
TECHNISCHE UNIVERSITÄT MÜNCHEN
FAKULTÄT FÜR INFORMATIK

Software & Systems Engineering
Prof. Dr. Dr. h.c. Manfred Broy

SPES 2020 Deliverable D1.2.B-1

Specification Techniques

Author: Alarico Campetelli
Maŕıa Victoria Cengarle
Irina Gaponova
Alexander Harhurin
Daniel Ratiu
Judith Thyssen

Version: 0.9
Date: April 27, 2010
Status: Draft

Technische Universität München - Fakultät für Informatik - Boltzmannstr. 3 - 85748 Garching

About the Document

Model-based development assumes the pervasive use of models along all software development
phases. Models are usually built using modelling tools. Behind each tool there is a modelling
language that comprises one or more specification techniques. A specification technique rep-
resents the essential ideas (archetypal view) behind a modelling (sub-)language. For example,
the well-known Rational Rhapsody tool is based on the Unified Modeling Language (UML,
see [OMG09]) which contains a specification techniques for each one of its sub-languages (for
instance, the UML sub-language of State Machines is based on the Statecharts specification
technique), and Statecharts occur in different modelling languages and tools in slightly different
forms. Thus, concrete modelling languages instantiate one or more specification techniques.

Currently, there are quite a number of specification techniques available that have different
focuses and fit better for certain modelling purposes and/or process phases. Examples range
from techniques that aim to facilitate the communication among engineers (e. g., Use Cases)
up to techniques semantically rich in order to allow generation of code or formal verification
(e. g., Statecharts). Furthermore, different specification techniques might address different
aspects of the system such as its behaviour, structure, or interaction with the environment.
Distinguishing among the strong points of each specification technique is difficult due to the
big variety of their dialects and various maturity degrees of tool support.

In general, for a given task, an engineer can choose between many specification techniques. The
choice of a technique influences the measure in which the models built using that technique can
be refined later in the development process, which of their properties can be analysed, or how
they can be integrated with other models using the same or another technique. Conversely,
the use of an inadequate specification technique can hinder the evolution of the model in later
process phases or limit the spectrum of analyses that can be performed. That is, the choice of
a specification technique enables what can be subsequently done with the models.

In this document we present a set of criteria for classifying well-known and widespread specifi-
cation techniques. While in practice the choice of a specification technique is normally driven
by the availability of tools in an organisation, we aim at building a catalogue that can be used
off-the-shelf by engineers in order to make informed decisions about the adequacy of a certain
specification technique for different modelling tasks. For each specification technique we also
provide information about its mostly used modelling dialects.

2

Contents

1 Introduction 5

2 Criteria for the Classification of Specification Techniques 9
2.1 Covered System Views . 9
2.2 Underlying Model of Computation . 10

2.2.1 Definitions . 11
2.2.2 Aspects of Models of Computation . 12
2.2.3 Specification Techniques and Aspects of MoCs 14

2.3 Typical Software Development Process Stage 15
2.4 Supported Abstraction Layer . 16
2.5 Compositionality . 18
2.6 Tool Support . 18
2.7 Analysis Techniques . 19

2.7.1 Inspections, Reviews, and Walkthroughs 19
2.7.2 Testing and Simulation . 20
2.7.3 Formal Verification . 21
2.7.4 Runtime verification . 23

2.8 Typical Notations . 23

3 Classification of Specification Techniques 25
3.1 Component-Based Design . 29

3.1.1 General Description of the Paradigm . 29
3.1.2 Specification Techniques Comprised in the Paradigm 29
3.1.3 Classification of the Specification Techniques 31

3.2 Use-Case-Based Design . 32
3.2.1 General Description of the Paradigm . 32
3.2.2 Specification Techniques Comprised in the Paradigm 32
3.2.3 Classification of the Specification Techniques 34

3.3 Automata . 35
3.3.1 General Description of the Paradigm . 35
3.3.2 Specification Techniques Comprised in the Paradigm 36
3.3.3 Classification of the Specification Techniques 36

3.4 Control Flow Specification . 38
3.4.1 General Description of the Paradigm . 38
3.4.2 Specification Techniques Comprised in the Paradigm 38
3.4.3 Classification of the Specification Techniques 41

3.5 Data Flow Specification . 42
3.5.1 General Description of the Paradigm . 42
3.5.2 Specification Techniques Comprised in the Paradigm 42
3.5.3 Classification of the Specification Techniques 43

3.6 Function Block Specification . 45
3.6.1 General Description of the Paradigm . 45
3.6.2 Specification Techniques Comprised in the Paradigm 45
3.6.3 Classification of the Specification Techniques 47

3.7 Petri Nets . 49

3

3.7.1 General Description of the Paradigm . 49
3.7.2 Specification Techniques Comprised in the Paradigm 50
3.7.3 Classification of the Specification Techniques 50

3.8 Sequence Diagrams . 52
3.8.1 General Description of the Paradigm . 52
3.8.2 Specification Techniques comprised in the Paradigm 52
3.8.3 Classification of the Specification Techniques 56

3.9 Contraint-based Specification . 57
3.9.1 General Description of the Paradigm . 57
3.9.2 Specification Techniques Comprised in the Paradigm 57
3.9.3 Classification of the Specification Techniques 58

3.10 Algebraic Specification . 59
3.10.1 General Description of the Paradigm . 59
3.10.2 Specification Techniques Comprised in the Paradigm 60
3.10.3 Classification of the Specification Techniques 60

3.11 Process Algebra . 62
3.11.1 General Description of the Paradigm . 62
3.11.2 Specification Techniques comprised in the Paradigm 63
3.11.3 Classification of the Specification Techniques 66

4 Conclusion 69

References 70

A Analysis Tool Support 82
A.1 Inspections, Reviews and Walkthroughs . 82
A.2 Testing and Simulation . 82
A.3 Formal Verification . 84
A.4 Model Checking . 84
A.5 Theorem Proving . 86
A.6 Runtime Verification . 87

4

1 Introduction

Model-based development advocates the pervasive use of models throughout the entire software
development process. Early defined models capture requirements on the system, and are
subsequently transformed and enriched until an implementation is completed. Models are
therefore at different levels of detail, of formalisation, and are used for different purposes by
different stakeholders in different process phases.

Figure 1: Motivation overview

Tools, modelling languages, and specification techniques. Typically, engineers from various
domains (e. g., from automotive or avionics) use a handful of tools (e. g., Simulink, Rhapsody)
to model their intents (cf. Figure 1). Each tool puts a modelling language at engineers disposal
as a means for describing their systems. By just using a tool, it is often not clear that (a
certain part of) its modelling language is similar to (another part) of the modelling language
of a further tool. Moreover, different modelling languages might be presented in a similar
manner in different tools. Unsurprisingly, this situation leads to confusions.

Figure 2 illustrates the relation between tools, modelling languages, and specification tech-
niques. Behind each tool there is a modelling language that the stakeholders use to build
the models. Usually, modelling languages contain several logically distinct sub-languages. For
example, the Unified Modeling Language (UML [OMG09]) is a collection of basic languages
like State Machine Diagrams, Component Diagrams, etc. Each (basic) modelling language is
based on a specification technique that is a set of archetypal modelling constructs. The relation
between a tool and a specification technique is many-to-many: a tool can use a set of speci-
fication techniques, and a specification technique can be the basis of the modelling language
used by different tools. The specification techniques can in turn be classified into specification
paradigms: a paradigm comprises the commonalities of different specification techniques.

