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Abstract— Visual servoing of constrained dynamical robots
has not yet met a formal treatment. Also, notices that due
technological constraints, this tasks is done slowly at velocity
reversals, thus dynamic friction arises, which complicates
even more the problem. In this paper, a new adaptive scheme
for visual servoing of constrained robots subject to dynamic
friction is proposed. An image-based control is introduced to
produce simultaneous convergence of the constrained visual
position and the contact force between the end-effector and
the constraint surface. Camera and robot parameters are
considered uncertain. This new approach is based on a new
formulation of the orthogonalization principle used in force
control, coined here visual orthogonalization principle. This
allows, under the framework of passivity, to yield a synergetic
scheme that fuses camera, encoder and force sensor signals.
Simulations results are presented and shows that image errors
and force errors converge despite uncertainties of friction model.

Index Terms— Visual Servoing, Adaptive Force Control, Sen-
sor Fusion, Dynamic Friction.

I. INTRODUCTION

Robot tasks that involve joint encoders, force sensors,

CCD cameras, proximity sensors, haptic interfaces, and tactile

devices pose a challenging problem in robotics due to the

multisensor/multisampling nature of the problem. However, it

is well known that multisensor-based robot control approaches

may offer a solution to very important and relevant, but

complex, problems in robotics. In order to achieve sensor

fusion-based controller, a careful analysis of the dynamics,

sensors behavior, and tasks are required. Furthermore, since

physical parameters are in practice uncertain, robustness to

parametric uncertainties, are an integral part of the control

problem. One of such tasks is the force-position control of

a robot using visual information. In this paper, we focus

in the following problem: ”design a controller that ensures

tracking of image based trajectories of constrained robots

subject to uncertainties on camera, robot and dynamic friction

parameters”. This problem has been elusive because it is not

evident how to deal with vision and force signals, despite lot

of the availability of schemes of vision or force.

∗This work is supported by CONACyT under doctoral scholarship
#158973, #158613, and project #39727-Y

A. Motivation

The task under study is that the robot end effector tracks

a visual trajectory along the surface of an object, and at the

same time, control the applied force exerted in the surface by

the end-effector, see Figure (1). This task is very relevant in

many robotic applications. However, for any practical impact,

uncertainties must be considered.
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Fig. 1. Robot Force-Vision System

On the other hand, joint friction is quite important to

compensate because it is a dominant dynamical force in slow

and velocity reversal regimes. Therefore, we consider the

LuGre model1, which reproduces pre-sliding regime at very

small displacements and hard nonlinearities for slow motion

and velocity reversals, which is typical motion regime of

contact tasks. Interestingly, we derive a friction compensator

that depends on image errors.

1This dynamic friction is responsible for limit cycles.



B. Contribution

An adaptive controller driven by image errors and contact

force errors is proposed to solve by first time the problem

possed above. The underlying reason that allows to obtain this

result is that a new image-based error manifold is introduced

to propose a visual-based orthogonalized principle. Thus, sim-

ilar results to the case of nonvisual-based orthogonalized prin-

ciple are obtained. This nontrivial extension, allows to solve

formally this problem, and the closed-loop system guarantees

exponential tracking of position and force trajectories subject

to parametric uncertainties. This scheme delivers a smooth

controller and presents formal stability proofs. Simulations

allows to visualize the expected closed loop performance

predicted by the theory. We further extend our proposal to

include visual compensation of dynamic friction. Surprisingly

the control structure is quite simple, in contrast, the proof is

rather involved, though straightforward.

II. BACKGROUND

Hybrid vision/force control approaches have been reported

[1], [2], [3], [4], and none of them shows robustness to

uncertainties, on robot parameters and camera parameters.

In a different path, the authors Xiao et al. [5], present

an interesting scheme of hybrid vision force control in an

uncalibrated environment, but their approach does not deal

with uncertainties of robot parameters, and exhibits a very

complex control law. Finally, the authors [13] present a novel

concept using a neural network in order to adapt the unknown

robot parameters for constrained robots, but that sort of

schemes are out of the scope of this work.

With respect to force control, Arimoto solved by first time

the simultaneous control of position and force using the

full nonlinear dynamics subject to parametric uncertainties

without coordinate partitioning. This was possible through

judicious design of extended error, that is based on the orthog-

onalization principle. Afterwards, several schemes have been

proposed based on the orthogonalization principle, however

these schemes have not been extended or combined beyond

constrained robots.

