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An Adaptive Neural Network Controller for
Visual Tracking of Constrained Robot Manipulators

R. Garcia-Rodriguez, E. Dean-Ledn, V. Parra-Vega, and F. Ruiz-Sanchez

Abstract— Diverse image-based tracking schemes of robot
moving in free motion have been proposed, and experimentally
validated, whose position and velocity image tracking errors
converge to zero. However, visual servoing for constrained
motion robot tasks has not been addressed so as to provide
control schemes that guarantee simultaneous tracking of
position, velocity and contact force trajectories for dynamic
robot models. The main difficulty may steam from the fact
that camera information cannot be used to drive force tra-
jectories.Recognizing this fact, in this paper a unique error
manifold that includes position-velocity errors and force errors
in orthogonal complements is proposed under the framework
of passivity, to yield a synergetic scheme that fuses camera,
encoder and force sensor signals. This seemingly fusion of all
tracking errors into a unique error variable allows to propose
a new control system which guarantees local exponential
tracking of all error trajectories. A neural network, driven by
an orthogonalized second order sliding mode surface is derived
to compensate approximately for nonlinear robot dynamics.
Residual errors that arises because of the finite size o the
neural network are finally eliminated via two sliding modes.
Simulations results are presented and discussed.

Index Terms— Visual Servoing, Neural Network Control,
Force Control, Multifusion Sensor, Robot Manipulator

I. INTRODUCTION

Model-based hybrid vision/force control approaches have
been reported [1], [6], [10], [2], [5], [14], but none of
them shows robustness to uncertainties, robot parameters
nor camera parameters. In a different path, [15] presents
an interesting scheme of hybrid vision force control in an
uncalibrated environment, with a very complex control law.
With respect to force control, [11] proposed a judicious
design of the extended error based on the orthogonalization
principle which establishes the orthogonal decomposition of
the error space to include all error signals into a unique error
variable, however these schemes have not been extended, or
combined, beyond constrained robots with state feedback.

Recently, and based on our previous results on adaptive
force control with unknown model [12], and dynamic visual
servoing [13], we proposed an adaptive hybrid visual servo-
ing [3], which guarantees simultaneous tracking of position,
velocity and force trajectories. However, all these schemes
depend on the exact knowledge of the model, which is
difficult to model in relevant practical applications.

A natural choice to get ride of the regressor is a neural
network-based controller, because the ability of the neural
network to approximate the regressor. However, usually
“small size” neural network does not approximate exactly
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the input-output map of nonlinear systems, and furthermore,
it may require a very dense network to deliver bounded
approximate error. Therefore, we must proceed with caution
since the holonomic constraint of a DAE ! system, such a
constrained robot, must be fulfilled for all time, and the
approximation error of the neural network may provoke
inconsistency of the DAE system. That is, synthesizing an
image-based neural network for constrained robots is not
straightforward.

A. The problem

The problem we are interested in may be resumed as
follows: Design a control system that guarantees fast image-
based tracking of constrained robots, subject to unknown
regressor. This problem is still an open in the literature.

B. Contribution

A neural network-based control for simultaneous tracking
of visual position and contact force trajectories of unknown
constrained robots is proposed. The key is the orthogo-
nalization of the extended error, which induces chattering-
free second order sliding modes in each orthogonal com-
plements. These orthogonal sliding modes tune the neural
network so as to provide fast and well posed approximate
compensation of nonlinear robot dynamics. The residual
error that arises from this bounded compensation is yet
eliminated with the sliding modes in each orthogonal sub-
space. Finally, local exponential tracking of image-based
position error and contact force error arises.

The low dimensional neural networkrequires only one
layer with one neuron per degree of freedom, and four
weights per neuron. The underlying reason that allows
to obtain this result is the derivation a new image-based
orthogonalized principle. Thus, similar results to the case of
nonvisual-based orthogonalized principle are obtained. This
nontrivial extension of force control merges our previous
results on force control, second order sliding mode, and
dynamic visual servoing. Simulations allows to visualize the
expected closed loop performance predicted by the theory.

