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Abstract— The theoretical framework and experimental vali-
dation of a new image-based position-force control is presented
in this paper. This scheme produces simultaneous convergence
of the constrained visual position and the contact force between
the end-effector and the constraint surface. Camera, robot and
jacobian parameters are considered uncertain. This approach is
based on a new formulation of the orthogonalization principle
used in force control, coined here visual orthogonalization
principle. This allows, under the framework of passivity, to yield
a synergetic scheme that fuses accordingly camera, encoder and
force sensor signals. Furthermore, notice that visual servoing
contact tasks are characterized by slow motion, and typically
with velocity reversals along the constrained surface due actual
technological limitations of the camera, thus, important prob-
lems of friction at the joint and contact point arise. Therefore,
in this paper, compensation of dynamic joint friction and
viscous contact friction are also studied. In order to prove the
effectiveness of the theoretical scheme, a Linux-RTAI real-time
OS experimental system is used to obtain a direct-drive robot
manipulator equipped with six axis JR3 force sensor and a
CCD commercial digital fixed camera. Results show an excellent
performance.

I. INTRODUCTION

Robot tasks that involve joint encoders, force sensors,
CCD cameras, proximity sensors, haptic interfaces, and
tactual devices pose a challenging problem in robotics due
to the the multisensor nature of the problem and the non-
linear dynamics of the robot. However, it is well known
that multisensor-based robot control approaches may offer
a solution to very important and relevant, but complex,
problems in robotics. In order to achieve sensor fusion-
based controller, a careful analysis of the dynamics, sensors
behavior, and tasks are required. Furthermore, since physical
parameters are in practice uncertain, robustness to parametric
uncertainties are an integral part of the control problem. One
example of such tasks, is the force-position control of a
robot using visual information, where force, joint encoders
and visual sensor have to be fused. In this paper, we focus
in the paradigm: “design a controller that ensures tracking
of image-based trajectories of constrained robots subject to
uncertainties on camera, robot, contact and joint dynamic
friction parameters”. This task is very relevant in many
robotic applications. Therefore, for any practical impact,
robot, camera and friction uncertainties must be considered.
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This problem has been elusive because it is not evident
how to deal with vision and force signals, despite lot of
the availability of schemes of vision or force. In this paper,
this problem is studied offering a formal solution, and its
experimental evaluation.

II. MOTIVATION AND CONTRIBUTION
A. Motivation

Image-based visual servoing schemes of robot manipu-
lators for free motion have been proposed recently, which
guarantee tracking, including the dynamic model in the
stability analysis. The task under study is that the robot
end effector tracks a visual trajectory along the surface
of an object, and at the same time, control the applied
force exerted in the surface by the end-effector, taking into
account that when two rigid surfaces are in contact, friction
is presented between them, and must be considered for any
practical application, see Fig. 1. However, for constrained
robot, there remains important open problems, essentially
because, from the theoretical viewpoint, it involves redundant
sensors, thus it is not evident how to handle sensor fusion in a
complex nonlinear dynamical system. From the experimental
viewpoint, besides that exhibits a multirate system due to the
slow latency of the camera, in comparison to the latency
of the encoder and force sensors, also, presents dynamic
friction at the joints and at least viscous contact friction.
Therefore, a theoretical constrained visual servoing scheme
must be accompanied with its experimental validation.! In
this paper, a new scheme and its real time performance, are
proposed.

B. Friction

Friction is quite important to compensate because it is
a dominant dynamical force in slow and velocity reversal
regimes which are typical on visual servoing controls and
contact tasks. Nevertheless dynamic joint and contact friction

ITwo points arise here: Notice that the static state of the camera is not a
generalized coordinate of the dynamical system, thus its slow latency is not
an issue; however, the generalized coordinates are required to be sampled
very fast, in comparison to its natural frequency. In this way, the system
can be treated in the time domain, even though its implementation is carried
out in the digital/discrete domain.
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Fig. 1.

