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Abstract— A globally convergent visual feedback control
scheme is proposed for dynamical planar robot arms subject
to uncertain camera, robot, analytical Jacobian and dynamic
friction parameters. When complex friction arises, visual
servoing suffers to drive the robot to the desired trajectories
in particular in slow motion and velocity reversals, which
are typical motion regime in visual servoing due to the
vision system properties. Moreover, dynamic friction is usually
neglected in motion control and it is not the exception in visual
servoing literature. In order to prove the theory described in
this paper, the real-time OS, Linux-RTAI, is used to obtain
experimental results of this controller on a direct-drive robot
manipulator. Results suggest its excelent performance.
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that may cause instability in mechanical systems [8]. This
phenomena deprives to obtain the required precision of
a physical system, particularly robot manipulators. Then,
joint friction is quite important to compensate becauss it i
a dominant dynamical force in slow and velocity reversal
regimes, which is a typical motion regime in robot tasks,
and moreover in visual servoing. Thus, the task under study
is that the robot end effector tracksvasual trajectory, i.e.

in image space (see Fig. 1). This task is very relevant
in many robotic applications. However, for any practical
impact, uncertainties must be considered.

Index Terms— Visual Servoing, Second Order Sliding Mode
Control, Adaptive Control, Unknown Jacobian, Dynamic
Friction.

Fixed

I. INTRODUCTION

Dynamic-based visual servoing schemes consider exf:
plicitly the robot dynamics, so as to compensate them tof =
achieve a better dynamic response. The obvious advantag
of this scheme is the fact that online compensation of
uncalibrated camera can be easily carried out along the co
troller computation. Recently, uncalibrated spatial gisu
servoing tasks have been proposed using adaptive contrg
for dynamic robot arms to guarantee local tracking subject]
to parametric uncertainty [4][4]. These schemes exploit
the fact that the rotation matrix is constant, and formal and
rigorous stability analysis support these results. Howeve
this works assume knowledge of the analytical Jacobian
matrix, and furthermore, these are singular at rotatiorleang
6 = /2. For planar uncalibrated visual servoing tasks, [4] o
propose a regulation scheme that removes the requiremefiyt Contribution
of the image Jacobian. Instead, to achieve position track- In this paper an adaptive second order sliding mode
ing, [6] propose a discontinuous first order sliding modetracking visual feedback controller driven by image errors
controller. An improvement of this scheme is presented ins developed. It is assumed that camera, robot, Jacobian and
[7] wherein an excelent combination of adaptive controldynamic friction parameters are uncertain. As second order
and second order sliding mode control is used to avoidgliding mode control does not introduce high frecuency
chattering (introduced by the first order sliding mode) andsignals, it can be implemented in a real plant, unlike the
to overcome the parametric uncertainty of camera, robdiirst order sliding mode. Also, as will be seen afterwards,
and Jacobian. However, none of the papers mentionethe sliding mode permits to achieve exponential fast con-
before compensate for joint friction. Dynamic friction vergence of tracking errors. No acceleration is required,
provokes limit cycles and complex nonlinear behaviorsand only the visual flow of one landmark is computed.
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To illustrate the performance of the proposed controlleNow, the visual position:, € %2 of robot end effector in
we present experimental results, that confirms the expectdthage space (screen) is given by [5]
behavior, on a direct-drive robot manipulator.

zs=aR(0)x, + )

where o is the scale factdr and R (0) € SO(3), 8 €
% and depends on intrinsic and extrinsic parameters of
camerd. The differential camera model is then

II. NONLINEAR ROBOT DYNAMICS

The dynamics of a seriab-link rigid, non-redundant,
fully actuated robot manipulator can be written as follows

H(q)i+C(q,d)q+g(q) =7 F(¢,%2) (1)

whereq € R" is the vector of generalized joint displace-

ments, H(q) € R"*" stands for the symmetric positive Wherei, € %* determines the visual robot end effector
definite manipulator inertia matrix;'(q, ¢)¢ € ®" stands Vvelocity, i.e.visual flow Notice that the constant transfor-
for the vector of centripetal and Coriolis torquegg) €  mationaR (9) maps statically robatartesian velocities,,
R" is the vector of gravitational torqueBy¢, z,z) € R is  into visual flowi,. Using equation (#(9), equation (10)
the joint dynamic frictioh andr € R stands for the vector becomes

of input torque control. Two important properties of robot s = aR(0)J(q)g (12)

dynamics, useful for stability analysis, are the following

Property t With a proper definition of’(q, 4), F/(q) — Thus, 'the inverse Qiﬁerential !(i'nematics for robot manip-
ulator in terms of visual velocitiésbecomes

