trajectories converge with an exponential

envelope.

Remark 4: Adaptive Neural Network. It is fundamental

the contribution of the neural network for this scheme to

work, since it compensates robot dynamics in orthogonal

subspaces, it is in fact a DAE approximator with very low

computational load since it is required only few nodes to

bound the approximation error.

Remark 5: Two Orthogonal Sliding Mode Regimes.
Worth to mention that two sliding mode regimes arises, each

one in the complementary spaces spanned by Q and JT
ϕ , and

the establishment are each other independent.

Remark 6: Continuous Control. Clearly the controller

does not involves discontinuous signals, which is very

relevant for real time implementation purposes.
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Fig. 1. Cartesian tracking error,mapped from image-based position error.

VI. SIMULATIONS
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Fig. 2. Visual errors with exponential convergence.

Digital simulations on the 2-DOF nonlinear model of a

rigid arm are presented. The stiff numerical solver of Matlab

5.3 was implemented, under 1s sampling simulation time.

The end-effector of the rigid robot arm is in contact with

a rigid wall, simulating a polishing task, wherein a given

sinusoidal profile of force is exerted in the normal direction,

while moving along the wall. The robot parameters are take

from a real 2DOF planar robot, available in the laboratory,

together with real parameters of a SONY DFWVL500 CCD

camera, see Tables (I) and (II). Desired trajectories are xs =
αR[xcd;ycd]+ β ,xcd = 0.5;ycd = 0.5 + r ∗ sin(w∗ t) ; r =
0.1, w = 0.5. Contact surface is a plane parallel to plane Y Z
and over x = 0.5 and λd = 20 + 8sin(5t)N Feedback gains

κ f = 20,γ f = 6.1,η = 0.029,β = 3.0,Kd = 60,α = 25,κs =
20,γs = 3.12,Γ = 20.

As expected, the end-effector tracks the desired carte-

sian trajectory without any knowledge of robot dynamics

nor inverse kinematics. After a very short transient, due

to numerical problems of the DAE solver, simultaneous

force-position exponential tracking is established, (Fig. 3)

with relatively smooth control effort i.e there is no over

saturation (Fig. 4). In Fig. (2), shows the visual position

error, where the systems converge to an error that can be

considered as zero. (less than 0.1 pixel error) and Fig. (1),

shows that cartesian errors shows exponential convergence.

TABLE I

ROBOT PARAMETERS.

Robot parameter Value

Length link l1, l2 0.4,0.3 m
Center of gravity 1,2 lc1, lc2 0.1776,0.1008 m

Mass link m1,m2 9.1,2.5714 kg
Inertia link I1, I2 0.284,0.0212 kgm2

TABLE II

CAMERA PARAMETERS.

Vision parameters Value

Clock-wise rotation angle θ π
2 rad

Scale factor αv 77772 pixeles/m
Depth field of view z 1.5 m

Camera offset vOb [−0.2 −0.1]T m
Offset ΣI oI [0.0005 0.0003]T m

Focal length λ f 0.008 m

VII. CONCLUSIONS

A novel scheme for neural constrained image-based

force-visual servoing for robot arms is proposed. It is shown

the local exponential convergence in the position-velocity

and force subspaces, even when neither robot parameters

nor camera parameters are known, only the analytical

jacobian is required. The main feature or our scheme is

the ability to fuse image coordinates into an orthogonal
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complement of joint velocities, and contact forces in the

orthogonal complement of integral of contact forces. The

neural network control loop compensates for DAE dynamics

while an inner piecewise continuous sliding mode control

loop adds the missing effort to induce sliding modes. No

training for the neural network is required. A formal proof

of stability is given, and simulation results show that high

performance achieved.
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Fig. 3. Tracking of cartesian sinusoidal contact force and force error
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Fig. 4. Smooth control inputs for each joint.

APPENDIX

Proof of Theorem 1 A passivity analysis 〈S,τ∗〉 indicates

that the following candidate Lyapunov function V qualifies

as a Lyapunov function

V =
1

2
{ST

q HSq +βST
v f Sv f +∆WT Γ−1∆W}

where β > 0 is a scalar. The total derivative of Lyapunov

along its solution (30) immediately leads to

V̇ = −ST
q KSq −βηST

v f Sv f +ST
r τ̄d

≤−ST
q KSq −βηST

v f Sv f +‖ST
r ‖‖δ‖ (32)

where K = Kd + B0, δ is a functional that bounds τ̄
and and its existence arises due to the boundedness of

feedback gains, the smoothness of ϕ(x) (such that as-

sures upper bound for Q,Jϕ , JRinv(q), J(q)),γ2JT
ϕ Z and fi-

nally the boundedness of Z. In the same way we have

used the skew symmetric property of Ḣ − 2C. All this

arguments establish the existence of the functional δ =
f (Svs,Sv f ,H(q),C(q, q̇),g(q),ϕ(x),X). Then Kd , β and η
are large enough and the initial errors are small enough,

we conclude the seminegative definiteness of (32) outside

of hyperball ε0 =
{

Sq|V̇ ≤ 0
}

centered at the origin, such

as the following properties of the state of closed loop

system arise Sq ∈ L∞ →
∥∥Sq

∥∥ ≤ ε1with ε1 > 0. Then,

(Ssδ ,
∫

sign(Ssδ ))∈L∞ and since desired trajectories are C2

and feedback gains are bounded, we have that (q̇r, q̈r)∈L∞,

which implies that Ycont ∈ L∞. The right hand side of (30)

shows that ε2 > 0 exists such that
∥∥Ṡq

∥∥ ≤ ε2 This result

stands for local stability of Sq provided that the state is

near the desired trajectories for any initial condition. Now

we prove that the sliding mode arises.