Note: There are some specification techniques for which there is only one concrete modelling
language. For instance, and to the best of our knowledge, LSCs are only implemented in the
Play-Engine; see [HM03]. Another example are the Use Cases from UML, for which there is

5

only one modelling language, namely UML, implemented in different tools like, e. g., Argo-UML
and Rhapsody.

In practice, a specification technique appears in different forms or dialects in different lan-
guages. However, many dialects of modelling languages can be understood and classified in
terms of the specification techniques that they are based on. Therefore, instead of studying
the multitude of modelling languages and dialects, we focus in this document on a smaller set
of basic specification techniques.

Example: ‘Automata’ or ‘State Transition Systems’ represent a specification paradigm. This
paradigm comprises many specification techniques like I/O Automata, Timed Automata, Hy-
brid Automata, Probabilistic Automata, Statecharts, and so on (for details see Section 3.3).
These specification techniques, possibly in different dialects, are present in different modelling
languages (e. g., UML contains a dialect of statecharts, the language behind the tool Statem-
ate contains a slightly different dialect of statecharts). Modelling languages are in turn parts
of different tools (e. g., Telelogic Rhapsody and ArgoUML are UML-based tools; Statemate,
Matlab Simulink or Esterel Studio are tools that implement their own dialect of statecharts).

Tool 1 Tool 2 Tool n

Modelling
Language A

Modelling
Language B

Tool 3

Modelling
Language B

Modelling
Language C

...

Spec.
Techn. A1

Spec.
Techn. A2

Spec.
Techn. A3

Spec.
Techn. B1

Spec.
Techn. B2

Spec.
Techn. B1

Spec.
Techn. B2

Spec.
Techn. C

Specification
Paradigm 1

Specification
Paradigm 2

Specification
Paradigm 3

Specification
Paradigm 4

Figure 2: Tools, modelling languages, and specification techniques

Syntax, semantics, and pragmatics. As already mentioned, there are many dialects of a
specification technique. Almost each tool provides its specific dialect, and to end users dif-
ferent dialects might appear to be highly different. However, behind these dialects there are
specification concepts that occur recurrently in modelling languages, and that constitute the
specification techniques.

On the one hand, specification techniques appear in various forms and dialects as provided by
specialised tools – i. e., different tools put at disposal different notations (concrete syntaxes) for

6

modelling. On the other hand, very similar notations are used to describe different aspects of a
system. While some differences concern only the presentation (syntax) and have no impact on
the meaning (semantics), some similarities likewise concern the syntax but are accompanied
by divergences in the semantics. For the sake of comprehensibility, these situations need be
made explicit.

The differences between several instances of a specification technique occur along following
dimensions:

concrete syntax means the exact notation used to represent models. Different modelling
tools support different notations and styles – e. g., some tools favour a graphical syntax
while others textual or tabular ones.

abstract syntax describes the modelling language, namely the set of modelling constructs
and the basic ways to combine them. It describes the modelling concepts directly sup-
ported by the language.

syntactic sugar: some languages provide different syntactic ways to describe the same
concept and aim at clarity, easiness, or just alternatives that some users might prefer.
These ways can be removed from the overall syntax without any loss of expressivity.

semantics refers to the meaning of the model written in a language. The differences in
semantics between two languages become dangerous when not accompanied by syntactic
dissimilarity. In these cases, the models look alike but have different meanings. This,
in turn, endangers transformation and integration of models containing those similarly
looking constructs – the users of the tools for instance might (misleadingly) decide that
two models are compatible when, in fact, they are not. Semantics can be given either
informally in natural language (imprecise) or formally as mathematical formula (rigorous
and precise).

Specification techniques. In practice, the choice of a specification technique is normally
driven by the availability of tools in an organisation and not necessarily by a founded and
informed decision. Engineers think in terms of the concrete dialect of a specification technique
that is available in the tools they have at hand. In the present document, however, we fo-
cus on specification techniques and not on modelling languages. Thereby, we abstract in our
presentation from syntactic issues (i. e., how do the models exactly occur in tools [concrete syn-
tax, syntactic sugar], or which constructs exactly does a modelling language provide [abstract
syntax]).

There is a wide spectrum for the use of specification techniques. Different specification tech-
niques are used for different purposes at different stages of the development process. The
techniques used in very early phases (e. g., use cases) must be understood by usually strongly
different stakeholders and thereby focus on enabling inter-human communication. Other spec-
ification techniques are targeted at a first formalisation of the system, i. e., they support early
formalisation, and need be at least partly verifiable and verified, e. g., by checking constraints
fulfillment. Finally, some specification techniques are used for generating code and should have
a formally defined, i. e., mathematically precise, semantics.

In this document, we aim at presenting a set of criteria for classifying well-known and widespread
specification techniques. Our goal is to build up a catalogue that can be used by engineers in

7

order to make informed decisions about the adequacy of a certain specification technique for
different modelling tasks.

Note: We are aware that, due to the heterogeneity of the specification techniques, not all of
these can be easily compared pairwise.

Outline. The rest of this document is structured as follows: in Section 2 we present a set of
criteria used for the classification of different specification techniques; in Section 3 we present
our classification of the techniques according to these criteria; in Section 4 we present a sum-
mary and our conclusions.

8

2 Criteria for the Classification of Specification Techniques

Each of the following sub-sections presents a criterion relevant for a classification of specifica-
tion techniques. In Section 2.1 we present the views of a system covered by specifications, in
Section 2.2 we focus on criteria necessary to distinguish between different specification tech-
niques that address the behaviour; in Section 2.3 we present the software development phase
typical for different specification techniques, in Section 2.4 we present the abstraction layers
where a technique is mostly commonly found, in Section 2.5 we discuss the compositionality
principle, in Section 2.6 we discuss tool support, in Section 2.7 we discuss typical analysis tech-
niques, and, finally, in Section 2.8 we present typical notations used for different specification
techniques.

2.1 Covered System Views

In the software development praxis, in order to reduce its complexity, the system is modelled by
an abstraction. In order to make the development even easier, several conjoint modelling ab-
stractions, also called views, can be used. They facilitate the modelling since a model capturing
every single system feature is unhandy and error prone. The views structure the description
of a complex system. Each view focuses on one specific aspect. According to [Bro95], views
concern with following system aspects:

data (also called information model)

structure (also called organisational or architectural model)

behaviour (interface model, behaviour history model)

process (dynamic view)

state (state transition model).

In the literature, also other sets of conjoint modelling abstractions can be found. For in-
stance [HLN+90] proposes the following set: (1) structural view, (2) behavioural view, and
(3) functional view. We believe that the functional view of this classification supplements the
above one:

functional view

Typically, each specification technique addresses primarily one view over the system. The
view addressed by a specification technique is many times only implicit and hidden behind the
concepts that the specification technique offers. Using a specification technique to describe a
system view which it does not address or for which it is not intended, leads to encodings and
ambiguities.

Data view. The data view captures structures for representing the data of the systems, as for
instance sorts (often also called types or modes) and their range. The typical specification
technique for this view is the E/R-diagram. The data view usually follows the object-
oriented approach and can be used to organise data relevant both for the static and the
dynamic aspects of a system.