Robot Force-Vision Experimental System.

is usually neglected in motion control, and unfortunately, it
is not the exception in visual servoing literature. Therefore,
we consider the LuGre model?, which reproduces pre-sliding
regime at very small displacements and hard nonlinearities
for slow motion and velocity reversals. The problem com-
plicates because, although dynamic joint friction depends
on joint coordinates, in image-based control, contact friction
depends on image coordinates, therefore, interestingly, it is
required a visual friction compensator.

C. Contribution

A sliding mode adaptive controller driven by constrained
image errors is proposed to solve by rst time the prob-
lem possed above. The underlying reason that allows to
obtain this result is that a new image-based error mani-
fold is introduced to produce a visual-based orthogonalized
principle. Thus, similar results to the case of nonvisual-
based orthogonalized principle are obtained. The closed-loop
system guarantees exponential tracking of position and force
trajectories subject to parametric uncertainties. This scheme
delivers a smooth controller and presents formal stability
proofs. Moreover, its experimental validation is presented

We further extend our proposal to include visual compen-
sation of dynamic friction. Surprisingly, the control structure
is quite simple, in contrast, the proof is rather involved,
though straightforward. The simplicity of the controller en-
hances its practical applications since the desired task is
designed in image space, i.e., the user de nes the desired
task right from the image that sees’, see Fig. 1, wherein the

xed camera supplies a perspective of the desired task.

III. BACKGROUND

Hybrid vision/force control approaches have been reported
[1]~[4], and none of them shows robustness to uncertainties,
on robot parameters and camera parameters. In a different
path, the authors Xiao et al. [5], present an interesting scheme

2This dynamic friction is responsible for limit cycles.

3Provided that the xed position of the camera is set to covers the
reachable space of the robot, in this way a task free of singularities is
ensured.

of hybrid vision force control in an uncalibrated environment,
but their approach does not deal with uncertainties of robot
parameters, and exhibits a very complex control law.

With respect to force control, Arimoto solved by rst time
the simultaneous control of position and force using the
full nonlinear dynamics subject to parametric uncertainties
without coordinate partitioning. This was possible through
judicious design of extended error, that is based on the
orthogonalization principle [6]. Afterwards, several schemes
have been proposed based on the orthogonalization principle,
however these schemes have not been extended or combined
beyond constrained robots.

IV. NONLINEAR ROBOT DYNAMICS
A. Constrained robot dynamics

The constrained robot dynamics arises when its end effec-
tor is in contact to in nitely rigid surface. Considering the
generalized joint position ¢ € %2 and velocity coordinates
¢ € N2, this 2-DOF constrained robot system can be modeled
as follows: [6]

H(q)i+ C(g, )i+ 9(q) = 7+ JL ()X — F(4, 2, 2)
— J"(¢)BiJ(9)g (1)
¢(q) =0 (2)

where H(q) € R?*? stands for the robot inertia matrix;
C(q,4)¢ € R2 stands for the vector of centripetal and
Coriolis torques; g(q) € R? is the vector of gravitational
torques, F(4, %, z) is the dynamic friction*, B; € R2+X2, is
the viscous friction matrix, possibly not a diagonal matrix,
JT(q)B:J(q)q represents the tangential viscous friction at
the contact point, J,(¢) = Jj% is the constrained nor-
malized jacobian of the the kinematic constraint »(q) =0,
or rigid surface with continuous gradient, A is the constrained
lagrangian, or contact force and 7 € 2 stands for the vector
of input torque control.

Adding and subtracting to (1) the linear parametrization
H(q)gr + C(q,9)dr + 9(q) + J" (q)BeJ (q)§ = yrbs, where
the known regressor y, € R2*P and the unknown constant
vector 0, € RP, produces the open loop error equation,

H(Q)S’q = —C(q,4)S — JT(q)BtJ(Q)Sq"‘
T+ T2 (@A = y,0 3)
with joint error surface S, is de ned as:
S¢=q¢—dr 4)

where ¢, stands for the nominal reference of joint velocities,
not yet de ned.