III. NONLINEAR ROBOT DYNAMICS

A. Constrained robot dynamics

The constrained robot dynamics arises when its end effector

is in contact to infinitely rigid surface. Considering the gen-

eralized position2 q ∈ �n and velocity coordinates q̇ ∈ �n,

this system can be modeled as a set of differential algebraic

equation as follows [6]

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ + JT
ϕ+(q)λ − F (q̇, ż, z) (1)

ϕ(q) = 0 (2)

where matrix H(q) ∈ �n×n stands for the symmetric positive

definite manipulator inertia matrix; C(q, q̇)q̇ ∈ �n stands for

the vector of centripetal and Coriolis torques; g(q) ∈ �n is

2No independent reduction of generalized coordinates was used in this
approach.

the vector of gravitational torques, F (q̇, ż, z) is the dynamic

friction3, Jϕ+(q) =
Jϕ

JϕJT
ϕ

is the constrained normalized

jacobian of the the kinematic constraint ϕ(q) = 0 or rigid

surface assumed frictionless with continuous gradient and λ

stands for the constrained lagrangian, or contact force. Adding

and subtracting to (1)-(2) the following linear parametrization

arises

H(q)q̈r + C(q, q̇)q̇r + g(q) = yrθb (3)

where the known regressor yr = yr (q, q̇, q̇r, q̈r) ∈ �n×p and

the unknown constant vector θb ∈ �p, p > 0, produces the

open loop error equation

H(q)Ṡq = τ + JT
ϕ+(q)λ − C(q, q̇)Sq − yrθb (4)

with joint error surface Sq defined as

Sq = q̇ − q̇r (5)

where q̇r stands for the nominal reference of joint velocities,

not yet defined.

IV. CAMERA MODEL

The static pin hole camera model is used, considering thin

lens without aberration [7]. To introduce the model, first

consider the robot direct kinematics

xb = f(q) (6)

where xb ∈ �n represents the position of robot end effector

in cartesian space, q ∈ �n is the vector of generalized joint

displacements, and f (·) : �n → �n. Then, the differential

kinematics of robot manipulator, which relates velocities in

cartesian space ẋb ∈ �n to joint space velocities q̇ ∈ �n, is

defined as follows

ẋb = J(q)q̇ (7)

Now, the visual position xs ∈ �2 of robot end effector in

monochromatic image space (screen) is given by [7]

xs = αR (θ)xb + βs (8)

where α is the scale factor4, and R (θ) ∈ SO(3), βs ∈ �2

and depends on intrinsic and extrinsic parameters of camera5.

The differential camera model is then

ẋs = αR (θ) ẋb (9)

where ẋs ∈ �2 determines the visual robot end effector

velocity. Notice that the constant transformation αR (θ) maps

statically robot cartesian velocities ẋb into visual velocities or

visual flow ẋs.

Using equation (6)∼(8), equation (9) becomes

ẋs = αR (θ)J(q)q̇ (10)

3For a clear exposition, firstly, F (q̇, ż, z) will be considered zero, however
in Section VIII it will be treated.

4Without loss of generality, α can be considered as a scalar matrix 2× 2.
5Focal distance, depth of field, translation of camera center to image center,

distance between optical axe and the robot base.



Thus, the inverse differential kinematics for robot manipu-

lator in terms of visual velocities6 becomes

q̇ = J (q)
−1

R (θ)
−1

α−1ẋs ⇒ q̇ = JRinvẋs (11)

This relation is useful to design the nominal reference of joint

velocities q̇r in the following section.