9

Structural view. The structural view shows the architecture, i. e., describes the static structure
of the system. This view consists of nodes representing components, and arcs between
nodes representing communication lines (channels). Thus, the structure is shown as a
network of communicating components. During the development process, there may be
several structural views, for instance indicating the logical structure and the physical
structure of a system; see [Hil99]. Structural views can be represented by, e. g., component
diagrams.

Behaviour view. The behaviour view describes the behaviour of the system by showing the
collaboration or interaction between system parts (or sub-systems) as well as the relation
between input and output interfaces of the system. The behaviour view specifies changes
in the system state by describing conditions and events that fire a change; it addresses
concerns like causality, concurrency and synchronisation. Typical specification techniques
used for the description of a behaviour view are data flow diagrams.

Process view. The process view describes the run time decomposition of a system into pro-
cesses with emphasis on concurrency and synchronisation aspects. A process is a sequence
of consecutive actions that have some causal relationship. There are many variation of
mathematical models for processes, one of the typical specification technique being Petri
Nets.

State view. The state view specifies state transition model, i. e., the white-box behaviour of
a sub-system which is presented as a black box in the behaviour view. Typical modelling
techniques for this purpose are state machines.

Functional view. The functional view shows the functional decomposition of a system. That is,
it presents a hierarchy of activities together with the details of the data items and control
signals that flow between them. It specifies what activities can take place (without saying
when the activities will be activated, whether or not they terminate on their own, and
whether they can be carried out in parallel) and what data can flow (without saying
whether and when it will).

Note: We distinguish between static and dynamic aspects of a system. The static aspects
are captured by the data and structure views, all the other system views from above being
concerned with the dynamic aspects. We can sometimes specify both of these aspects (dynamic
and static), using the same specification technique. In the following sub-section we focus on the
dynamic aspects of a system since, on the one hand, dynamics is more complex than statics,
and on the other, the expressiveness of specification techniques differ significantly regarding
dynamics.

2.2 Underlying Model of Computation

Specification techniques that address the dynamic aspects of systems are highly complex. In
this section, we focus on different characteristics that differentiate them from each other. A
particular subset of such characteristics refers to ‘what behaviour can be described’, i. e., to a
relation between a specification technique and an underlying ‘Model of Computation’. Thereby,
specification techniques and ‘Models of Computation’ are orthogonal concepts, representing
abstractions on how to describe and what to describe, respectively.

10

Figure 3: Instantaneous feedback

2.2.1 Definitions

In the literature on model-based development, different authors speak of ‘specification tech-
nique’, ‘modelling language’, ‘model of computation’, ‘model of execution’, ‘modelling theory’,
etc., and unfortunately often mean different concepts. Unsurprisingly, this leads to confu-
sion and misunderstanding. In Section 1, we presented the differences between ‘specification
techniques’ and ‘modelling languages’. Below we focus on Models of Computation.

Models of Computation (MoCs) depict different behavioural aspects of systems and answer
the question ‘what is modelled?’. They provide a framework within which a system can be
modelled. Our understanding of MoCs is similar to that in [HLL+03, ZLL07].

Customarily, a model is an abstraction of a target system, which describes the significant
features of a system and abstracts away from irrelevant ones. The modelling is successful if the
resulting model is useful in later phases of the development; for instance, if the model can be
used for analysis purposes (like, e. g., static analysis, simulation, generation of testing cases)
or for automatic code generation. The key issue for such a success is the balance between
describing a target system as accurate as possible and abstracting away from irrelevant details
– i. e., finding the right level of abstraction. This level of abstraction, which can be defined
formally and has a precise semantics, is a Model of Computation. A system is then modelled
by means of a MoC. MoCs can be allocated to appropriate system views (see Section 2.1)
dealing with system behaviour.

MoCs usually define a formal semantics and can be perfectly suited for design and analysis,
but they not necessarily possess a clear execution semantics. For example the finite state
machine (FSM) in Figure 3 depicting instantaneous feedback, if implemented in hardware and
on the synchrony assumption, does not necessarily show a deterministic execution behaviour.
Different ways to attain a deterministic execution are discussed in [BCE+03]; among others,
microsteps as in, e. g., VHDL [VHD09], unique fixpoint as in, e. g., Esterel [Est05], constraints
as in, e. g., Signal [AR79], and prohibition of zero-delay loops as in, e. g., Lustre [CPHP87].
Thus, a model of execution is an auxiliary semantics, which enriches a given one by an
execution strategy, that is used to execute a concrete model on a concrete hardware.

As described above, MoCs depict different behavioural aspects of software systems. In order
to classify and compare different MoCs, we itemise the aspects they can address. We call them
aspects of MoCs and describe them in Section 2.2.2. A fine differentiation of MoCs can be
done by means of the these aspects.

11

2.2.2 Aspects of Models of Computation

We introduce the aspects of MoCs, also called behavioural aspects. They address features of
systems to be modelled and allow to capture the similarities and differences between MoCs.
The aspects together with their respective variants are listed below:

Time. Time is used for single events to establish the precedence relation and define the distance
between them, or for pairs of sequenced (back-to-back) events and to compare the intervals
between them.

I Continuous. The system is based on continuous time values.
. Event discrete. Data are discrete, i. e., in form of discrete events.
. Data continuous. Data form a continuous domain.

I Discrete. The system is based on discrete time values.
. Partial order. The precedence relationship is only partially defined for events due

to a discretisation error (we speak here about sequential systems). In such case,
two events which are not simultaneously in reality can receive the same timestamp.

. Complete order. The precedence relationship is defined for all events (we speak
here of sequential systems). Time intervals are small enough to allow only one
event occurring at a time.1

I No time. Only precedence relationship is defined but no information about the dis-
tance between two events is provided.

Clock. Clock is a device2 to measure the time.

I Local/multiple. Only local clocks are available. In a distributed system, this means
the presence of multiple clocks with or without synchronisation. If synchronisation
takes place, the synchronisation error should be taken into consideration.3

. Partial order. The precedence relationship is only partially defined for events.

. Total order. The relationship of event precedence is totally defined.
I Global/single. A global clock is available. In a non-distributed system, global and

local clock coincide.

Concurrency. Concurrency means that more than one process is executed at a time.

I No. Sequential computation.
I Yes. Concurrent computation.

. Synchronisation. Synchronisation of entities running concurrently might be nec-
essary.

. Communication. Communication between entities running concurrently might be
necessary.

1In a sequential system, we do not have the notion of simultaneity. Even if the events in the real word are
simultaneous, the system can not capture simultaneity because the observer is sequential. Sparse time can
be used to handle simultaneity in a concurrent framework, which means that evens occurring simultaneously
have the same time stamp.

2The clock can be a physical device or a software facility.
3All known clock synchronisation algorithms have a limited accuracy. For instance, NTP has an accuracy from

10 millisecond in a global area network to 200 microseconds in a local area network, whereas the IEEE 1588
standard is able to synchronise clocks up to nano-seconds accuracy.

12

1. Explicit/implicit. Explicit communication via message passing, implicit com-
munication via shared memory.

2. Synchronous/asynchronous. Synchronous communication only takes place if
both, sender and receiver, are ready for data exchange. In case of asynchronous
communication, the sender never blocks, i. e., it does not wait for the receiver
to be ready for data exchange.4

3. Deterministic/non-deterministic. The communication is deterministic if all
data sent arrive at the receiver undamaged and in the order they were dis-
patched. On the contrary, the communication is non-deterministic if one or
both of those conditions is not true. In case of non-deterministic communica-
tion, there are the concepts of latency, packet loss, falsified data:

Latency is the delay between sending and arrival of data.
Packet loss specifies how many data is lost.
Falsified data means damage of data during delivery, e. g., due to bit inver-
sion.