V. CAMERA MODEL

The robot direct kinematics is de ned as:
v, = f(q) (5

4For a clear exposition, rstly, F(q, 2,2z) will be considered zero,
however in Section IX it will be treated.
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where z;, € R2 is the position of robot end effector. Then, the
differential kinematics, which relates velocities in cartesian
space i, € N2 to joint space velocities ¢ € R?, is de ned
as follows:

iy = J(q)d ©)

Now, the visual position x5 € R2 of robot end effector is
[7]:
Ts = ahR (0) Ty + ﬁs (7)

where aj, = aih, is the scale factor’, and R (6) € SO(2),
Bs € N2 that depends on intrinsic and extrinsic parameters
of camera®. The differential camera model is then

L.CS = ahR (9) {ﬁb (8)

where ©, € R2? determines the visual robot end effector
velocity. Using equation (5)~(7), equation (8) becomes

is = anR(0) J(q)q ©)

Thus, the inverse differential kinematics for robot manipula-
tor in terms of visual velocities” becomes

¢=J(q) R(O)"

This relation is useful to design the nominal reference of
joint velocities ¢, in the following section.

Yoty = 4 = JRinvs (10)

VI. VISUAL ORTHOGONALIZATION PRINCIPLE

Since ¢(q) = O0Vt, then its time derivative yields
4o(q) = ng(qq) 94 = J, (g) ¢ = 0. This means that .J,, (q) is
orthogonal to ¢. That is, ¢ belongs to the orthogonal projec-
tion matrix @ = I —JZ, J, of J,, (q) [6]. As we can see, Q
spans the tangent plane at the contact point, therefore, J, and
@ are orthogonal complements. In other words, if the robot
end effector is in contact with the constraint surface, then
Qi =q¢— QQ¢=Q¢=¢= QJL = 0. These properties
are fundamental to set the visual orthogonalization principle
as follows. Firstly consider ¢, in terms of orthogonal nominal
references of velocity ¢, and force ¢y, as follows

(1)

Notice that, engagingly, an image based servo visual force
control without computing inverse kinematics is designed®,
then nominal reference ¢, must be designed in terms of
nominal visual reference and nominal force reference as
follows

q'r = q's + q'f

r = QJRinvdr + BT dry (12)

Using (10) consider now the next nominal visual reference
of velocities
t

556 - ’782/
to to

t
sign (Sss)
(13)

Ty = Tgq — ans + Ssd — Vsl

SWithout loss of generality, o can be considered as a scalar matrix 2 X 2.

6Focal distance, depth of eld, translation of camera center to image
center, distance between optical axe to the robot base.

TWith JRine € R™*™ whose entries are functions of robot and camera
parameters.

8to eliminate the inverse kinematics calculus and to reduce the control
law computational cost. This is also one byproduct of this scheme.

where %4 stands for desired visual velocity trajectory, and
Axgs = xs — x5q is the visual position error. for S5 =
Ss — Ssa = (As + aAzg) — S (to) e "=, where Aiy =
Ts—Tsq de nes visual velocity error, ks > 0 and v,, = 7? S
R i=1,2.
Now, let consider the nominal force reference as
t

¢
Grf = AF —Sqr +7vr1 SF5+'7F2/ sign (Sps) (14)

to to
for Sps = Sg — Spq = AF — Sp (tg) e "Ft, where AF =
ftto AX(C) dC, AN = X — Ay, A\q is the desired contact force,
kp > 0, and YF; = VF; € %ixn,i =1,2.
Using equations (12), (13), (14) and (10) into (4), the
visual orthogonalized joint error surface is:

Sq:q_QTEQq_C]T
= QJRinvis - QJRinvi'r - ﬂ']g%f

:QJRin'uSvs _ﬁJESvF (15)

with
t

t
Svps = Ss5 + Vs1 Sss + /YSQ/ sign <SS‘s)

to to

t t
Sur = Srs + 'YFl/ Srs + “YFz/ sign (Srs)
to to
where S, stands for the visual manifold and S, stands for
the force manifold.

Notice that S, is composed of two orthogonal comple-
ments QQJRinySys depending on image coordinate error, and
I] Jg S, depending of integral of contact force errors. Thus,
tracking errors Az, and AF can be controlled indepen-
dently, since they are mapped to orthogonal complements.