V. VISUAL ORTHOGONALIZATION PRINCIPLE

Since ϕ(q) = 0∀t, then its time derivative yields

d

dt
ϕ (q) =

∂ϕ (q)

∂q

dq

dt
≡ Jϕ (q) q̇ = 0

This means that Jϕ (q) is orthogonal to q̇. That is, q̇ belongs

to the orthogonal projection matrix Q of Jϕ (q) [6]

Q = I − JT
ϕ+Jϕ (12)

As we can see, Q spans the tangent plane at the contact

point, therefore, Jϕ and Q are orthogonal complements. In

other words, if the robot end effector is in contact with the

constraint surface, then

Qq̇ = q̇ → QQq̇ = Qq̇ ≡ q̇ (13)

that is, Q is idempotent; therefore naturally,

QJT
ϕ = 0 (14)

These properties are fundamental to establish the visual

orthogonalization principle as follows. Firstly consider q̇r in

terms of orthogonal nominal references of velocity q̇s and

force q̇f , as follows

q̇r = q̇s + q̇f (15)

Notice that, we are also interested in designing an image

based servo visual force control without computing inverse

kinematics7, then nominal reference q̇r must be designed in

terms of nominal visual reference and nominal force reference

as follows

q̇r = QJRinvẋr + βJT
ϕ q̇rf (16)

with q̇s = QJRinvẋr and q̇f = βJT
ϕ q̇rf , β ∈ �+.

Using (11) and (13), consider now the next nominal visual

reference of velocities

ẋr = ẋsd − α∆xs + Ssd − γs1

∫ t

t0

Ssδ − γs2

∫ t

t0

sign (Ssδ)

(17)

where ẋsd stands for desired visual velocity trajectory, and

∆xs = xs − xsd is the visual position error. Finally, the

visual error surface arises

Ssδ = Ss − Ssd ≡ (∆ẋs + α∆xs) − Ss (t0) e−κst (18)

where ∆ẋs = ẋs − ẋsd defines visual velocity error, κs > 0
and γsi

= γT
si

∈ �n×n
+ , i = 1, 2.

6With JRinv ∈ �n×n whose entries are functions of robot and camera
parameters.

7to eliminate the inverse kinematics calculus and to reduce the control law
computational cost. This is also one byproduct of this scheme.

Now, let consider now the nominal force reference as

q̇rf = ∆F − SdF + γF1

∫ t

t0

SFδ + γF2

∫ t

t0

sign (SFδ) (19)

for

SFδ = SF − SFd ≡ ∆F − SF (t0) e−κF t (20)

where ∆F =
∫ t

t0
∆λ (ζ) dζ, ∆λ = λ − λd, λd is the desired

contact force, κF > 0, and γFi
= γFi

∈ �n×n
+ , i = 1, 2.

Using equations (16), (17), (19) and (11) into (5), the visual

orthogonalized joint error surface arise as follows

Sq = q̇ − q̇r ≡ Qq̇ − q̇r

= QJRinvẋs − QJRinvẋr − βJT
ϕ q̇rf

= QJRinvSvs − βJT
ϕ SvF (21)

with

Svs = Ssδ + γs1

∫ t

t0

Ssδ + γs2

∫ t

t0

sign (Ssδ)

SvF = SFδ + γF1

∫ t

t0

SFδ + γF2

∫ t

t0

sign (SFδ)

where Svs stands for the visual manifold and SvF stands for

the force manifold.

Notice that Sq is composed of two orthogonal comple-

ments QJRinvSvs depending on image coordinate error, and

βJT
ϕ SvF depending of integral of contact force errors. Thus,

tracking errors ∆xs and ∆F can be controlled independently,

since they are mapped to orthogonal complements.

Remark 1. The above definition assumes exact knowledge

of JRinv . However, in practice, it stands as a very restricted

assumption. Therefore, we need to design a uncertain man-

ifold Sq taking into consideration the uncertainty of JRinv .

To this end, consider

̂̇qr = QĴRinvẋr + βJT
ϕ q̇rf (22)

with ĴRinv an estimated of JRinv , such that rank ĴRinv are

full rank ∀q ∈ Ω, where the robot workspace free of sin-

gularities is defined by Ω = {q|rank (J (q)) = n,∀q ∈ �n},
and ∀θ ∈ �. Thus, substituting (22) into (5), we have the

uncalibrated joint error surface

Ŝq = q̇ − ̂̇qr

= QJRinvẋs − QĴRinvẋr − βJT
ϕ q̇rf (23)

where Ŝq is available because q̇ and ̂̇qr are available. Adding

and subtracting QJRinvẋr to (23) we obtain

Ŝq = QJRinvSvs − βJT
ϕ SvF − Q∆JRinvẋr

= Sq − Q∆JRinvẋr (24)

where ∆JRinv = ĴRinv − JRinv .