4. Dynamic/static. A way to transmit a datum from one entity to another is
dynamic (differ for each datum) or static.

Behaviour. Behaviour is a manner in which a software system behaves, i. e., how and when it
acts or reacts in response to external or internal stimuli.

I Time-triggered (periodic). Computation of a task takes places during a predefined
time slot. Scheduling between all tasks is needed in advance.

I Event/demand-triggered (aperiodic). Computation takes place after arriving of a spo-
radic (input) event.

Flow. Flow defines how the inputs/instructions of a system are interpreted in order to compute
outputs.

I Control flow. Control flow describes the reaction to input events according to internal
states, algorithms — reactive domain.

I Data flow. Data flow describes data processing, stream processing — transformative
domain.

Determinism. Determinism concerns the relation between the data that is input to and the
data that is output by a system.

I Deterministic. A system is deterministic if it always generates the same outputs after
receiving the same inputs.

I Non-deterministic. A system is deterministic if it may generate different outputs after
receiving the same inputs.

Data. Data describes which kind of data a system can deal with.

I Continuous. Continuous data can be assigned an infinite number of values between
whole numbers.

I Discrete. Discrete data means that the data set is enumerable.
I Finite. Finite data sets are discrete and contain a finite set of values, only.

4 In the theoretical definition, the length of a sender’s buffer/message queue is considered to be unlimited. In
the practical implementation, however, the sender is limited by the length of a buffer/message queue.

13

Note: Many of the aspects presented above are dependent on each other. For example, if a
MoC addresses concurrency, then it also must address communication and synchronisation.
On the contrary, if a MoC does not address concurrency but only sequential computation,
then the concepts of communication and synchronisation are superfluous and can be safely
ignored.

Discussion. The above aspects have different degrees of ‘expressiveness.’ For example, some
of them can describe timing behaviour, some others cannot. Depending on the kind(s) of
systems to be described, the chosen MoC needs appropriate expressive power to model them.
If, for instance, we model a non-timed critical system (e. g., a data-mining application), it is
important to express in which order the actions take place (e. g., exploration/data preparation,
model building and validation, application of the model to new data), but it may be unnecessary
to express how long each or all of those actions take. If by contrast a real-time system is to
be modelled (e. g., a braking system for a car), then time is of utmost importance, as timing
constraints are a part of the system functionality.

Intuitively, less expressive aspects of MoCs are included in more expressive ones. For example,
it is possible (a) to go from a timed model to an untimed model just by omitting time, or (b) to
express explicit synchronous communication channels by means of two explicit asynchronous
communication channels5, or (c) to express implicit communication with explicit asynchronous
communication with queue length 1. We moreover assume that some values of aspects of MoCs
are not disjunctive but rather inclusive. This means, simpler constructs can be expressed using
more complex ones.

2.2.3 Specification Techniques and Aspects of MoCs

There is a many-to-many relation between specification techniques and the behavioural aspects
listed in 2.2.2. Each of these aspects, on the one hand, can be described using multiple
specification techniques. A single specification technique, on the other, can describe different
aspects of MoCs.

The relation between the specification techniques and the aspects of MoC is presented in
Tables 2 and 3. Each line of Table 3 contains a specification technique and its columns represent
tuples containing the values of different aspects of MoC. If multiple tuples in the table are
equal, then the corresponding specification techniques have the same expressiveness according
to the considered behaviour aspects. Since we do not claim completeness of the list of aspects
of MoC, by simply having the same characteristics we cannot assert that these specification
techniques be completely equivalent. However, when two specification techniques have the
same characteristics, this is a good hint that the specification techniques are compatible and
that they can be translated into each other without loss of information. The complete relations
between the specification techniques and the aspects of MoCs is developed in Section 3.

5 In this case, the synchronous communication is emulated through, e. g., a software loop where the sender is
waiting for the response.

14

2.3 Typical Software Development Process Stage

Some specification techniques can be used in all stages of software development process while
others are typically used only in some stages. Below we shortly present software development
stages where specification techniques are typically used.

A software development process is a structure imposed on the development of a software
product. Traditionally, the software development process is constituted by the following phases:
requirements engineering, design, implementation, verification and maintenance. Different
development process models (like, e. g., waterfall, RUP, V-model) define the order of these
development activities. In the following, we describe the single development activities and give
hints about the characteristics that the models used in each activity should possess.

Requirements engineering. In this phase, the requirements of the proposed system are
collected by analysing the needs of the users. Requirements engineers are concerned with
establishing what the system has to perform and do not determine either how this task
is to be achieved or how the system will be designed or built. The resulting requirements
specifications typically describe the system’s functional and non-functional requirements
as expected by the user. The requirements engineering phase consists of requirements
elicitation and requirements analysis, and results in a consistent specification.

Typical stakeholders involved in the requirements engineering include the business do-
main experts and up to people with a more software technical background. In model
based development, models are used from the requirements engineering phase to enable
the unambiguous communication between different stakeholders, verification of consis-
tency and completeness of requirements, or the validation of requirements. For example,
specifications that can be simulated are used in order to enable end-users to an early
requirements validation.

System and software design. In this phase, system engineers analyse and understand the
proposed system by studying the requirements specification in order to derive possible
implementations out of the high-level requirements. These activities result in a high-level
or logical architecture, which comprises modules, externally visible properties of each
module, and relationships between them. High-level architectures are concerned with
making sure that the system will meet the user requirements, and are the starting point
for the first division of labor between different teams.

Models used in this phase need to be easy to refine in subsequent phases. They need to
be appropriate for describing the architecture in the large and detailed enough to specify
the interfaces between different sub-systems.

Detailed design. In this phase, the high-level architecture is translated to the low-level
design or the concrete operational guide following the architecture. The system engineers
are concerned with developing specific designs by taking into account design patterns,
best practices, and physical topologies. The engineers decide which functionalities are to
be performed by software and which ones by hardware.

This phase results in a low-level design model, which is broken up into small modules,
each of them so explained that the programmer can start coding directly. This model
contains a detailed functional logic of each module.

15

Implementation. Here, software engineers actually program the code that runs on the
target platform.

In model-based development, the code is generated from higher-level models produced in
the detailed design phase. The models at this level should be thorough enough to describe
the system in the highest detail; in the best case, they are executable.

Validation and Verification. Validation and verification are steps done to ensure that the
developed system meets the user vision (validation) as well as the technical requirements
(verification) that guided its design and development.

Specification models developed in the early phases of requirements engineering serve now
as specifications for validation (e. g., running the user acceptance tests) and verification
(e. g., running a model checker).

To sum up, different specification techniques produce different kinds of models, some being
more adequate in early phases, others being adequate in the detailed design. By using an inad-
equate specification technique, we can loose information or hinder the subsequent refinement
of models.

2.4 Supported Abstraction Layer

In order to keep the complexity under control, we need to use models at different levels of
abstraction. High-level models specified in early phases should be incrementally enriched
with information in the following steps. Different specification techniques can be used to
define models at different levels of abstraction. Thereby, we aim to classify the specification
techniques according to the abstraction layer that they typically support.