'Dynamical Algebraic System (DAE) robots carry out two motion task,
where the end-effector is in contact to a rigid unconformable surface,
exerting force on it and in its orthogonal direction, the end effector
move. constrained motion task are defined as the exertion of a desired
profile of force in the constrained force degrees of freedom (f-DOF),
while simultaneously moving along the unconstrained position degrees of
freedom (p-DOF). The dynamics that arises in such motion are defined
by the set of n(=f+p) DOF coupled to an algebraic constrain. Together
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II. NONLINEAR ROBOT DYNAMICS
A. Visual Kinematics

Direct and differential kinematics of a serial n—link rigid
robot manipulator are given, respectively, by

x=flq)  t=JI(q)q ey

where x;, € R" represents the position of robot end effector
in operational workspace, in our case the cartesian space,
g € R" is the vector of generalized joint displacements,
finally f(-) : R" — R", and J(q) as the analytical jacobian.

In this case, consider the camera model, using thin lens
without aberration, [8] presented the widely accepted fixed
(static) camera configuration, whose basic mathematical
description of this system consists of a composition of four
transformations defined as follows

o Joint to Cartesian transformation

o Cartesian to Camera transformation
o Camera to CCD transformation

+ CCD to Image transformation

Then we have the following forward visual kinematics. Note
that the visual position x; € R? of robot end effector in
image space (screen) is given by

Ar [-1 0
Xy = %m { 0 1] Roxp+ 2
= QaRx,+ B 3)

where o is the scale factor 2, Ry € R2*2 stands for the 2x2
upper square matrix of Rg € SO(3), that is

v=[ s ] @

and
k= o) e | emwpt ©
peent o ] e

where Af is the focal distance along optical axis, z stands
for the depth of field, u.,v. define the translation of camera
center to image center, and YO, —" Oy, define the distance
between optical axe and the robot base Z. In this way, the
differential camera model is then

Xs = OLRX) @)

Notice that the constant transformation &tR maps statically
robot cartesian velocities into visual cartesian velocities,
and the visual flow x5 does not contain any independent
input. Now, using equation (1)~(7), we have a equation
that relates image velocities with joint velocities as follows

is = aRJ(q)q ®)

2Without lose of generality, o can be considered as a scalar matrix
2x2.

where %, € R2 determines the visual robot end effector
velocity and notice that aRJ(g) maps joint velocities to
visual cartesian velocities. To obtain the inverse differential
visual kinematics, solve equation (8) for ¢

q = JRimyXs (9)

where, the simplification Jgpy = J(¢) 'R 'a”! =
J(g)"'Ry', has been used. With Jgi € R whose
entries are function of robot and camera parameters.

B. Constrained Robot Dynamics

Using the Constrained Lagrangian (L, = K — P +
©(q)T L), the constrained robot dynamics arises as a set
of differential algebraic equations as follows

T+J4(g)A (10)
(1)

H(q)G+(Bo+C(q,9))q+g(q) =
(P(wi) =0

where H(g) € R™" is the symmetric positive definite ma-
nipulator inertia matrix, By € R™" stands for a diagonal
positive definite matrix composed of damping friction for
each joint, C(g,q)g € R" stands for the vector of centripetal
and coriolis torques, g(g) € R" is the vector of gravitational
torques, A € R" is a vector of Lagrange multipliers or
contact forces, and finally ¢(x,w) is the kinematic restric-
tion, as a rigid surface and frictionless, where, ¢ = (x,w) :
R" — R is a given scalar function, with x = (x1,x2,x3)
denoting a position of a fixed coordinated system and
w = (w1, wa,w3)” its associated Euler angles.