Remark 2. Uncalibrated visual system. In this paper

we regarded an uncalibrated visual scheme, i.e., JRinv is

considered as unknown. This means that the complete product

of JRinv is unknown even when J(q) is known, since Jϕ and

Q are known.



VI. OPEN LOOP ERROR EQUATION

Using (22), the uncertain parametrization yr θ̂b becomes

H(q) ̂̈qr + C(q, q̇) ̂̇qr + g(q) = yr θ̂b (25)

where ̂̈qr = f(ẍr, q̈fr), with

ẍr = ẍsd − α∆ẋs + Ṡsd − γs1Ssδ − γs2sign(Ssδ) (26)

q̈rf = ∆Ḟ − ṠdF + γF1SFδ + γF2sign (SFδ) (27)

which introduces discontinuous terms. To avoid introduc-

ing high frequency discontinuous signals, add and subtract

tanh(vsSsδ) and tanh(vfSFδ), vf , vs > 0, to q̈r to separate

continuous and discontinuous signals as follows

̂̈qr = ̂̈qrcont + Qγszs − βJT
ϕ γfzf (28)

with zs = tanh (λsSsδ) − sign (Ssδ) and

zf = tanh (λfSFδ) − sign (SFδ). Thus ycont =

yr

(
q, q̇, ̂̇qr,

̂̈qrcont

)
is continuous since

(
̂̇qr,

̂̈qrcont

)
∈ C1,

where

̂̈qrcont = QĴRinvẍrcont + Q̇ĴRinvẋrcont + Q̂̇JRinvẋrcont

βJT
ϕ q̈rfcont + βJ̇T

ϕ q̇rfcont (29)

with

ẍrcont = ẍsd − α∆ẋs + Ṡsd − γs1Ssδ − γs2 tanh(vsSsδ)
(30)

q̈rfcont = ∆Ḟ − ṠdF + γF1SFδ + γF2 tanh(vfSFδ) (31)

Therefore (25) becomes

H(q) ̂̈qr +C(q, q̇) ̂̇qr +g(q) = ycontθ̂b+H(Qγszs−βJT
ϕ γfzf )

(32)

Adding and subtracting (32) to (1), we obtain finally the open

loop error in function of (q, q̇, ˆ̇qr, ˆ̈qrcont) as follows:

H(q)̂̇Sq = τ − C(q, q̇)Ŝq + JT
ϕ+(q)λ−

ycontθ̂b + H(Qγszs − βJT
ϕ γfzf ) (33)

Now we are ready to present the main result.

VII. CONTROL DESIGN

Theorem 1 Assume that initial conditions and desired

trajectories belong to Ω, and consider the robot dynamics

(1) in closed loop with the following visual adaptive force-

position control law

τ = −KdŜq + ycontθ̂b + JT
ϕ+ (q) [−λd + η∆F ] +

γF JT
ϕ (q) ∗

[
tanh (vF SFδ) + η

∫ t

to

sgn (SFδ)

]
(34)

˙̂
θb = −ΓyT

contŜq (35)

where Γ ∈ �
p×p+

+ , Kd ∈ �n×n
+ , η > 0. If Kd is large enough

and error of initial conditions are small enough, and if

γs ≥

∥∥∥∥
d

dt

{
Rα (θ)J (q)

[
Ŝq + (∆JRinv) ẋr

]}∥∥∥∥

γF ≥

∥∥∥∥
d

dt

[(
JϕJT

ϕ (q)
)−1

JϕŜq

]∥∥∥∥

then exponential convergence of visual and force tracking

errors is guaranteed.

Proof: The proof can be found in the appendix.

Remark 3. Apparently there is problem with J(q(t))−1.

However, we have proved that J(q(t)) is not singular for all

time, because q(t) → qd(t) exponentially, without overshoot,

with desired trajectories belonging to robot workspace Ω, thus

J(q(t)) → J(qd(t)) within Ω and J(q(t))−1 is well-posed ∀t.

Remark 4. Since the continuous tanh(∗) is substituted

instead of sign(∗), upper bounds ε2 and ε3 are greater.

To induce the second order sliding mode, and therefore

exponential convergence of tracking errors, it suffices to tune

γs2 and γF2 to a larger value. If sign(∗) would have been

used, then smaller γs2 and γF2 would have been tuned, but

at the price of chattering on the control input.