In [RST09] we described a framework that comprises the landscape of models that are built
during the system development as depicted in Figure 4. This framework aims at supporting a
systematic development process of embedded software systems based on the seamlessly inte-
grated use of different models at different stages in the development process. It comprises two
different dimensions: one given by the level of granularity at which the system is regarded,
and one given by different software development views on the system:

Levels of granularity. By regarding a system at different levels of granularity, we struc-
turally decompose the system into sub-systems, and sub-systems into sub-sub-systems
until we reach basic blocks that can be considered atomic. Decomposing the whole sys-
tem into smaller and less complex parts, helps to reduce complexity following the “divide
and conquer” principle.

Software development views. A system can be regarded from different perspectives, each
perspective representing different kinds of information about the system. We call each of
these perspectives a “software development view”. Our framework contains the following
development views: the functional view, the logical (structural) view, and the technical
view. The views aim to reduce the complexity of the software development by supporting a
stepwise refinement of information from usage functionality to the realisation on hardware.

For the classification of the specification techniques, we focus on the different development
views:

16

Figure 4: Two-dimensional abstraction: levels of granularity and software development
view

Functional view. The functional view focalises on a specification of the functional requirements
of the system to be. It structures the system’s functionality according to the behaviour
required by the system’s users. By using formally founded models, this layer provides the
basis to detect undesired interactions between functions at an early stage of the devel-
opment. Due to the high level of abstraction, this layer is a step toward closing the gap
to the informal requirements. Thus, it provides the starting point of a formally founded
model-based development process.

The models of the functional view are used to enable the unambiguous communication
between different stakeholders, verification of consistency and completeness of functional
requirements, or the validation of them. Therefore, we need here specification techniques
that focus on the interaction between the system and its environment rather than the
internal structure of the system. Desirably, these techniques are executable thus enable
end users to an early validation of the requirements.

Logical view. The logical view addresses the logical component architecture. Here, the func-
tional hierarchy is decomposed into a network of interacting components that realise the
observable behaviour described at the functional layer. Due to this layer’s independence
from an implementation, the complexity of the model is reduced and a high potential for
reuse is created.

17

Models of the logical view need to be appropriate for describing the architecture in the
large and detailed enough to specify the interfaces between different sub-systems. A model
of the logical view should structure the system functionalities in a way that facilitates
their changing, reuse, deployment, and, in general, maintenance. Therefore, we need
here specification techniques that focus on the internal structure of the system. These
techniques should be able to decompose the system into more manageable sub-systems
handled by different teams, and to capture major interfaces between sub-systems.

Technical view. The technical view describes the hardware platform in terms of electronic
control units (ECUs) that are connected to busses. A deployment mapping is specified
that connects the logical components defined in the logical layer onto these ECUs. Thus,
a physically distributed realisation of the system is defined and the complete middleware
which implements the logical communication can be generated. Additionally, the interac-
tion between the logical system and the physical environment via sensors and actuators
is modelled.

The models of this view should be executable on the target platform and should be detailed
enough and describe the system in the highest detail. Thus, the appropriate specification
techniques should be able to address such issues like bus protocols, resource management,
etc.

Note: The views presented in this paragraph should not be mixed with those described in 2.1.
The views here all aim to provide a systematic way to structure the software modelling process,
but are orthogonal to the views on a software system.

2.5 Compositionality

Modular development is a software design technique that dictates to compose software from
separate parts, called modules. Modules represent a separation of concerns, and improve main-
tainability by enforcing logical boundaries between components. Modules can be independently
created and then used in different systems to drive multiple functionalities.

For the successful use of a specification technique in the modular development, this technique
has to be compositional. A technique is compositional if it can determine the meaning of
a complex expression by the meanings of its constituent expressions and the rules used to
combine them.

2.6 Tool Support

Every tool uses a modelling language that, as explained above, is based on a set of specification
techniques. Therefore, tool support does not exist for a specification technique alone but for
a modelling language. In practice, the existent tools represent the main means to propagate
modelling and specification techniques in industry. For example, UML and its dialects are so
widespread since there exist many tools that support to a certain degree working with UML
models. We distinguish among the following categories of functionalities offered by a tool to
its users:

18

Basic functionality. The basic functionality includes the possibilities to edit, save, and manage
versions of models. Without the basic functionality, no other complex functionality can
be supported.

Analysis functionality. Analysis functionality represents the possibility to perform different
analyses on models such as defining and verifying different consistency conditions, simu-
lation of the model, verification of different characteristics. The type of analysis that can
be performed is strongly dependent on the specification techniques supported by the tool
(see Section 2.7).

Synthesis functionality. Synthesis functionality represents the possibility to transform a model,
or generate the code. This functionality is very important to enssure the integration of
a tool in the process: it allows the results of the tool to be further used by other tools.
Again, depending on the specification techniques supported, the tool can offer synthesis
to different kinds of models (e. g., tools that support only class diagrams cannot be used
for the synthesis of behaviour).

2.7 Analysis Techniques

The verification and validation of software have a central role in the field of safety critical
embedded systems. For example, the damages due to errors (almost) always cost money and
even human lives. Depending on the criticality of the system part that is under development,
we need different kinds of maturity for analysis; for example, the avionics certification standard
DO-178B [RTC82] defines five levels of safety that different system parts must comply. Besides
validation that the system implements the desired functionality, it must be verified that the
safety conditions, real-time constraints, etc., are satisfied.

The verification of large systems is notoriously difficult or often even impossible due to the
combinatorial explosion of the number of cases to be considered and to the size of the search
space in case of exhaustive approaches. In model-based development, the use of adequate
modelling techniques promises to make the verification more approachable/feasible.

In this document, by analysis techniques we denote the whole range of approaches that deal
with the verification and validation of systems. Analysis techniques check that a systems does
indeed meet its specification. Below we summarise the most well-known analysis techniques
used for verification and validation of systems: inspections, reviews and walkthroughs, system
testing, system simulation, formal verification, and runtime verification.

2.7.1 Inspections, Reviews, and Walkthroughs

Reviews. Software reviews [CLB03] are the most general analysis techniques: they can be
used on all development artifacts (from pure text to richly defined models) as well as
in all development phases (from requirements analysis up to implementation). They are
fundamentally manual methods, that are however supported by adequate tools and can
be backed up by methodologies. In order to make these analyses in a disciplined manner,
and to ensure a high confidence in their coverage, usually they are done on the basis of
checklists with different system characteristics of interest.

19

Being highly manual, these analyses are expensive and slow and therefore mostly used to
check different properties of a system that cannot be checked in an automatic manner.
This happens in the case of weakly defined models or in early development phases. These
analyses are primary means to validation.

There are some variants of the review methods, namely walkthroughs (more informal)
and inspections (more formal), which are described next.

Inspections. The inspection as described in the IEEE standard [IEE97] is basically the Fagan
Inspection (see [Fag02]), a five-step, formalised process. Code inspections are a highly
efficient test method which cannot be substituted by any other test methods. They are
time consuming but find an important number of errors if done properly. However, their
success depends on the methods and checks applied and on the diligence of the inspectors.

Walkthroughs. Walkthroughs differ significantly from inspections. A walkthrough is less for-
mal, has fewer steps, and does not use a checklist to guide or a written report to document
the team’s work. A walkthrough can have a twofold purpose. First of all, it can be per-
formed to evaluate a software product in order to:

find anomalies,
improve the software product,
consider alternative implementations, and/or
evaluate the conformance to standards and specifications.