C. Parametrization of Robot Dynamics

The robot dynamic model complies with the property
known as dynamic linear parametrization, this is, the robot
dynamic is lineally parameterizable in terms of a known
regressor Y, =Y} (¢,4,¢) € R"*P1 and an unknown constant
vector 8, € RP! of robot parameters, as follows

H(q)gr+ (Bo+C(q,4))qr+8(q) = Y50 (12)
Adding and subtracting the lineal model parametrization to
equation (10), we have the open loop error equation as

H(q)Sy =T+J4(q)A— Y0, — (Bo+C(q,9)S,  (13)

with S defined by

Sq=d—dr (14)
which is called as the joint error surface, and ¢, is a nominal
reference of joint velocities, and is, so far, not yet defined.
Notice that (14) can be written, using (9), by §; = JriuyXs —
g, thus, we are tempted to design ¢, = f(JrinXsa, Ad), for
Xsq the desired reference of image velocity trajectory, and
A4 the desired contact force. To this end, let first design a
Visual Orthogonalization Principle to obtain a unique error
variable composed of both visual position and force errors.
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III. OPEN LOOP ERROR EQUATION
A. Visual Orthogonalization Principle.
Since @(g) = 0V, then its time derivative yields
% (9) = ag;q) % =Jp(q)g=0
This means that J, (¢) is orthogonal to §. That is, ¢ belongs
to the orthogonal projection matrix Q of J, (¢) [11]

15)

JT

=1-—2 (16)
27e
7o (0]
Clearly, Q spans the tangent plane at the contact point, thus
04 = ¢ a7
and
QJ, =0

Therefore, J, and Q are orthogonal complements since R"
is generated by the direct sum of two orthogonal sub-spaces,
since rank (im(Q)) =m=n—r and rank (im (Jy)) =r, such
as m+r = n. In other words, These facts are fundamental
to solve the problem.

B. Nominal Orthogonalized References

Notice that the visual orthogonalization principle is es-
tablished in visual space at the velocity level, we need to
introduce an orthogonalized reference signal g, = ¢s+ ¢ at
the velocity level, where ¢! ¢ = 0. Thus consider

Qr = QJRinvxr'f'ﬁJgCer (18)
where 8 >0 and X, and ¢,y stand for the visual position
nominal reference and force nominal reference, respectively.

1) Visual position nominal reference: Using definition of
(9),consider

X = Xgq — OAXs + Sgq — }/s/ sign (Sys) (19)

1

fo
where, &t > 0, 7; > 0 are positive definite feedback gains, x4
stands for desired visual trajectory velocity, Ax; = x; — Xgq
is the visual position error, and

SSB =8 =8, Ss=Ns+0Axs, Siq=1S5; (tO) e

where Ax; = Xy — X4, defines visual velocity error, K is
a positive constant and the function sign(y) stands for
sign function of vector y, and finally defining frg sign(Y) =
Jipsign(¥ (£))dC.
2) Force nominal reference: Let the nominal force ref-
erence be
t

dry = AF —Sqp + i / sign (Srs) (20)
0

for yr > 0 is a positive definite gain and
Srs =Sr —Sra, Sr=AF, Spq=Sr(tg)e '

with kg > 0,AF = f,; AA and AL = A — Ay

C. Joint Error Surface
Substituting (18), (19), (20) into (14), by using (9),
we obtain the following visual orthogonalized joint error
surface
Sq =q4—qr
== QJRinv (xs - xr) + ﬁqurf
= OJRinySvs — ﬁjgsvf

where
Svs = SSS + %/Sign (SSS)
Svr=3Srs+¥r /sign (Srs)

D. Open Loop Error Dynamics

Since ¢, is discontinuous, and neural network can approx-
imate only continuous mappings, then we need to rewrite
it follows