Remark 5. In this article, a new control law has been

proposed, wich is easy to implement and presents low compu-

tational cost, even when the proof is quite involved to follow,

however, straightforward.

VIII. DYNAMIC FRICTION COMPENSATION

The following LuGre [8] dynamic friction model is con-

sidered
F (q̇, ż, z) = σ0z + σ1ż + σ2q̇

ż = −σ0h(q̇)z + q̇

h(q̇) = |q̇|

α0+α1exp−(q̇/q̇s)2

(36)

where matrix parameters σ1, σ2, σ3 are diagonal definite

matrices n×n, the state z ∈ �n stands for the position of the

bristles, α0, α1 > 0, and q̇s > 0. We just want to highlight that

this model exhibits the following complex dynamic friction

effects (see [8] for more details on this model).

• Backslash.

• Viscous friction.

• Stiction and static friction.

• Stribeck effect.

• Elastic and plastic deformation.

• Pre-sliding regime.

These effects involve a very complex dynamics around

the trivial equilibrium, and for bidirectional motion, and for

very small displacements, the forces that comes out from this

model makes impossible to reach the origin due to the limit

cycles induced and the potentially unstable behavior.

Substituting (36) into (1) yields

H(q)q̈+C(q, q̇)q̇+σ12q̇+g(q)+σ0z−σ01h(q̇)z = τ+JT
ϕ+

(q)λ
(37)

where σ01 = σ0σ1 and σ12 = σ1 + σ2. Substituting the

uncalibrated nominal reference (22) in (37), just like (25),

lies the next equation

H(q)̂̈q+C(q, q̇)̂̇q+σ12
̂̇q+g(q)+σ0z−σ01ĥ(q̇)z = τ+JT

ϕ+(q)λ
(38)

Similar to [9], only the part of the equation (38) that

is linear in parameters (LP) is rewritten in terms of the



uncalibrated nominal reference ( ̂̇qr, ̂̈qr)
T ∈ �2n as follows

H(q)ˆ̈qr + C(q, q̇)ˆ̇qr + σ12
ˆ̇qr + g(q) = YrΘ̂b + σ12

ˆ̇qr (39)

Notice that yr θ̂b 
= YrΘ̂b. To be able to cast the problem of

non-LP of equation (36) as a disturbance rejection problem,

[9] proposes a discontinuous virtual regressor, which in turn

yields chattering, with harmful consequences to real physical

systems. To avoid chattering the following virtual continuous

regressor is introduced

σ01α01

α0
|q̇|tanh(ξf Ŝq) + σ0α01tanh(ξf Ŝq) = YfΘf , (40)

where α01 = α0 + α1, tanh(q) is the continuous hyperbolic

tangent function, and λf > 0. If we add and subtract (39)

and (40) to (37), the following parametrization arises

H(q)̂̇Sq +C(q, q̇)Ŝq +σ12Ŝq = τ−F−Y Θ̂+JT
ϕ+(q)f (41)

with

F = σ0

{
z + α01tanh(ξf Ŝq)

+ α0
−1σ1α01|q̇|tanh(ξf Ŝq) (42)

− σ1|q̇|z(α0 + α1exp−(q̇/q̇s)2)
−1}

where Y = [Yr, Yf ], and Θ̂ = [Θ̂T
b ,ΘT

f ]T . Finally, solving

(41) for H(q)̂̇Sq, yields the following open-loop visual error

dynamics subject to dynamic friction

H(q)̂̇Sq = −C(q, q̇)Ŝq − σ12Ŝq + τ −F − Y Θ̂ + JT
ϕ+(q)f

(43)

Finally, consider the following visual adaptive force-position

control law

τ = −KdŜq + Y Θ̂ + JT
ϕ+ (q) [−λd + η∆F ] +

γF JT
ϕ+ (q) ∗

[
tanh (µSFδ) + η

∫ t

t0

sgn (SFδ)

]
(44)

̂̇Θ = −ΓY T Ŝq (45)

where Γ ∈ �p×p+ , Kd ∈ �n×n
+ . We now have the following

result.

Theorem 2 Assume that initial conditions and desired

trajectories belong to Ω, and consider the controller (44)-(45).