Walktrough is a method which should be used throughout the design phase of a software
product to collect ideas and inputs from other team members, what leads to an overall
improvement of the product. The second objective of a walkthrough is to exchange tech-
niques and perform training of the participants. It is a method to raise all team members
to the same level of knowledge regarding programming styles and details of the product.

2.7.2 Testing and Simulation

Testing. Testing is a basic technique used to check the correct implementation of a system
with respect to a property. Typically, the property is derived from the formal specification
(Figure 5). A test case is a basic unit of testing and represents the checks of a particular
set of inputs and outputs of a system. Testing is a method to identify errors, but it cannot
guarantee the complete correctness because usually the set of test cases is not exhaustive.
Ideally, tests of a system have a high coverage and consider all the relevant situations that
can occur.

A testing procedure is called black-box if the test cases are defined without any information
about the internal structure of the system. White-box testing, on the contrary, uses the
knowledge about the system implementation in order to generate test cases. The most
important metric for a white-box testing procedure is the code coverage. It is applied
to the source code specification and describes the degree to which the source code of a
program has been tested. In order to specify this degree, there are a number of coverage
criteria [Cor96], e. g., function, branch, or path coverage.

In the most basic form, tests are manual: an engineer defines a certain set of input
data and checks whether the system generates the expected output if stimulated with the
defined inputs. Many times, however, tests are done in an automatic manner: based on

20

Specification

Implementation ?

Test Data
Derives

Run

Figure 5: Testing framework

a specification, a set of test cases is generated that is to be executed on the system. For
example, MSC-based specifications are used as inputs for automatic test case generation.

Simulation. Simulation is typically an execution of the design of the system-to-be, for observ-
ing interactively the behaviour of the system and checking its correctness. The verification
by simulation is typically made by first defining input sequences, which can but need not
be random, suitable to test certain functionality, and afterwards simulating the system
with those input sequences; the produced output sequences are finally checked to deter-
mine if the system behaves as expected. The verification is not exhaustive but limited to
the cases scheduled by the designers; nevertheless, simulation is still a good and fast way
to verify early designs. In the framework of specification techniques, it is convenient to
have a graphical visualisation of the simulation and that the animation highlights directly
over the specification, for aiding the discovery of eventual errors.

2.7.3 Formal Verification

Formal verification [CW96] means formally proving the system’s correctness with respect to
a certain formal specification or property, using formal methods. We subdivide the formal
verification techniques in static analysis on the one hand, i. e., techniques that elaborate infor-
mation on the behaviour of a program without executing it, such as abstract static analyses,
model checking and bounded model checking; and theorem proving on the other hand, meaning
the process of finding a proof of a property where the system and its desired properties are
expressed as formulas in some mathematical logic. We describe in more detail the two major
formal verification techniques:

Model checking. Given a model of a system, model checking tests automatically whether this
model meets a given specification. Typically, the system behaviour is abstractly repre-
sented by a graph, where the nodes represent the system’s states and the arcs represent
possible transitions between the states.

The properties to be checked are usually expressed in a temporal logic. Temporal logic is a
class of modal logic and a powerful means to express several properties about systems. It

21

extends propositional logic by the addition of time operators, in the sense that formulas
can evaluate to different truth values over time. There are different types of temporal
logic notations that correspond to different views of time: branching vs. linear, discrete
vs. continuous, past vs. future, real time. Examples of temporal logic formal languages are
linear temporal logic (LTL), computational tree logic (CTL) and timed CTL. Examples
of properties that can be expressed and consequently verified by model checkers are:

Reachability: some particular situation can be reached
Safety: something never occurs
Liveness: something will ultimately occur
Fairness: something shall (or shall not) occur infinitely often
Deadlock-freeness: the system can always evolve to a successor state

While a violation of a safety property can be detected by a finite sequence of executions
steps, a violation of a liveness property may be detected only by an infinite execution of
the system. Consequently, liveness properties are harder to be verified by model checkers.

Model checking is completely automatic and relatively fast, sometimes producing an an-
swer in a matter of minutes. Model checking can be used to check partial specifications,
and can so provide useful information about a system’s correctness even if the system has
not been completely specified. An important feature of model checking is that it produces
counterexamples, which usually represent subtle errors in design, and thus can be used
to aid in debugging. The main disadvantage of model checking is the state explosion
problem: even small system may result in a huge state space. This problem has been ad-
dressed in many ways, by optimisations to save time and more importantly space. Thank
to that, model checking has become powerful enough to be widely used in industry in the
verification of newly developed designs.

Theorem Proving. Theorem proving [CW96] is the process of showing that the model satisfies
the specification by means of formal proof, i. e., a sequence of statements each of which
is an instance of an axiom of the system or follows from previously proved statements by
means of inference rules. The basic idea is that both the model and the specification are
represented within a suitable logic. This logic is given by a formal system, which defines a
set of logical (i. e., universally valid) axioms and a set of inference rules. Theorem proving
is the process of finding a proof of a property from the logical axioms and the proper
axioms of the system.

Theorem provers need not exhaustively visit the program’s state space to verify proper-
ties. Consequently, a theorem prover approach can reason about infinite state spaces and
state spaces involving complex data types and recursion. Theorem provers support fully
automated analysis in restricted cases only, so usually the method is semi-automatic.

Theorem provers are increasingly used today in the mechanical verification of safety critical
properties of hardware and software designs, but the generated proofs can be large and
difficult to understand. Therefore, a great deal of user expertise and effort is required.
This requirement presents perhaps the greatest barrier to the widespread adoption and
usage of theorem provers.

22

2.7.4 Runtime verification

Runtime verification [CM04] is a verification technique that combines formal verification and
program execution. It is the process of detecting faults in a system under scrutiny by passively
observing its input/output behaviour during its normal operation. The observed behaviour of
the target system, e. g., in terms of log traces, can be monitored and verified dynamically to
satisfy given requirements.

Runtime verification is performed while the real system is running. Thus, it increases the
confidence on whether the implementation conforms to its specification. Furthermore, it allows
a running system to reflect on its own behaviour in order to detect its own deviation from the
prespecified behaviour.

Continuous monitoring of the runtime behaviour of a system can improve our confidence in the
system by ensuring that the current execution is consistent with its requirements at runtime.
In the literature, at least the following four reasons are mentioned in order to argue for runtime
verification:

If you check the model of your system you cannot be confident on the implementation
since correctness of the model does not imply correctness of the implementation.

Some information is available only at runtime or is convenient to be checked at runtime.

Behaviour may depend heavily on the environment of the target system; then it is not
possible to obtain the information necessary to test the system.

In the case of systems where security is important or in the case of critical systems, it is
useful also to monitor behaviour or properties that have been statically proved or tested.

2.8 Typical Notations

The term notation is a synonym for concrete syntax and is the most visible part of a modelling
language to its end-users. In order to realise a model, engineers need to use a concrete notation.
Typically, there are textual notations, diagrammatic notations, or tables. To concrete syntax
belongs everything related to the layout, colors used, fonts, etc. – i. e., everything that a user
sees when describing a model.

It is important to note that the choice of a particular notation belongs to the pragmatics of a
language, and is independent from the language definition per se as well as from the language’s
capabilities. The same specification concept can be represented graphically in different tools
by using different shapes or colors. Or vice versa, different specification concepts can be
represented through the same graphical notations in different tools.