Remark 1. The above de nition assumes exact knowledge
of Jrinv. However, in practice, it stands as a very restricted
assumption. Therefore, we need to design a uncertain man-
ifold S, taking into consideration the uncertainty of Jgip..
To this end, consider

Gy = QT Rinoir + B Gry (16)

with Jgin, an estimated of Jginy, such that rank J—1! (q)

and R;1(9) are full rank Vg € €, where the ro-
bot workspace free of singularities is de ned by Q =
{q|rank (J (¢)) = n,¥q € R"}, and VO € R. Thus, substi-
tuting (16) into (4), we have the uncalibrated joint error
surface

S¢=q¢—4q,

= QJRinvi:s - QJRinvj?r - ﬁ‘]g(b’f (17)

where S’q is available because ¢ and ET are available. Adding
and subtracting QJgin, T, to (17) we obtain:

Sq = QJRim)Svs - BJE;SUF - QAJRinvi'r

= Sq - QAJRinvjjr (18)

—_—
where AJRinv = JRinv - JRinv'
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VII. OPEN LOOP ERROR EQUATION

Using (16), the uncertain parametrization is: H (¢ ) Gr +
C(g,D)ar + 9(a) + JT(@)B:J(@)q = yrbp, where G, =
f(-iéraq'fr)’ with

j&r = i‘sd - OéAxé + Ssd — 731585 — ’)/SQSign(Ssé)
Grf = AF — Sqr + vr1Srs + Yr2sign (Srs)

which introduces discontinuous terms. To avoid introduc-
ing high frequency discontinuous signals, add and subtract
tanh(vsSss) and tanh(vsSrs), v§,vs > 0, to g, to separate
continuous and discontinuous signals as follows

qr = q'rcont + Q'Ys?zs - QJZ’YFQZ]C 21
with 2z, = tanh (vsSs5) — sign(Sss) and
Zf = tanh (’U SF5) — sign (SFﬁ) ThllS Yeont =
yr | q, q,&r@comﬁ is continuous since qr, q, Cont) € Cl,
where

[jrcont = QJRinv:ircont + QJRirwircont + QjRinvzbrcont

ﬁjgéjrfcont + ﬁng.rfcont (22)

with
*;L"’rcont = -i‘sd - aAj;s + Ssd - 751556 — Vs2 tanh(vsssé)
(23)

Grfeont = AF — Sqp + vr1Sps + Yo tanh (v Sps) (24)

Therefore the uncertain parametrization becomes
H(q)d, + C(g,0)dr + 9(q) + I (9) B (0)dr =
yconteb + H(Q732zs - ﬁJT'YFQZf) (25)

Adding and subtracting (25) to (1), we obtain nally the open
loop error in function of (g, g, G-, qrcom) as follows:

H(Q)Sq =7-Cl(q
ycontéb -
H(Q732zs

D)8y +TL (@A~
J7(q)Be () Sq+
— B yr2zy) (26)
Now we are ready to present the main result.

VIII. CONTROL DESIGN

Theorem 1 Assume that initial conditions and desired
trajectories belong to €2, and consider the robot dynamics
(1) in closed loop with the following visual adaptive force-
position control law

T = _Kd‘gq + ycontéb + Jg-i- (Q) [_Ad + UAF] +

¢
ﬁJg (q) * {tanh (vrPSps) —|—77/ sgn (SF(;)] 27)
¢

o

0y = —TyL .S, (28)

e > 0, T € RYPY K, €
86, n > 0. If K; is large enough and er-
initial conditions are small and if

nough
H%{Ra ©) J (q) [§q+(AJRm;':ﬁ , Yr2 2

where 7,1,
2X2
R,
ror of
Vs2 Z

4 [(waf ((]))71 JWSA'q} H then exponential convergence
of visual and force tracking errors is guaranteed.

Proof: The proof can be found in the appendix.

Remark 2. Apparently there is problem with J(q(t))~".
However, we have proved that J(q(t)) is not singular for all
time, because q(t) — qq(t) exponentially, without overshoot,
with desired trajectories belonging to robot workspace ),
thus J(q(t)) — J(qa(t)) within Q and J(q(1))~" is well-
posed Vit.