(:jr = QJRinvxr + QjRinvxr + QJRinvxr
+BJgrs + BIydry 1)
= {eont + Gdisc (22)
where
Geom = QJRinvxr + QjRinvxr + OJRiny *
(a0 — QA%+ Ssq — Ystanh(2,S5)) +
BJgqrs + BTy (AF — Sy + yr tanh(AsSps))
Gaise OJrimZp — BJoZs (23)

with Z, = tanh(4,S;5) — sgn(Sss),Zy = tanh(A;Sps) —
sgn(Sgg) for tanh(x) as the continuous hyperbolic tangent
function of (x) and A,,A; € R™ > 0. The continuous
function tanh(.) is used as approximation of discontinuous
function sgn(.), such that tanh(0) = 0 and tanh(4,S,,) —
s5gn(Syp), tanh(ArS,r) — sgn(Sys) when A — co. Notice that
Zp,Zf have the following properties: Z > —1, Z < +1,
Zs, o~ =—1, Zg, o+ =+1 and Zg .+ = 0. Finally, note
that Yeonr = Y5(q, 4, ¢r,q,) is continuous due to (G, Geon) €
¢'and Zp, Zy are discontinuous, but bounded. Substituting
(18) into (12) give rise to

H(q)jr+ (Bo+C(4,9)dr+G(q) =Yeo®+14  (24)

where T; = H(q)dgisc is considered as an endogenous
bounded disturbance, which cannot be compensated by the
neural network since it is discontinuous. Then, (24) into
(10) the open loop error equation finally arises

H(q)Sq+ (Bo+C(4,4))Sg = T—Yeou®+J g (9) 2 +7u (25)

At this stage, before to design 7, it remain to discuss the
design of the neural network scheme as an associator to
approximately compensate for Y, ®.
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IV. NEURAL NETWORK APPROXIMATOR

Let K be a closed bounded subset of R" and a real vector
valued functions f(x) be defined on K as f: KC R" —R.
We would like to approximate function f(x) by using tree
structure [7] in which many neurons on one layer feed a
single neuron on the next layer, is a generic architecture
for networks satisfying the Stone-Weierstrass theorem with
linear functions for the input and output layers. The input-
output relationship for this generic architecture is given
as ¥ = f(x) = ¢(X,WTX) where W, X y Y represent
the weights, inputs to the unit and output from the unit,
respectively. It’s important to notice that the tree structure
has one or more hidden layers followed by a linear output
neuron by means of which its possible to create multilayer
neural network with an arbitrary number of neurons in each
hidden layer. In this work we use ¢ as a linear function i.e.
function approximation is parameterized by static adaline
neural network.

Based on the Stone-Weierstrass theorem [7] show that
any smooth functions f(x) € C"(S), where S is a compact
set simply connected set of R”, can be approximated by a
sufficiently large dimensional neural network, given as

Fx)=9(WiX)

where the bounded weight vector W is optimal (in a sense
that f(x) — f(x) = 0) and X belong to a compact set K C
R2", that is S := {x: ||x|| < S}. And, if the approximation
is done with a low dimensional neural network, then a
bounded functional reconstruction error €(x) appears

F)=9(WiX)+e(x)

where W1 is a subset of W1 and ||&(x)| < e, con &y > 0.

In this paper, the unknown nonlinear function f(x) =
Yeont®, is approximated by static adaline neural network
with output f(x,W,2) = WX where WI, € R"? is the
matrix of adjustable weights and n2 denotes a low number
of weights, with n2 < nl. The main reason for selecting
this type of neural network is that this network provides
very easy way to approximate f(x) without worrying about
its accuracy. Besides this, the size n2 of the network can be
obtained roughly by checking carefully the dynamics of a
general n-link rigid arm. Now, let consider the approxima-
tion of f(x) as follows®

F) = Yeou® =W X +£(x) (26)

where Y0 ® € R™P, @ € RP*! stand for the function to be
approximated

X= (%q»qraéjcom) € R™

In this way, using low dimensional neural network, the
estimation of f(x) is f(x), where f(x) stands for the online
estimation of Y,,,,®. Now we are ready to design the neural
network adaptive controller.

3Without of generality, in the rest of the paper we refer W,o as W,
omitting its subindex

Remark 1. The difference of our approach with respect
to [4], [9] and many others, is that we propose a low
dimensional neural network, based on linear associator and
still we are able to prove convergence, in contrast to those
references that guarantee only bounded tracking.