2C(q, q) is skew-symmetric. Then
. . -1 -1 1. . .
X7 |f(g) ~20(a.9)| X =0, VX eR" () Q=Jl0) RO a7E = 4= Jrimds  (12)

Property 2 Robot dynamics are linearly parameterizableThiS relation is useful to design the nominal reference of

in terms of a known regressd§, = Y;(q, ¢, §) € R"<? and joint velocities¢,- in the following section.
an unknown vectof, € R? of robot parameters as follows

i’:s =aR (9) jfb (10)

IV. DEFINITION OF ERROR MANIFOLDS

H(q)j+ C(q,d)q + g(q) = Yobs @) According to (12), a nominal referencg in the joint
A. Open loop error equation space is defined as follows
_ Adding and subtracting to (1) the following parametriza- Gr = JRinor (13)
tion
H(q)ir + Cq,q)dr + g(q) = Yoy (4) Notice that, we are also interested in designing an image

based servo visual force control without computing inverse
kinematics, then nominal referenag. must be designed in
terms of nominal visual reference. Consider now the next
nominal visual referencef velocities

where the known regressdf. = Y. (q, ¢, G, G.) € R**P
and the unknown constant vectéy € P, produces the
open loop error equation

H(q)Sq =7 —C(q,4)Sq — Yo (5)

t t
L : by = $sq — A Ssd — Ses — ign (S
with joint error surfaceS, defined as Tr = Toa = AATs + Saq — Vel /to *0 752/ sign (Sss)

to

. (14)
Sq=q—dr ®)  where isq Stands for desired visual velocity trajectory,
whereg, stands for the nominal reference of joint veloci- A%s = zs—q is the visual position error, and; = ~/; €
ties, not defined yet. X", for i = 1,2. The visual error surface arises
I1l. CAMERA MODEL Sss = Ss — Sea = (Ads + alAzy) — S, (to) e

The static pin hole camera model is used, consideringvhereAi,
thin lens without aberration [5]. To introduce the model °
first consider the robot direct kinematics

zy, = f(q) )

= &,—4q defines visual velocity errok,; > 0
‘anda = o € R7*™. Using equations (12), (13), and (14)
into (6), the visual joint error surface arises as follows

Sq = q - q'r
wherez;, € R” represents the position of robot end effector = JRinvis — JRinvr
in cartesian space, € R" is the vector of generalized joint ’
= JRinvSUs (15)

displacements, andl(-) : ™ — R". Then, the differential
kinematics of robot manipulator, which relates velocities . _ _ _

. ] n . L n Without loss of generalityn can be considered as a scalar matrix
cartesian spacg, € R” to joint space velocitieg € R", oo

is defined as follows 3Focal distance, depth of field, translation of camera cemtémage
center, distance between optical axe to the robot base.
Ty = J(q)q' (8) 4With Jrine € R™*™ whose entries are functions of robot and camera
parameters.
1For a clear exposition, firstlyF (¢, z,z) will be considered zero, 5To eliminate the inverse kinematics calculus and to reducedhérol

however in Section VII it will be treated. law computational cost. This is also one byproduct of thisesui



with
t t
Svs = Ssé + Vs1 / 555 + 752/ S’Lg?’l (555)
to to

where S, stands for the visual manifold.

Remark 1. The above definition assumes exact knowl-
edge of Jrin,. However, in practice, it stands as a very
restricted assumption. Therefore, we need to design a R
uncertain manifoldS, taking into consideration the uncer-

tainty of Jg;n,. TO this end, consider

q (16)

with J;;v an estimated of/;,,,, such that rank/—! (q)

and R;'(9) are full rank Vg € €, where the ro-
bot workspace free of singularities is defined By =

{q|rank (J (¢)) =n,¥q € R"}, andV6 € R. Thus, sub-
stituting (16) into (6), we have thencalibrated joint error
surface

q.r = JRinvTr

Sq = q - 21.\7”
= JRinv-i‘s - J;;vdjr (17)

where Sq is available becausg and ET are available.
Adding and subtracting/g;,. <, to (17) we obtain

Sq = JRinvSvs - AJRinvztr
=8¢ — AJRinvTr (18)
WhereAJRinv = Jl/?-;v - JRinv-
V. OPEN LOOP ERROR EQUATION
Using (16), the uncertain parametrizatiml‘)b becomes

H(q)dr + C(q,9)dr + 9(q) = Y20 (19)
whereg, = f(i,), with

i‘r - i‘sd - OéA:ts + Ssd - ’751855 - 75237;.9”(556) (20)

VI. CONTROL DESIGN

Theorem 1. Assume that initial conditions and desired
trajectories belong t6), and consider the robot dynamics
(1) in closed loop with the following visual adaptive second
order visual servoing control law

T = _Kd‘gq + Ycontéb (25)
Sq (26)

wherel’ € RE*Pand K, € R*". If K, is large enough
and error of initial conditions are small enough, and if

% { Ra (0)J (q) gq+(AJRm):'cr]}

then exponential convergence of visual and force tracking
errors is guaranteed.