IX. DYNAMIC FRICTION COMPENSATION

Now let us consider the dynamic friction into the model,
which represent a very realistic behavior when the robot is
moving along a rigid surface, in particular, driven by visual
servoing. In this case, the following LuGre [8] dynamic
friction model is very suitable to de ne the joint friction

F(q,é,z) =002+ 012+ 02q
z = —Uoh((i')f +4q (29)
J _ q
ha) = cotarenp (1/ds)2

where matrix parameters o1,02,03 € R"*" are diagonal
de nite matrices, the state z € R? stands for the position
of the bristles, ag, a1 > 0, and ¢s > 0. This model involve
a very complex dynamics around the trivial equilibrium, for
bidirectional motion, and for very small displacements, the
forces that comes out from this model makes impossible
to reach the origin due to limit cycles induced and the
potentially unstable behavior. Substituting (29) into (1) yields

H(q)q+ C(q,d)q+ J ()" BeJ (@) + o124+

9(q) + 00z —oo1h(§)z =7+ Jg(q))\ (30)

where og1 = o0go; and 012 = o1 + o2. Now, we need
to orgamze the parametrlzatlon in terms o of two regres-
sors: H(q)ieons + (Clad) + J@TBI(a) + ou)ir +
9(¢) = YeonuOp and the virtual continuous regressor
o8t |gtanh(§5Sy) + ooamtanh(§rS,) = YOy, where
ap1 = ap+aq, tanh(q) is the continuous hyperbolic tangent
function, and £y > 0. Now, If we add and subtract the
above regressors to (30) yields the following open-loop error
dynamics with dynamic friction

H(q)Sq = —(C(4,4) + J(a)" BeJ ()5 + 012) Sy +
r—F-YO + JT( ))\ — 00z + oo1h(§)z
+ H(Qvs22s — BJ, '7F2Zf)
where F = 09z +0¢ +ooag to1lg| —ooo1|d|zae, 0n =
N2 —1
agitanh(\sS,), a. = (g —|—alexp*(q/qb)2) Y =

Yeont, Yy], and © = [(:)bT,G?]T. Finally, consider the
following control law

&1V

T=—KaS+ YO+ JL (q) [-\a + nAF]
+ BJE (q) [tanh (uSqr) + n/sgn (SF(;):| (32)

6=-1v7§, (33)
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where I' € RE*P K, € R}*™, 3,1 > 0. We now have the
following result.

Theorem 2 Assume that initial conditions and de-
sired trajectories belong to 2, and consider the con-
troller (32)-(33). If K; is large enough and a er-
ror of initial conditions are small enough, and if

Vs2 = H%{Ra () J (q) S'q-l-AJRmvi‘r}} s YF2 2

H% [(fﬂJwJE (q))71 J,S, L, then exponential conver-
gence of visual and force tracking errors is guaranteed.
Proof: The proof can be found in the appendix.
Remark 3. Important properties of this control scheme
have to be highlighted: Is an Image-based dynamical control
scheme for constrained robots that fuses visual, encoder
and force signals. This control law presents, for first time

in literature, compensation of dynamic friction by means of
visual feedback.

X. EXPERIMENTAL STATION

Robot parameters and constant gains used in the exper-
iments are shown in Table I, and an image of the ex-
perimental setup is depicted in Fig. 2, meanwhile, camera
parameters are: «, = 79729.0 pizels/m, h = —0.006 m,
Bs = Osi + apR(0) Oypy, Opp = [0.257,0.017) m,Osi =
(347, 266] pixzels, § = Frad. The robot and camera para-
metric uncertainty is 10% for each parameter, i.e., [y, l2, g,
etc. The robot is initialized with a high gain PD since the
vector © (to) equals zero. Thus, friction parameters are not
required to be known, because these ones are included in 6
(see eq.(31), and the subsequent de nition of é).

TABLE 1
PARAMETERS (Par) OF THE ROBOT, AND FEEDBACK GAINS.

Par Value Gain Value Gain Value
my | 6.72 Kg Ky diag(20,1.65) B 0.1
ma | 2.03 Kg Vs1,2 diag(0.1) VF1,2 0.01
I 0.4 m @ diag(5.0) n 0.3
lo 0.3 m r diag(0.01) K1, K2 20

\

-

'—Rgst'riction Surface

Fig. 2. Experimental setup.