If Kd is large enough and a error of initial conditions are

small enough, and if

γs ≥

∥∥∥∥
d

dt

{
Rα (θ) J (q)

[
Ŝq + ∆JRinvẋr

]}∥∥∥∥

γF ≥

∥∥∥∥
d

dt

[(
−βJϕJT

ϕ (q)
)−1

JϕŜq

]∥∥∥∥

then exponential convergence of visual and force tracking

errors is guaranteed.

Proof: The proof can be found in the appendix.

Remark 6. Important properties of this control scheme

have to be highlighted: Is an Image-based dynamical control

scheme for constrained robots that fuses visual, encoder and

force signals. This control law presents, for first time in

literature, compensation of dynamic friction by means of

visual feedback.

IX. SIMULATIONS

The simulations were carry out in Matlab Simulink soft-

ware. Robot parameters and constant gains used in the

simulations are: (m1,m2) = (6.72, 2.03) Kg, (l1, l2) =
(0.4, 0.3) m. The desired trajectories for the simulation

was:xs = αR[xcd; ycd] + βs, xcd = 0.5; ycd = 0.5 + r ∗
sin (ω ∗ t) ; r = 0.1, ω = 0.5. The contact surface (restriction)

is a plane parallel to plane YZ and over x = 0.5;
In order to simulate a non calibrated system, we used 20%

of uncertainty in each element of JRinv , this rise a 50% of

JRinv uncertainty. The constant values for the simulation are:

Γ = 1, κf = 20, γf = 3.0, η = 0.029, β = 1.0,Kd =
90, α = 40, κs = 20, γs = 7.8. Friction parameters:

σ0 =30000, σ1,2 = 2, α0,1 = (4, 0.4), q̇s = 0.01. Figures

(2) and (3) depict the cartesian and visual error, respectively.

Figure (4) shows the contact force applied on the wall. Figure

(5) renders the smooth and chattering-free input control for

each link. Finally, in Figure (6) can be seen the 3D task

space. Notice the difference between compensation and not

compensation of dynamic friction in each figure. The control

laws described above were quite easy to tune and present

minimum errors of visual and force tracking without high

frequencies in the control input.

X. CONCLUSIONS

This paper introduces a novel scheme for adaptive image

based visual servoing/force control in a constrained dynam-

ical system. The main feature is the ability to fuse image

coordinates into a orthogonal complement of joint velocities,

and contact forces in the orthogonal complement of integral

of contact forces. Using this, exponential convergence arises

for image-based position-velocity and contact forces even

when robot parameters and camera parameters are considered

unknown. Additionally, it is proposed a compensator of un-

certain dynamic friction, which is usually neglected in visual

servoing, but it is of particularly concern in visual motion

tasks, because the motion regime is slow, with velocity rever-

sals. Simulations confirm the predicted stability properties.
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Fig. 2. Cartesian tracking error with exponential envelope.
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APPENDIX

Theorem 1 : Proof . The closed loop dynamics between

(34)∼(35) and (33) yields

H (q) ̂̇
Sq = −{Kd + C(q, q̇)} Ŝq − ycont∆θb+

JT
ϕ+ (q) [∆λ + γF tanh (µSFδ)] +

ηJT
ϕ+ (q)

[
∆F + γF

∫
sgn (SFδ)

]
(46)

∆θ̇b = ΓyT
contŜq (47)

with ∆θb = θb − θ̂b. The proof is organized in three parts.

Part I. Boundedness of Closed Loop Trajectories. Con-

sider the time derivative of the following Lyapunov candidate

function

V =
1

2

[
ŜT

q H (q) Ŝq + βST
vF SvF + ∆θT

b Γ−1∆θb

]
(48)

along the solutions of (46)-(47) as

V̇ ≤ −Kd

∥∥∥Ŝq

∥∥∥
2

2
− ηβ ‖SvF ‖ + ‖Ŝq‖ψ (49)

where ψ is a functional depending on the state and error

manifolds, similarly to [10]. Now if Kd, η and β are large

enough and the initial errors are small enough, we conclude

the seminegative definiteness of (49) outside of hyperball

ε0 =
{

Ŝq|V̇ ≤ 0
}

centered at the origin, such as the

following properties of the state of closed loop system arise

Ŝq, SvF ∈ L∞ → ‖Svs‖, ‖SvF ‖ ∈ L∞ (50)

Then,
(
Ssδ,

∫
sign (Ssδ)

)
∈ L∞, and since desired trajec-

tories are C2 and feedback gains are bounded, we have that(
̂̇qr, ̂̈qr

)
∈ L∞. The right hand side of (33) shows that ε1 > 0

exists such that ∥∥∥̂̇
Sq

∥∥∥ ≤ ε1

This result shows only local stability of Ŝq and
̂̇
Sq. Now we

prove that the sliding modes arises.