Part II. Sliding modes (visual tracking and force).
Since Sq ∈ L2, and JRinv and Q are bounded (is easily

to prove that if J (q) is bounded then JRinv is bounded),

then QJRinvSvs is bounded and, due to ϕ (q) is smooth

and lies in the reachable robot space and SvF → 0, then

βJT
ϕ SvF → 0. Now, taking into account that Ṡq is bounded,

then d
dt JRinvQSvs and d

dt βJT
ϕ Sv f are bounded (this is possible

because J̇T
ϕ is bounded and so Q̇ is). All this chain of

conclusions proves that there exists constants ε3 > 0 and

ε4 > 0 such that
∣∣Ṡvs

∣∣ < ε3,
∣∣Ṡv f

∣∣ < ε4Now, we have to

prove that for a proper γs and γF , we can conclude that

trajectories of visual position and force converges to zero.

This is possible through sliding modes for the subspace

of visual position Q and the subspace of force JT
ϕ (q).

Considering that operator QJRinv spans the vector Ŝq in its

image im{QJRinv (Svs)} ≡ Sim
vs and the operator βJT

ϕ spans

the same vector in its image im
{

βJT
ϕ

(
Sv f

)}
≡ Sim

v f , this

implies that

Sq = QJRinvSvs −βJT
ϕ Sv f ⇒= Sim

vs −Sim
v f (33)

where Sim
vs and Sim

v f belongs to a orthogonal complements,

that means
〈
Sim

vs ,Sim
vF

〉
= 0. We are able to analyze the Sim

vs
dynamics, independently of Sim

v f , since Sim
v f belongs to the

kernel of Q. This is verified if we multiply (33) for QT ,

QT Sq = QT QJRinvSvs −
βQT JT

ϕ
{

Sv f
}

︸ ︷︷ ︸
equal 0

⇒ Sim
vs (34)

since Q is idempotent
(
QT Q = Q

)
. It is important notice

that if Ax = Ay for any square matrix A and any couple

of vectors x,y, then x ≡ y. Thus, the equation (34) means

that for the subspace Q, the equality Sq = QJRinvSvs is valid

within span of Q.

Part II.a: Exponential convergence of visual tracking
errors. According to QT Ŝq = QJRinvSvs then Sq ≡ JRinvSvs
in the subspace image of Q, however notice that Q is not
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full rank, then this equality is valid locally, not globally. In

this local neighborhood, if we multiply the equality Sq =
QJRinvSvs by Rα (θ)J (q) (JRinv = J−1 (q)R−1

α (θ)), we have

Rα (θ)J (q)Sq = Svs ≡ Ssδ + γs

∫
sign(Ssδ ) (35)

Taking the time derivative of the above equation, and

multiply it by ST
sδ produces

ST
sδ Ṡsδ = −γsS

T
sδ sign(Ssδ )+ST

sδ
d
dt

[Rα (θ)J (q)Sq]

≤ −γs |Ssδ |+ ε5 |Ssδ |

≤ −µs |Ssδ | (36)

where ε5 = d
dt [Rα (θ)J (q)Sq], and µs = γs − ε5. Thus, we

obtain the sliding condition if

γs > ε5

such as, µs > 0 of (36) guarantee the sliding mode at Ssδ = 0

in a time ts = |Ssδ (t0)|
µs

. However, notice that for any initial

condition Ssδ (t0) = 0, then ts = 0, which implies that the

sliding mode at Ssδ (t) = 0 is guaranteed for all time. Then,

we have

Ss = Ssd∀t → ∆ẋs = −α∆xs +Ss (t0)e−κst

this implies that the visual tracking errors locally tends to

zero exponentially fast, this is

xs → xsd , ẋs → ẋsd

implying that the robot end-effector converges to the desired

image xsd , with given velocity ẋsd .

Part II.b: Exponential convergence of force tracking
errors. If we multiply Sq for Jϕ we have:

Jϕ Sq =
Jϕ QJRinvSvs︸ ︷︷ ︸
equal to 0

−βJϕ JT
ϕ

{
Sv f

}
⇒ Sim

v f (37)

Now, if we multiply 37 for
(
Jϕ JT

ϕ (q)
)−1

, we obtain

J#
ϕ (q)Sq = SvF ≡ SFδ + γF

∫
sign(SFδ )

where J#
ϕ (q) =

(
Jϕ JT

ϕ (q)
)−1

Jϕ . Derivating the above equa-

tion and multiply for ST
Fδ lies

ST
Fδ ṠFδ = −γF ST

Fδ sign(ST
Fδ )+ST

Fδ
d
dt

(
J#

ϕ (q)Sq
)

≤−γF |SFδ |+ |SFδ |
d
dt

(
J#

ϕ (q)Sq
)

≤−γF |SFδ |+ |SFδ |ε6

≤−µF |SFδ |

where ε6 = d
dt

[(
Jϕ JT

ϕ (q)
)−1

Jϕ Sq

]
. If γF > ε6, then a sliding

mode at SFδ (t) = 0 is induced in a time t f ≤
|SFδ (t0)|

µF
, but

SFδ (t0) = 0, and that means ∆F = ∆F (t0)e−κF t . Moreover,

in [11] it is showed that the convergence of force tracking

errors arises, thus λ → λd exponentially fast. �
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