T i

€,, €| Block D

X, [ 30Hz ]
1 a.9u A [1KHz]

Fig. 3. Fast closed loop of dynamic state vs slow static visual transforma-
tion.

A. The Hardware, Software and Firmware

Fig. 3 shows the experimental system con guration. Block
A is composed by a 2.2 GHz personal computer, running over
Linux-RTAI OS. This, implements two real-time parallel
processes. The rst one, sets communication, at a sample
rate of 30H z, with the Block C, SONY VFW-V500 camera
via IEEE1394 protocol and controls the image processing
in order to acquire the robot end-effector position in image
space. The second process, Block D, runs with a sampling
rate of 1K H z, reads the force sensor and encoders signals
computing the torque output for Block B, where the direct-
drive Yaskawa AC servomotors SGM-08A314 and SGM-
04U3B4L with 2048 pulse encoders are directly coupled
to the links of the 2-dof arm. The Block B is also in-
tegrated by two digital drives Yaskawa servopacks (SGD-
08AS and SGDA-04AS), and a six-axis force-moment sensor
67M25A-140-200N12 by JR3 Inc., provided with a DSP
Based Interface System for PCI bus. The force sensor is
mounted to the end effector of the robot with a rigid
aluminum probe with a bearing in its tip, as is shown in
Fig.2. Communication between processes is done by real-
time shared memory allocation. Low level programming in
the Block A provides the interface to a Sensoray 626 I/0
card which contains internal quadrature encoder interface,
with 14 bit analog resolution outputs and digital 7/O. The
user designs the desired image based trajectory, directly form
the image displayed in the Block A, and sets the desired force
pro le. Velocity is computed using a dirty Euler numerical
differentiation formula ltered with a lowpass second order
Butterworth Iter, with a cutoff frequency of 20Hz.

B. The Task

The robot task is to move its tool-tip along a speci ed
image-based trajectory over the steel surface while at the
same time exerts a speci ed pro le of force normal to the
surface. The robot is initialized with a high gain PD. The
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inertial frame of the whole system is at the base of the robot
and the contact surface is at y = 136 pixel rendering a X 7
plane.

The experiment is performed as follows:

1) From ¢ =0 s to t = 3 s. The end effector is requested
to move, in free motion, i.e, Jg =0, Q = I°, from its
initial condition until it makes contact with the surface.
The end effector lasts 2 more seconds static.

2) From time t = 5 s to t = 8 s. Once the tool-tip is
in contact with the surface, the control force term is
switched on and the tool-tip exerts a desired pro le of
force normal to the surface (0 to 5 N) while moving
along X axis from 230 pixels to 299 pixels

3) From t = 8 s to t = 12 s. The exerted force is
incremented from 5 to 7.5 Newtons, while moving
along X axis from 299 pixels to 230 pizels, as can
be seen in Fig. 4 and Fig. 5 & 6.

C. Results

Fig. 9 shows the input torques. It can be observed that
there are not saturation problems and the smooth behavior.
Fig. 8 depicts the tracking of real toward the desired trajec-
tories in the cartesian plane. The seemingly high frequency
is due this tasks requires very precise control, and due to the
sensor resolution is limited to 1pixel.

Force Tracking

Constrained Mg

8 10 12

Xs ve XD

&
Time (s)

Fig. 5. End effector x position in image space (pixels).

9Tt is rather easy to prove that this scheme is stable for unconstrained
motion

Ys ve YsD

Pirels

Fig. 6. End effector position in image space (pixels).

Restriction Surface Constrained Motion

Sl
\\
X
Free Motion e
Robot End-effector

Fig. 7. Experimentation camera view point.