Rewriting (24) in terms of two orthogonal vectors, we

obtain

Ŝq = Q {JRinvSvs − ∆JRinvẋr} − βJT
ϕ {SvF } (51)

Since Ŝq ∈ L2, and JRinv and Q are bounded, then

QJRinvSvs is bounded and, due to ϕ (q) is smooth and

lies in the reachable robot space and SvF → 0, then

βJT
ϕ SvF → 0. Now, taking into account that

̂̇
Sq is bounded,

then d
dtJRinvQSvs and d

dtβJT
ϕ SvF are bounded (this is pos-

sible because J̇T
ϕ is bounded and so Q̇ is). All this chains

of conclusions proves that there exists constants ε2 > 0 and

ε3 > 0 such that
∣∣∣Ṡvs

∣∣∣ < ε2,
∣∣∣ṠvF

∣∣∣ < ε3

Now, we have to prove that for a proper selection of feedback

gains γs1, γs2 and γF1, γF2 then trajectories of visual

position and force converges to zero. This is possible if we

can prove that sliding modes are established in the visual

position subspace Q and in the subspace of force JT
ϕ (q).

Considering that operator QJRinv spans the vector Ŝq as

the direct sum of its image im {QJRinv (Svs)} ≡ Sim
vs and

im
{
βJT

ϕ (SvF )
}
≡ Sim

vF , see (51), this implies that

Ŝq = Q {JRinvSvs − ∆JRinvẋr} − βJT
ϕ {SvF }

= (Sim
vs − im {∆JRinvẋr}) − Sim

vF (52)

where Sim
vs − im {∆JRinvẋr} and Sim

vF belongs to orthogonal

complements, that means
〈
Sim

vs − im {∆JRinvẋr} , Sim
vF

〉
=

0. That is, we are able to analyze the Sim
vs − im {∆JRinvẋr}

dynamics independently of Sim
vF , because Sim

vF belongs to the

kernel of Q. This is verified if we multiply (52) by QT , that

is

QT Ŝq = QT Q {JRinvSvs − ∆JRinvẋr} − βQT JT
ϕ SvF

= Sim
vs − im {∆JRinvẋr} (53)

since Q is idempotent. It is important to notice that if Ax =
Ay for any square nonsingular matrix A and any couple of

vectors x, y, then x ≡ y. Thus, equation (53) means that

Ŝq = Q {JRinvSvs − ∆JRinvẋr} is valid within span of Q.

Now, if we multiply Ŝq by Jϕ+
we obtain

Jϕ+
Ŝq = Jϕ+

Q {JRinvSvs − ∆JRinvẋr} − βJϕ+
JT

ϕ {SvF }

= −βSvF (54)

Part II: Second Order Sliding Modes.

Part II.a: Sliding modes for the velocity subspace.

According to QT Ŝq = Q {JRinvSvs − ∆JRinvẋr} then

Ŝq ≡ JRinvSvs − ∆JRinvẋr in the image subspace of Q,

however notice that Q is not full rank, then this equivalence

is valid locally, not globally. In this local neighborhood, if we

multiply Ŝq = Q {JRinvSvs − ∆JRinvẋr} by Rα (θ)J (q)8,

8Remember the equality: JRinv = J−1 (q) R−1
α (θ).



we have

Rα (θ)J (q) Ŝq = Ssδ + γs1

∫ t

t0

Ssδ + γs2

∫ t

t0

sign (Ssδ)−

Rα (θ) J (q) {∆JRinvẋr} (55)

Taking the time derivative of (55), and multiply it by ST
sδ

produces

ST
sδṠsδ = −γs2S

T
sδsign (Ssδ) − γs1S

T
sδSsδ+

ST
sδ

d

dt

[
Rα (θ)J (q)

(
Ŝq + ∆JRinvẋr

)]

≤ −µs |Ssδ| − γs1 ‖Ssδ‖
2

(56)

where µs = γs1 − ε4, and ε4 =
d
dt

[
Rα (θ) J (q)

(
Ŝq + ∆JRinvẋr

)]
. Thus, we obtain

the sliding condition if γs > ε4, such as µs > 0 of (56)

guarantee the sliding mode at Ssδ = 0 at ts = |Ssδ(t0)|
µs

.