Proof. The closed loop dynamics between (2526) and
(24) yields

0, = -TYZL

cont

Vs2 Z

H (Q) Sq = - {Kd + O(Qa Q)} Sq - K;ontAob - H(Q)VSZZS

(27)
Af, =TYT .S, (28)

cont

with A, = 6, — 6,. The proof is organized in two parts.

Part I. Boundedness of Closed Loop Trajectories.
Consider the time derivative of the followingyapunov
candidate function

17,4 X _
V=3 |STH () S, +A0[T 1A¢9b] (29)
along the solutions of (27)-(28) as
V < =57 KaSy + (1510 (30)

where Property 1 has been used, ang||H(q)||zs| <

v, for ¢» > 0 is a constant. Now ifK,; is large enough
and the initial errors are small enough, we conclude the

which introduces discontinuous terms. To avoid introdgcin seminegative definiteness of (30) outside of hyperhal
high frequency discontinuous signals, add and subtrac §;|V >0} centered at the origin, such that the following

tanh(vsSss), vs > 0, t0 g, in order to separate continuous

and discontinuous signals as follows

;'1\'7' = /q\.rcont + VsZs (21)

with z; = tanh (vsSss) — sign (Sss). Thus Y =
Y, q,q7qr7(jmm) is continuous sinc qr,éjmm) eCl,
where

—

Qrcont = JRinvl'rcont + JRinvl'r

with
jrcont - a'fsd - O4Ai‘s + Ssd - 751555 — Vs2 tanh(vsssé)
(22)
Therefore (19) becomes
H(Q)q/; + C(Q7 Q)q/; + g(Q) = YeontOy + Hrysozs (23)

Adding and subtracting (23) to (1), we finally obtain the

open loop error in function ofq, ¢, G, ¢rcont) @s follows:

—

H(Q)Sq =T~ C(Qa Q)Sq — YeontOy — H(Q)’Ys2zs

Now we are ready to present the main result.

(24)

properties of the state of closed loop system arise

Sy € Loo = ||Susll € Loo (31)
Then, (Ssg,fsign (Ssg)) € L, and since desired trajec-
tories areC? and feedback gains are bounded, we have
that (qﬁ,qﬁ € L. The right hand side of (24) shows
thate; > 0 exists such that

‘ o~

Sy
This result shows global stability o?q and S,. Now we
prove that the sliding modes arises. Rewriting (18)

Sq - JRinvSvs - AJRznvxr (32)

Since S, € Ly, and Jgin, is bounded, thewg;,, S, is

bounded. Now, taking into account that, is bounded,
thenc%JRmSvs is bounded. All this chains of conclusions
proves that there exists a constapt> 0 such that

Svs

<e&

< €9



Now, we have to prove that for a proper selection ofthe following complex dynamic friction effects (see [8] for
feedback gainsy,;, 7.2, trajectories of visual position more details on this model).
converges to zero. This is possible if we can prove that , Backslash.
sliding modes are established in the visual position space. , viscous friction.
Part 1I: Second Order Sliding Mode. If we multiply . Stiction and static friction.

(18) by Ry, (6) J (), we have « Stribeck effect.
X t ¢ « Elastic and plastic deformation.
Ro (0) J (q) Sq = Sss + 751/ Sss + %2/ sign (Sss) — « Pre-sliding regime.
to tO

o These effects involve a very complex dynamics around
Ra (0) T () { AT pinwr} (33) the trivial equilibrium, and for bidirectional motion, afior
Taking the time derivative of (33), and multiplying it by very small displacements, the forces that comes out from