XI. CONCLUSIONS

This paper introduces a novel scheme for adaptive image
based visual servoing for force control tasks in constrained
dynamical robots. The main feature is the ability to fuse
image coordinates into an orthogonal complement of
joint velocities, and contact forces. This allows to yield
exponential convergence for image-based position-velocity
and contact forces even when robot parameters, camera
parameters, contact viscous friction and analytical jacobian
are considered unknown. Additionally, a compensator of
uncertain joint dynamic friction is also presented. Notice that
the stability is preserved even when the robot end-effector
motion switches from free motion to constrained motion due
to its passivity properties, under a set of conditions [13].
Experimental results comply with the theoretical properties.
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APPENDIX

Proof of Theoreml : The closed loop dynamics be-
tween (27)~(28) and (26) yields

—

H (Q) Sq = {Kd + O(‘]7 Q)} Sq - ycon,tA9b+
J$+ (@) [AX + vyF tanh (uSFs)] +

nJ. (q) {AF+7F/SQH(SF5)} (34)

Aéb = Fyzontgq (35)

with AG, = 6, — 6. The proof is organized in three parts.

Part I. Boundedness of Closed Loop Trajectories. Con-
sider the time derivative of the following Lyapunov candidate
function

1r1a- N
V=3 [SqT H(q) Sy + BSTuSur + AGTT1AG,|  (36)
along the solutions of (34)-(35) as

2 ~
, ~ 1B 1ISorll +115q /¥

where v is a functional depending on the state and error
manifolds, similarly to [10]. Now if Ky and 3 are large
enough and the initial errors are small enough, we conclude
the seminegative de niteness of (37) outside of hyperball
€y = §;\V < 0; centered at the origin, such as the
following properties of the state of closed loop system arise

Sq; S’UF S £oo — HSUS||7 HS’UF” c Eoo (38)

1% < —-Ky ng

(37

Then, (Sss, [ sign (Sss)) € Loo, and since desired trajecto-
ries are C? and feedback gains are bounded, we have that

((E«,tﬂ) € Lo. The right hand side of (26) shows that

€1 > 0 exists such that HSq < &1. This result shows only

local stability of §; and Sq. Now we prove that the sliding
modes arises.

Rewriting (18) in terms of two orthogonal vectors, we
obtain

Sq = Q {JRinvSvs - AJRiTL?)i‘T‘} - ﬁjg {S'UF}

Since Sq € Lo, and Jgin, and @ are bounded, then
QJRinvSys is bounded and, due to ¢ (g) is smooth and
lies in the reachable robot space and Svli\ — 0, then

(39)

ﬁJg Syr — 0. Now, taking into account that S'q is bounded,
then%] Rinv@Sys and %ﬂjg S, are bounded (this is pos-
sible because JE is bounded and so Q is). All this chains
of conclusions proves that there exists constants €2 > 0 and
€3 > 0 such that

’Svs < €2,

SvF’ <é&3

Remark 4. Since the continuous tanh(x) is substituted
instead of sign(x), upper bounds co and e3 are greater.
To induce the second order sliding mode, and therefore
exponential convergence of tracking errors, it suffices to tune
Ys2 and yp2 to a larger value. Now, we have to prove that
for a proper selection of feedback gains 751, vs2 and vr1,
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~vr2 then trajectories of visual position and force converges
to zero. This is possible if we can prove that sliding modes
are established in the visual position subspace () and in
the subspace of force Jg (q). Considering that operator

QJRiny spans the vector S, as the direct sum of its image

im{QJRriny (Svs)} = SiT and im {BJL (Sur)} = Sip.
see (39), this implies that
Sq = Q {JRinvSvs - AJRinvj;r} — 5«]3 {S’UF}
= (SZT —im {AJRinvj:r}) - 11)71? (40)

where S —im { AJginy@,} and ST belongs to orthogonal
complements, that means (S — im {AJginyir}, SIR) =
0. That is, we are able to analyze the ST —im {AJRinydr }
dynamics independently of S, because S“7 belongs to the
kernel of (). This is veri ed if we multiply (40) by Q7 that
is

QTSq = QTQ {JRinvSvs - AJRz’nvir} - BQTjgst
=S — im {AJRinvir} (41)

since (@ is idempotent. It is important to notice that if Ax =
Ay for any square nonsingular matrix A and any couple of
vectors z,y, then x = y. Thus, equation (41) means that
Sy = Q{JRinvSvs — AJginviy,} is valid within span of Q.
Now, if we multiply S'q by J,, we obtain

J<p+§q = J@JrQ{JRin'uSvs - AJRinvi‘r} - ﬁJ¢+J$ {S’UF}
= —BSvr (42)

Part II: Second Order Sliding Modes.