However, notice that for any initial condition Ssδ (t0) = 0,

then ts = 0, which implies that the sliding mode at

Ssδ (t) = 0 is guaranteed for all time.

Part II.b: Sliding modes for the force subspace. Simi-

larly, if we multiply (54) by
(
JϕJT

ϕ (q)
)−1

, we obtain

(
JϕJT

ϕ (q)
)−1

JϕŜq = −βJϕJT
ϕ {SvF } (57)

J#
ϕ (q) Ŝq = SFδ + γF1

∫ t

t0

SFδ + γF2

∫ t

t0

sign (SFδ)

(58)

where J#
ϕ (q) =

(
−βJϕJT

ϕ (q)
)−1

Jϕ. Derivating (58) and

multiply it by ST
Fδ becomes

ST
FδṠFδ = −γF2 |SFδ| − γF1S

T
FδSFδ + ST

Fδ

d

dt

(
J#

ϕ (q) Ŝq

)

(59)

≤ −γF2 |SFδ| − γF1 ‖SFδ‖
2

+ |SFδ|
d

dt

(
J#

ϕ (q) Ŝq

)

(60)

≤ −µF |SFδ| − γF1 ‖SFδ‖
2

(61)

where µF = γF − ε5, and ε5 = d
dt

[(
JϕJT

ϕ (q)
)−1

JϕŜq

]
.

If γF > ε5, then a sliding mode at SFδ (t) = 0 is induced

at tf ≤ |SF δ(t0)|
µF

, but SFδ (t0) = 0, thus SFδ(t0) = 0 is

guaranteed ∀t.

Part III: Exponential convergence of tracking errors.

Part III.a: Visual tracking errors. Since a sliding mode

exists for all time at Ssδ (t) = 0, then, we have

Ss = Ssd∀t → ∆ẋs = −α∆xs + Ss (t0) e−κst

this implies that the visual tracking errors locally tends to zero

exponentially fast, this is xs → xsd, ẋs → ẋsd, implying that

the robot end-effector converges to the desired image xsd,

with given velocity ẋsd.

Part III.b: Force tracking errors. Since a sliding mode

at SFδ (t) = 0 is induced for all time, this means ∆F =

∆F (t0) e−κF t. Moreover, in [10] it is shown that the con-

vergence of force tracking errors arises, thus λ → λd

exponentially fast. QED.

Teorem 2 : Proof . With the very same Lyapunov func-

tion of Theorem 1, we obtain the following time derivative,

along trajectories of the closed loop of (44)-(45) and (43),

V̇ ≤ −Kd

∥∥∥Ŝq

∥∥∥
2

2
− ηβ ‖SvF ‖ + ‖Ŝq‖ψ − V̇f (62)

where

V̇f = σ0Ŝ
T
q [z + σ01tanh(ξf Ŝq)] − σ01Ŝq[−zh(ẋ)

+ α0
−1σ01|ẋ|tanh(ξf Ŝq)]. (63)

In [11], [12] it was proved that V̇f > 0, and

∣∣∣V̇f

∣∣∣ < ε4,

ε4 > 0. Then, V̇f is positive definite outside the hyperball

ρ0 = ρ0(Ŝq) =
{

Ŝq|Vf ≤ 0
}

with ‖ρ0‖ ≤ ρ, for ρ > 0.

Thus, if we choose ξf large enough, preventing that the

mechatronic system does not introduce high frequency from

the term tanh(ξf Ŝq), then (62) becomes

V̇ ≤ −ŜT
q Kf Ŝq − ŜT

q mKZ + ρ0. (64)

Afterwards, we proceed exactly as in proof of theorem 1,

and it is therefore omitted. QED.