ST, produces this model makes impossible to reach the origin due to the
T _ T limit cycles induced and the potentially unstable behavior
555558 = —528555197 (Ss5) = ¥51555 S+ Substituting (35) into (1) yields
d .
5o gy {R‘* )7 (a) (Sq * AJR’"””)} H(q)§+C(a, 4)q+0124+9(q)+00z—001h(¢)z = 7 (36)
S —HUs |S55‘ — Vsl ||S55||2 (34)

where g, = ogo; and oo = o1 + 09. Substituting the
where  p, — Y2 — €4, and ey — uncalibrated nominal reference (16) in (36), just like (19)
4 [Ra 0)J (q) (S’q + AJRZ-M:'UT)} Cand 4., > 0. liesthe next equation
Thus, we obtain the sliding condition s, > 4, such H(a)d N - P

e q)G+C(q,q)G+012G+9(q)+0o0z—001h(¢)z =1 (37
that s > 0 of (34) guarantees the sliding mode&t = 0 @ @9 12+9(q) +o0 oh(d) 37)
at t, = ‘Szﬂ Notice that for any initial condition Similar to [9], only the part of the equation (37) that
Sss (to) = 0, thents = 0, which implies that the sliding is linear in parameters (LP) is rewritten in terms of the
mode atS,s (t) = 0 is guaranteed for all time [13]. This uncalibrated nominal referencg,, g.)T € R>" as follows

implies the global exponential convergence of image-based . . . . .
tracking errors with smooth control effort H(q)qr +C(q,4)qr +0124r + g(q) = YO + 0124, (38)

Ses = OVt — Sy = Seq — Ak = —alAxz + S, (o) e " Notice thatY,.6, # Y,.©,. To be able to cast the problem of
non-LP of equation (35) as a disturbance rejection problem,
Remark 2. How to tune feedback gain:vs. Since  [9] proposes a discontinuous virtual regressor, which in
752 depends on the norm of the derivative of the state it isurn yields chattering, with harmful consequences to real
difficult to know apriori its value to induce a sliding mode. physical systems. To avoid chattering the following vittua
Supposeys: is set to zero, in which case our controller continuousregressor is introduced
renders asymptotic stability. Constant can be increased
gradually until sliding modes arise. Note that this is not
a high gain result since larger,, do not mean a larger @0
domain of stability. Nevertheless,, is small because the whereay; = ag+a1, tanh(q) is the continuous hyperbolic
outer adaptive control loop compensates for disturbancegangent function, and; > 0. If we add and subtract (38)
Remark 3. Well-posed Jacobian:Apparently there is and (39) to (36), the following parametrization arises
problem with J(q(¢))~!. However, we have proved that

M|q‘tcmh(ffgq)+00a01tanh(§f5'q) =Y;0,, (39)

J(q(t)) is not singular for all time, becausgt) — qq(t) ~ . . .
exponentially, without overshoot, with desired trajesr H(2)Sq + C(q,4)Sq + 0125, =7 —F = YO — H(q)7s2s
belonging to robot workspac®, thus.J(q(t)) — J(qa(t)) _ (40)
within Q and J(q(¢))~! is well-posedvt. with
VIlI. DYNAMIC FRICTION COMPENSATION F =00 {Z + a01tanh(€fgq)

The following LuGre [8] dynamic friction model is + ap " Lorao|g|tanh (€4 S,) (41)

considered . —(i)d)?\
. . . — o1lq|z(ao + arexp™990) }
F(G,2,2) =opz+ 012+ 029G
z = _Uoh(qlg‘z T4 (35)  wherey = [v,,Yy], and © = [6] 0%, Finally,
hig) = aotarexp=(9/ds)? solving (40) forH(q)Sq, yields the following open-loop

where matrix parameters,, o, 05 are diagonal definite Visual error dynamics subject to dynamic friction and robot
matricesn x n, the statez € R” stands for the position of parametric uncertainties

the bristles,ag, a7 > 0, andgs > 0. This model exhibits ~ P ~ .
H(q)Sq=—-C(q,4)Sg—0128¢+7—F—-YO —H(q)7Vs2s
6Remember the equalitylrn, = J =1 (¢) R (0). (42)



TABLE |

Finally, consider the following visual adaptive force-
DIMENSION PARAMETERS(PaI’) OF THE ROBOT ARM, AND FEEDBACK

position control law

GAINS.
T=—K;5,+Y6 (43) _
—~ Par Value Gain Value
O=-_-1YTs (44) m1 | 6.72 Kg K4 | diag(20,1.65)
1 mo | 2.03 Kg ol diag(0.1)
pxp nxn . I1 0.4 m @ diag(5)
wherel" € 177, K4 € R7°". We now have the following lo 0.3m r diag(0.001)

result.

Theorem 2 Assume that initial conditions and desired
trajectories belong té2, and consider the controller (43)-
(44). If K, is large enough and a error of initial conditions
are small enough, and if

2= Hjt {Ra ()7 (2) [$4+ Adpinui | }H

then exponential convergence of visual tracking errors isf
guaranteed.