Part IL.a: Sliding modes for the velocity subspace. Ac-
cording to QTS, = Q {JRinvSvs — AJRinyir} then S,
JRinvSvs — AJRiny Ty in the image subspace of @, however
notice that () is not full rank, then this equivalence is valid
locally, not globally. In this local neighborhood, if we multi-
Ply qu = Q {JRinvSvs - AJRinvi'r} by Ra (9) J (q)lov we
have

t t
R, (9) J(q) Sq = Ses + Vs1 / Sss +752/ sign (555) -

Jito to

Taking the time derivative of (43), and multiply it by S
produces

Sg:ssszi = _732S£§Sign (Ssé) - 7515325555"_

S5 [Re 07 (0) (80 + Ainei)]

S —Hs |Ssé| — Vsl ||Ss<5||2 (44)

where g = Ys2 — €4, and g4 =

4 [Ra ®)J (q )(S +AJRW;UT)}
the sliding condition if vs2 > &4, such as us; > 0 of (44)
guarantee the sliding mode at S;5 = 0 at t;, = M
However, notice that for any initial condition Sgs (to) =0,

Thus, we obtain

10Remember the equality: Jrin, = J 1 (q) Ra ' (0).

then t; = 0, which implies that the sliding mode at
Sss (t) = 0 is guaranteed for all time.

Part ILb: Sliding modes for the force subspace. Simi-
larly, if we multiply (42) by (J, Jg (q))fl, we obtain

—1 N
(‘]‘P‘]g (q)) JtpS‘I = 7ﬁ‘]90‘]3: {SvF} (45)
t t
Jf (q) Sq = Srs +vr1 Srs + ’ypg/ sign (Srs)
to to
(46)

where ij (q9) = (fﬂJWJE (q))f1 J,. Derivating (46) and

multiply it by ST%; becomes

. d X
SksSrs = —vr2 |Sks| — vr1SFsSFs + 5125% (Jf (q) Sq)

47
< —pur |Srs| — 1 |Srsll (48)
where pip = ypo — €5, and g5 = % [(Jng (q))_1 Jspéq}

If ypo > €5, then a sliding mode at Sgs (t) = 0 is induced
at ty < ‘SF:%, but Sgs (fo) = 0, thus SF(s(t()) =0is
guaranteed V.

Part III: Exponential convergence of tracking errors.
Part IIL.a: Visual tracking errors. Since a sliding mode
exists for all time at S5 (t) = 0, then, we have

Sy = Seq¥t — Ay = —alAx, + S, (tg) e "=t

this implies that the visual tracking errors locally tends to
zero exponentially fast, implying that the robot end-effector
converges to the desired image =44, with given velocity 4.

Part IIL.b: Force tracking errors. Since a sliding mode
at Sps (t) = 0 is induced for all time, this means AF =
AF (tg) e~ ®rt. Moreover, in [10] it is shown that the
convergence of force tracking errors arises, thus A — Ay
exponentially fast. QED.

Proof of Theorem?2 : With the very same Lyapunov
function of Theorem 1, we obtain the following time deriv-
ative, along trajectories of the closed loop of (32)-(33),

V< K|S - no el + 1S~V @)
where
Vi = UOSqT[z + oortanh(€S,)] — go1Se[—2h(q)
+ o o1 |g[tanh(E55,)]. (50)

In [11], [12] it was proved that Vf > 0, and ’Vf‘ < &4,
€4 > 0. Then, Vf is positive de nite outside the hyperball
po = po(Sy) = {Sq|Vf > 0} with ||po|| < p, for p > 0.
Thus, if we choose {; large enough, preventing that the

mechatronic system does not introduce high frequency from
the term tanh(£;S,), then (49) becomes

V< K|S0~ noNSurll + 18l + oo 6D

Afterwards, we proceed exactly as in proof of theorem 1,
and it is therefore omitted. QED.
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