Remark 2. Notice that the dimension of the neural net-
work is very low, it is composed of decentralized neurons,
that is the neurons of the i degree of freedom depend only
on data of the state i and variables related only to i. For
instance, for a two degrees of freedom system, n, = 2, thus
2n =4, so we have two neurons with a four weights each
one.

Our controller presented in the next section, will compen-
sate Y..,;® with a low dimensional neural network, while
the approximation error of the neural network and Z,, Zy
in 74, will be compensated with an orthogonalized second
order sliding mode inner loop. Notice that endogenous
bounded terms Z,, Z; and 7, are casted as disturbances.

V. CONTROL DESIGN
Substituting (26) in (25) becomes
H(q)Sq+ (Bo+C(4,4))Sq = T— W' X+Jg (9)A — T (27)

where T; = €(x) — ;. Now consider the following state
feedback continuous control law

T = —KiS;+W X +JD(q)[~Aq+MAF] +
t
Wl (@)lsgn(Srs)+n [ sgn(Srs)l 28
(]
W = -Tx's, (29)

with K; = KT € R, T =TT € RP*P diagonals and definite
positives, A, is desired contact force. Substituting (28)-(29)
into (27) the closed loop equation becomes

H(q)Sy = —[K+C(q,q)]Sq—AWX +
Jo (@) [Sur +1Suf] + T (30)
AW = Tx's, (31)

where T=17;— yzfg(q)Z, Z =tanh(USrgs) —sgn(Srs), K =
K;+By, AW =W — W, W € R stands for the neural
network weights, X € R, gtands for the input to the
network, and T =T7 € RY™”. Now, we can state the stability
properties in the next theorem.

Theorem. (Second Order Sliding Mode Constrained
Visual Neural Network) Consider a constrained robot
manipulator (10)-(11) under the continuous model free
second order sliding mode scheme (28)-(29), and assume
that the feedback gains K, 7, 3 are large enough, and errors
on initial condition are small enough. Then the closed loop
system yields local exponential convergence of visual and
force tracking errors. Furthermore, a second order sliding
mode is enforced for all time with a low dimensional neural
network, and with smooth control effort.

Proof. See Appendix section.
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A. Discussion

Remark 3. We have proved that J(g) (tp) is not singular
for all time, because Jrimy =J ' () Rg' () at a given initial
conditions, and because desired trajectories belong to robot
workspace €, and trajectories converge with an exponential
envelope.

Remark 4: Adaptive Neural Network. It is fundamental
the contribution of the neural network for this scheme to
work, since it compensates robot dynamics in orthogonal
subspaces, it is in fact a DAE approximator with very low
computational load since it is required only few nodes to
bound the approximation error.

Remark 5: Two Orthogonal Sliding Mode Regimes.
Worth to mention that two sliding mode regimes arises, each
one in the complementary spaces spanned by Q and JZ, and
the establishment are each other independent.

Remark 6: Continuous Control. Clearly the controller
does not involves discontinuous signals, which is very
relevant for real time implementation purposes.
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Fig. 1. Cartesian tracking error,mapped from image-based position error.

VI. SIMULATIONS

Visual error X
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Fig. 2. Visual errors with exponential convergence.

Digital simulations on the 2-DOF nonlinear model of a
rigid arm are presented. The stiff numerical solver of Matlab
5.3 was implemented, under ls sampling simulation time.
The end-effector of the rigid robot arm is in contact with
a rigid wall, simulating a polishing task, wherein a given
sinusoidal profile of force is exerted in the normal direction,
while moving along the wall. The robot parameters are take
from a real 2DOF planar robot, available in the laboratory,
together with real parameters of a SONY DFWVL500 CCD
camera, see Tables (I) and (II). Desired trajectories are x; =
OR[xcd;yed] + B,xcd = 0.5;ycd = 0.5+ r+sin(wxt) ; r=
0.1, w=0.5. Contact surface is a plane parallel to plane YZ
and over x = 0.5 and A; = 20+ 8sin(5¢)N Feedback gains
Kr=20,7=6.1,1=0.029,8 =3.0,K; =60,00 =25, K, =
20,7 = 3.12,I' =20.