Many specification techniques favour a standard concrete syntax, while others can be often
seen in different notations. In Figure 6 we present different typical notations for describing
state automata. We have a pure textual notation, two graphical notations, and a table. Each
of these notations is adequate (from pragmatic reasons) for different purposes: for example, a
graphical notation can be animated more easily, while the textual notation is more compact.

23

automaton {
 state Opened, Closed;
 transition open: Closed → Opened;
 transition close: Opened → Closed;
}

Opened Closed

Opened Closed

close

open

close

open

--

--

Src. / Dst. Opened Closed

Opened close

Closed open

Figure 6: Examples of notations for describing automata

24

3 Classification of Specification Techniques

In this section we present a classification of several widespread specification techniques accord-
ing to the framework introduced in Section 2.

A first step in preparation of this document is to decide which specification technique to
consider for our classification. Following our experience, and the feedback provided by our
industry partners from the tools questionary, we decided in the first stage to restrict ourselves
to a handful of common specification techniques developed in the academia and/or used in
practice.

Table 1 shows at a glance the specification techniques and how we classified them. In the left-
most column the specification paradigms are presented, and in the second column correspond-
ing specification techniques. Each line in the table corresponds to a specification technique
and each one of the further columns correspond to a criterion defined in Section 2.

In Tables 2 and 3 we present the specification techniques for modelling of behaviour in more
detail, namely by presenting which behavioural aspects can be expressed with a certain spec-
ification technique. As mentioned in 2.2.3, if different lines in the table are equal, then the
corresponding specification techniques are equivalent according to our criteria. This is a first
hint of the equivalence between the expressive power of different specification techniques.

Outline of this section. Each of the following subsections address the specification techniques
that belong to a certain specification paradigm. We have chosen the following specification
paradigms: component-based development (Section 3.1), use cases (Section 3.2) automata
(Section 3.3), control-flow-based specifications (Section 3.4), data-flow-based specifications
(Section 3.5), function block specifications (Section 3.6), Petri nets (Section 3.7), sequence
diagrams (Section 3.8), constraint-based specifications (Section 3.9), algebraic specifications
(Section 3.10), and process-algebra-based specifications (Section 3.11).

Each of these sections has the same structure: we present an overview over the specifica-
tion paradigm and give a mathematical model where there is one that is established in the
community. In the following we present the set of important specification techniques for the
paradigm, and continue with the classification of the specification techniques according to the
criteria presented in Section 2.

25

Specification Para-
digm

Specification Technique System
Views6

Develop-
ment
Phase7

Ab-
strac-
tion
Layer 8

Tool
Support

Analysis Techniques 9 Typical
Notation

Component-Based
Design

Component Diagram S SSD, DD L UML testing (Rational Rhapsody) graphical

Use-Case-Based
Design

Use Case Diagram F RE F UML testing (Rational Rhapsody) graphical,
textual

Automata UML State Machine B (P) RE, SSD,
DD, I

L (F, T) UML testing, simulation (WinA&D,
ASCET, Rational Rhapsody)

graphical,
tabular

Control Flow Spec-
ification

UML Activity Diagram P (B) RE, SSD
(DD, I,
VV)

F UML testing, simulation, model check-
ing (Rational Rhapsody, Toolkit
for Conceptual Modelling)

graphical

Data Flow Specifi-
cation

Data Flow Diagram B RE, SSD
(DD)

F, L Visio,
Simulink,
SCADE

testing and verification
(Simulink, SCADE, WinA&D,
Rational Rhapsody)

graphical

Function Block
Specification

Function Block Diagram F RE, SSD,
DD

F, L SysML
Siemens
Simatic

model checking, testing, simula-
tion, formal verification (PRISE,
ASCET, SCADE, Simulink)

graphical

Petri Nets Simple Petri Nets B (P) DD L CPN
Tools

simulation, model checking
(CPN Tools, PRES+)

graphical

Sequence Diagrams UML Sequence Diagram B RE, SSD F, L UML testing, simulation, model check-
ing (Rational Rhapsody, TUR-
TLE Tool)

graphical

Constraint-based
Specification

OCL all DD, I, VV all Dresden
OCL

testing logic for-
mula

Algebraic Specifica-
tion

HOL-CASL D DD, VV F Isabelle static analysis, theorem proving
(Heterogeneous Tool Set)

textual

Process Algebra CCS B, P SSD, VV F, L textual

Table 1: Classification of Specification Techniques

6D = data, S = structure, B = behaviour, P = process, F = functional
7RE = requirement engineering, SSD = system and software design, DD = detailed design, I = implementation, VV = validation and verification
8F = functional, L = logical, T = technical
9All specifications support inspections, reviews and walkthroughs

2
6

Specification Paradigm Specification Technique
Aspects of MoC

Time Clock Concur-
rency

Behav-
iour

Flow Deter-
minism

Data

Automata

UML State Machines discr glob data-
synchr

event contr no discr

I/O Automata discr glob data-
synchr

time contr no discr

Timed Automata cont local data-
synchr

time &
event

contr no discr

Hybrid automata cont local data-
synchr

time &
event

contr no cont

AutoFocus automata discr glob asynchr time contr no discr

Control Flow Specification
UML Activity Diagrams no no asynchr event contr no discr
CFGs no no asynchr event contr no discr

Data Flow Diagrams
Matlab Simulink, Lustre discr global synchr event data no cont
Kahn process networks discr global asynchr event data det cont
Real-Time DFDs ev discr global asynchr,

explicit
event data &

contr
no cont

Function Block Specification
(F)FBD – – – event data no discr
EFFB – – – event data &

contr
no cont, discr

Petri Nets Simple Petri Nets discr local,
global

asynchr event,
time

data no cont, discr

Sequence Diagrams
MSC / UML Sequence Di-
agrams

ev discr local
(po)

expl,
asynch,
nondet

event data no –

LSC ev discr local
(po)

expl,
asynch,
nondet

event data no –

Table 2: Classification of Behavioural Specification Techniques on the basis of MoC (1/2)

2
7

Specification Paradigm Specification Technique
Aspects of MoC

Time Clock Concur-
rency

Behav-
iour

Flow Deter-
minism

Data

Constraint-based Specification
OCL no time mult seq event control no discr
CLP no single seq event control no discr

Algebraic Specification
HOL-CASL no no no no not cov not cov depends
CALS-LTL prec no no no not cov not cov depends

Process Algebra
CCS ev discr local

(po)
expl,
asynch,
det

event data no discr

CSP
ACP

Table 3: Classification of Behavioural Specification Techniques on the basis of MoC (2/2)

2
8

Figure 7: UML 2 components of the Component Diagram

3.1 Component-Based Design

3.1.1 General Description of the Paradigm

Component-based design focus on the construction of the system’s architecture by decomposing
a software system into its components. It is used from early phases of the software development
process on leading from high-level architectures to more detailed ones.

The component-based design shows the software components (incorporating parts of system
functionality), usually as black-boxes, and interfaces in-between them. Main purpose is to
show the structural relationships between components of a system.

The main advantages of the component-based design are the following. First, it is helpful or
even necessary to master the complexity of large software systems by constructing them in a
structured and modular way. Secondly, the software components represent modular building
blocks that can be easily reused in a new system and/or substituted by new components as
long as the interface remains the same. Thirdly, component-based development is useful for
distributed development since software components can be developed independently as long as
their functionality and interfaces are specified properly.