Proof: With the very same Lyapunov function dhe-
orem 1 we obtain the following time derivative, along
trajectories of the closed loop of (43)-(44) and (42),

V < —STKaSy + 1Sqllv — Vi (45)

where

Fig. 2. The two-link planar arm.

Vi = 00SE [z + oortanh(€rSg)] — 0015,[—2h(&)
+ ap oo |E[tanh(E£S,)). (46) A, The Hardware

. . . Direct-drive Yaskawa AC servomotors SGM-08A314
In [11], [12] |t.was proved that’; > 0, and ‘Vf‘ < € and SGM-04U3BAL with 2048 pulse encoders are directly
es4 > 0. Then,V; is positive definite outside the hyperball coupled to the links of the 2-dof arm. Digital drive electron

po = po(gq) - LSqu <0} with ||po| < p, for p > ics from the Yaskawa servopacks (SGD-08AS and SGDA-
0. Thus, if we choose; large enough, preventing that 04AS) are integrated.as shown in Fig. 2. The fixed camera

the mechatronic system does not introduce high frequencysed is the SONY DFW-V500 CCD.
from the termtanh(¢;5,), then (45) becomes B. The firmware and software

The control system is running on a 2.2 GHz PC over
Linux-RTAI operating system. The control is composed

where |v,| |[H(q)||z5] < w, for ¥ > 0 is a constant by two real time parallel processes. The first process sets
Then, if K, is large enough and the initial errors are CoMmunication with the SONY DFW-V500 canera via

small enough, we conclude the seminegative deﬁnitenes!r%;il:r?d"’ epf;g;[:?g:)l ggi(tjioﬁoinr;[r?r:fa tzes agg:|5¥ﬁ2 Orfoézgs
of (30) outside of hyperbalty = Sq|V > 0 centered at P ge_space. b

- . runs with sampling rate of 30 Hz. The second process,
the origin. Afterwards, we proceed exactly as in proof of ., tes the torque output for the servopacks and runs
theorem 1 (part | and part Il), and it is therefore omitted.

with a sampling rate of 1 KHz. Communication between
QED. _ ) process is done by shared memory allocation. Low level
Remark 4. Important properties of this control scheme programming provides the interface to a Sensoray 626 1/0
have to be highlighted: Is an Image-based dynamical conarq which contains internal quadrature encoder interface
trol scheme that presents, for first time in literature, com-14 pit resolution analog outputs and digital /0. Velocity
pensation of dynamic friction, based on visual information;g computed using a dirty Euler numerical differentiation
feedback. formula filtered with a lowpass second order Butterworth
filter, with a cutoff frecuency of 20Hz.

V< 87K, + Syl + p. (47)

VIIl. EXPERIMENTAL STATION
IX. EXPERIMENTAL RESULTS

Robot parameters and constant gains used in the ex- The robot is initialized with a high gain PD since
periments are shown in Table |, and an image of theghe parametric uncertainty is 100%. The inertial frame
experimental setup is depicted in Fig. 2. of the whole system is at the base of the robot. The



Control signals

end effector is requested to draw a circle in the cartesiar 4
space (transformed into image space) centered in (0.55,
0.0) degrees, with a radius of 0.1 m and withuas- 0.628
rad/s (the circle is done in 10 seconds). The experiment
lasts 30 seconds.

Control input 1 [Nm]

!
IS
T

A. Results

Fig. 3 depicts the robot performance in image space s
and visual tracking errors. Notice the exponentially fast o4-
convergence of visual tracking errors to the minimum
error that can be achieved: 1 pixel. Fig. 4 shows the real
and desired tracking in joint coordinates. Finally, Fig. 5
shows input torques. It can be observed that there are na
saturation problems and the smooth behavior.

o
N

~02 | |,

Control input 2 [Nm]

I

o
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I I I |
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Real and desired trajectories in image space t[s]

— Real :
: Fig. 5. Applied torques.
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to attain exponential convergence, and enhanced parameter
_ H— stability. Exponential convergence arises for image-thase
s s s s s v s o position even when the robot parameters, camera para-
; pheels] meters, and analytical Jacobian are considered unknown.

Visualracking errors Additionally, it is proposed a compensator of uncertain
dynamic friction, which is usually neglected in visual
servoing, but it is of particularly concern in visual motion
tasks, because the motion regime is slow with velocity
reversals. Experimental results validate the predicted-th
retical performance.
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