As expected, the end-effector tracks the desired carte-
sian trajectory without any knowledge of robot dynamics
nor inverse kinematics. After a very short transient, due
to numerical problems of the DAE solver, simultaneous
force-position exponential tracking is established, (Fig. 3)
with relatively smooth control effort i.e there is no over
saturation (Fig. 4). In Fig. (2), shows the visual position
error, where the systems converge to an error that can be
considered as zero. (less than 0.1 pixel error) and Fig. (1),
shows that cartesian errors shows exponential convergence.

TABLE I
ROBOT PARAMETERS.

| Robot parameter | Value |
Length link [y, 0.4,03 m
Center of gravity 1,2 I.1,l» 0.1776,0.1008 m
Mass link my,m; 9.1,2.5714 kg
Inertia link 77,1, 0.284,0.0212 kgm”

TABLE I
CAMERA PARAMETERS.

| Vision parameters | Value |
Clock-wise rotation angle 6 2 rad
Scale factor a, 77772 pixeles/m
Depth field of view z 1.5m
Camera offset "0, [-02 —0.1]T m
Offset X; of [0.0005 0.0003]7 m
Focal length Af 0.008 m

VII. CONCLUSIONS

A novel scheme for neural constrained image-based
force-visual servoing for robot arms is proposed. It is shown
the local exponential convergence in the position-velocity
and force subspaces, even when neither robot parameters
nor camera parameters are known, only the analytical
jacobian is required. The main feature or our scheme is
the ability to fuse image coordinates into an orthogonal
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complement of joint velocities, and contact forces in the
orthogonal complement of integral of contact forces. The
neural network control loop compensates for DAE dynamics
while an inner piecewise continuous sliding mode control
loop adds the missing effort to induce sliding modes. No
training for the neural network is required. A formal proof
of stability is given, and simulation results show that high
performance achieved.

Contact Force

I I I I I
0 0.5 1 1.5 2 25 3
ts]

Error Force
T

tls]

Fig. 3. Tracking of cartesian sinusoidal contact force and force error
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; ; ; ; ;
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Joint control 2
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I I
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Fig. 4. Smooth control inputs for each joint.
APPENDIX

Proof of Theorem 1 A passivity analysis (S, T*) indicates
that the following candidate Lyapunov function V qualifies
as a Lyapunov function

1
V=S {SqHSg+BSi;Suy+ AW T 1AW}

where 8 > 0 is a scalar. The total derivative of Lyapunov
along its solution (30) immediately leads to

V =—SIKS,—BnSleSus+5 7

< —STKS,— BnSL S,y + 1ST11]16] (32)

where K = K; + By, 0 is a functional that bounds 7
and and its existence arises due to the boundedness of
feedback gains, the smoothness of @(x) (such that as-
sures upper bound for Q.J¢, Jrin(q), J(q)),ng(;Z and fi-
nally the boundedness of Z. In the same way we have
used the skew symmetric property of H —2C. All this
arguments establish the existence of the functional 6 =
J(Sus:Svr,H(q),C(q,49),8(q), 9(x),X). Then Ky, B and n
are large enough and the initial errors are small enough,
we conclude the seminegative definiteness of (32) outside
of hyperball g = {Sq\V < 0} centered at the origin, such
as the following properties of the state of closed loop
system arise S, € Lo — HSqH < g with & > 0. Then,
(Sys, [ sign(Sy5)) € L and since desired trajectories are C2
and feedback gains are bounded, we have that (g, ) € Z,
which implies that Y., € Z.. The right hand side of (30)
shows that & > 0 exists such that HSqH < & This result
stands for local stability of S, provided that the state is
near the desired trajectories for any initial condition. Now
we prove that the sliding mode arises.

Part II. Sliding modes (visual tracking and force).
Since S; € %5, and Jgin» and Q are bounded (is easily
to prove that if J(g) is bounded then Jg;, is bounded),
then QJginSys is bounded and, due to @(g) is smooth
and lies in the reachable robot space and S,r — 0, then
ﬁ]gSvF — 0. Now, taking into account that S'q is bounded,
then%JR,-m,QSvs and % ﬁ]g S, f are ‘pounded (this is possible
because J'g is bounded and so Q is). All this chain of
conclusions proves that there exists constants € > 0 and
€4 > 0 such that [S,| < &,[S,¢| < &4Now, we have to
prove that for a proper %; and yr, we can conclude that
trajectories of visual position and force converges to zero.
This is possible through sliding modes for the subspace
of visual position Q and the subspace of force Jg (q).
Considering that operator QJg;,, spans the vector .§'q in its
image im {QJginy (Sus)} = Syt and the operator BJg, spans
the same vector in its image im {BJj (S.s)} = Su%, this
implies that

Sq = QJrimSvs — BJoySuy == Si — Syt (33)

where S and S’v’}’ belongs to a orthogonal complements,
that means (S}, Sy7) = 0. We are able to analyze the S}
dynamics, independently of S’L']'f since S’V’;l belongs to the

kernel of Q. This is verified if we multiply (33) for Q7,
T T

Bo Jo {S"f }

—————
equal 0

0"Sy = 0" QJpimSys — =Sy (34
since Q is idempotent (Q'Q = Q). It is important notice
that if Ax = Ay for any square matrix A and any couple
of vectors x,y, then x =y. Thus, the equation (34) means
that for the subspace Q, the equality S; = OJginSys is valid
within span of Q.

Part IL.a: Exponential convergence of visual tracking
errors. According to Q7S, = QJgimSys then S, = JriSys
in the subspace image of O, however notice that Q is not
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full rank, then this equality is valid locally, not globally. In
this local neighborhood, if we multiply the equality S, =
OJRinvSvs by Ry (G)J(Q) (JRinv = J! (Q)R&l (9))3 we have

Ra(0)(@)S, = Su=Sy+1 [sign(Ss) (9

Taking the time derivative of the above equation, and
multiply it by S7s produces

. . d
SisSss = —1Sipsign(Sys) + S5 1 [Ra (8)J(9)S,]
< _}/S|Ss5|+85‘ss3|
< U ‘Ss'5| (36)

where &5 = 2[Ry (6)J(q)S,], and p, = % — &s. Thus, we
obtain the sliding condition if

Ys > &

such as, s > 0 of (36) guarantee the sliding mode at S;5 =0
in a time t;, = M. However, notice that for any initial
condition S, (o) =0, then ty = 0, which implies that the
sliding mode at S5 () =0 is guaranteed for all time. Then,
we have

Sy = SgqVt — Axy = —aAx; + S (l‘o) e Kt

this implies that the visual tracking errors locally tends to
zero exponentially fast, this is

Xy — Xgd, X5 — Xgd

implying that the robot end-effector converges to the desired
image x4, with given velocity X;.

Part IL.b: Exponential convergence of force tracking
errors. If we multiply S, for J, we have:

J(P QJRinvSvs
—_——

JpSy = =By {Sus} =St (37)

equal to 0

Now, if we multiply 37 for (JpJg (q))fl, we obtain

T4 (a) Sy =Sur = Sps+ e [ sign(Srs)

where J§ (q) = (JoJ§ (q))fl Jo. Derivating the above equa-
tion and multiply for Sg s lies

. . d
StsSrs = —YrStgsign(Sts) +S£55 (T8 (9)Sq)
d
< —¥e |Srsl +1Srs| 5 (Vp (4)S4)
< —¥r[Srsl+[Srs| €
< —ur |Sgs|

where & = % [(J(p.]g (q)) - J(qu} If yr > &, then a sliding

mode at Spg(t) =0 is induced in a time #; < M, but
Srs (o) =0, and that means AF = AF (fy) e~ *F’. Moreover,
in [11] it is showed that the convergence of force tracking
errors arises, thus A — A, exponentially fast. H
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