3.1.2 Specification Techniques Comprised in the Paradigm

UML 2 component diagram [Bel04]. A UML 2 component diagram is as an architecture-
level artifact used for systems and software design or/and for detailed design. Here, the
components are autonomous, encapsulated units within a system or sub-system that provide
one or more interfaces. A component is presented in a UML 2 diagram as a rectangle with the
component’s name and the component stereotype text and/or icon. The component stereo-
type’s text is ‘component’ and the component stereotype icon is a rectangle with two smaller
rectangles protruding on its left side. The three equivalent notations for a component are
presented in Figure 7.

Additionally, the interfaces provided and/or required by a component can be specified. The
interfaces provided represent the formal contract of services the component provides to its
consumers/clients. There are two equivalent possibilities for this shown in Figure 8. A compo-
nent notation can have additional compartments stacked below the name compartment with
‘required interfaces’ and/or ‘provided interfaces’ followed by the corresponding interfaces lists.
Or a component can be presented as a simple rectangle with an provided interface(s) presented
as a link with a complete circle at their end (sometimes called ‘lollipop’ symbol) and/or with
an required interface(s) presented as a link with only a half circle at their end (sometimes
called ‘socket’ symbol).

29

Figure 8: The UML 2 Component Diagram: different specifications of interfaces

Figure 9: The UML 2 Component Diagram: Example

An example for an UML 2 component diagram is presented in Figure 9.

Rich Components [DVM+05]. The handling of non-functional properties is an important
issue by component-based design. Such properties (e.g. time and QoS) have to be mod-
elled, i. e., the component-based design has to be enriched accordingly. The Rich Component
Model developed by the OFFIS team allows for specifying and verifying functional and non-
functional requirements, their horizontal, vertical, and inter-viewpoint composition at different
abstraction levels [DVM+05]. To capture all aspects of a rich component different specifica-
tion techniques based on different paradigms are used, such as component diagrams, composite
structure diagrams, sequence diagrams, state machines etc. Rich components extend classical
component models (from UML 2.0) by

extending component specifications to cover all viewpoints (functional and non-functional
ones such as real-time, safety, resources, power, etc.),

explicating the dependency between the promises of a component specification and as-
sumptions on its environment;

providing classifiers to such assumptions, relating the positioning in a layered design space
(horizontal, up, down), as well as specifying confidence information of these assumptions.

Focus [Bro07]. The Focus approach decomposes a system into a network of software com-
ponents, see example in Figure 10. The software components are black-box entities defined by
their names and formally specified interfaces. The interfaces are connected through (typed)

30

Figure 10: FOCUS: Network of software components

channels where message are interchanged. The intercommunication between the components
is described formally by stream processing functions mapping input messages received on the
input channels to output messages sent via the output channels. The formally specification
of the syntactic interfaces and the interface behaviour allows to formally define composition
operators and refinement.

3.1.3 Classification of the Specification Techniques

Covered system views. The specification techniques based on the ‘Component-based Para-
digm’ paradigm cover the structure (also called organisational or architectural model) system
view.

Underlying model of computation. The specification techniques described in this section
do not cover behavioural aspects of a system. Hence, they cannot be classified according to
underlying model of computation.

Addressed stage of the development process. These techniques are often used in the system
and software design and/or in the detailed design phases of the development process.

Supported abstraction layers. The corresponding techniques support the logical view.

Compositionality. All component-based specifications support compositionality by nature re-
quiring to split a system into components.

Available tool support. There is a rich tool support available for the specification techniques
based on this paradigm. UML component diagram is supported by each UML editor.

Analysis techniques. Manual analysis techniques are used, i. e., inspections, reviews and
walkthroughs. Static analysis in form of interface correctness checking can also be feasible.

31

Typical notations. Typical notation is graphical, but textual might also be possible.

3.2 Use-Case-Based Design

3.2.1 General Description of the Paradigm

Use cases, introduced by Jacobson in [Jac04], describe the system from the user’s point of
view. They describe “who” can do “what” with the system from a black-box point of view.
A complete and unambiguous use case describes one aspect of usage of the system without
presuming any specific design or implementation. Thus, the use case technique is employed to
capture a system’s behavioural requirements by detailing all the scenarios that users will be
performing. The result of use case modelling should be that all required system functionality
is described in the use cases.

More precisely, use cases describe the interaction between one or more actors and the system
itself, represented as a sequence of simple steps. Actors are something or someone which exists
outside the system under study, and that take part in a sequence of activities in a dialogue with
the system to achieve some goal. Actors may be end-users, other systems, or hardware devices.
Use cases typically avoid technical jargon, preferring instead the language of the end-user or
domain expert. Use cases are often co-authored by systems analysts and end-users.

In use-case-based design [RS99], the use case model is at the conceptual center of the approach
because it drives everything that follows, e. g., interaction/behaviour/state modelling as a
refinement of the interaction/ the dynamic behaviour of the objects within the use case model,
requirements tracing, deriving of test cases and so on.

3.2.2 Specification Techniques Comprised in the Paradigm

UML use case diagram [Bit02]. Use case diagrams are formally included in two modelling
languages defined by the OMG. Both the UML [OMG09] and SysML [OMG08] standards
define a graphical notation for modelling use cases with diagrams. These diagrams provide an
graphical overview of the use cases for a given system and the relations between them.

In Figure 11 a sample use case diagram of an calculator is depicted. The basic elements of a
use case diagram are as follows:

Use cases represented by ovals, e. g., “Enter Number” or “Display Number”.

Actors represented by stick figures, e. g., “Engineer” or “Printer”.

Associations between actors and use cases indicated by solid lines. An association exists
whenever an actor is involved with an interaction described by a use case.

System boundary boxes (optional) to indicates the scope of your system. Anything within
the box represents functionality that is in scope and anything outside the box is not.

Furthermore, different relationships between actors and between different use cases can be
modelled in a use case diagram:

32

Figure 11: Sample Use Case Diagram [Pea09]

Actor generalisation depicted by a solid line ending in a hollow triangle drawn from the
specialised to the more general actor, e. g., “Engineer” and “Accountant” are both a
(specialised) “User” of the calculator.

Include is a directed relationship between two use cases, implying that the behaviour of
the included use case is inserted into the behaviour of the including use case. This is useful
for extracting truly common behaviours from multiple use cases into a single description.
The notation is a dashed arrow from the including to the included use case, with the
stereotype “include”. In our example, the use case “Enter Number” includes the use case
“Display Number”.

Extend is a directed relationship between two use cases that indicates that the behaviour
of the extension use case may be inserted in the extended use case under some conditions.
The notation is a dashed arrow from the extension to the extended use case, with the
stereotype “extend”. Notes or constraints may be associated with this relationship to
illustrate the conditions under which this behaviour will be executed. In our example, the
use case “Apply Function” might be extended by the use case “Handle Error”.

Generalisation is a relationship among use cases to extract common behaviours, con-
straints and assumptions to a general use case, describe them once, and deal with it in
the same way, except for the details in the specialised cases. The notation is a solid line
ending in a hollow triangle drawn from the specialised to the more general use case. In
the example, “Arithmetic” is a specialisation of the use case “Apply Function”.

Use case template. One complaint about the standards has been that they do not define
a format for describing these use cases. Generally, both graphical notation and descriptions
are important as they document the use case, showing the purpose for which an actor uses a
system.

Thus, there is no standard template for documenting detailed use cases. A number of competing
schemes exist, and individuals are encouraged to use templates that work for them or the

33

project they are on. There is, however, considerable agreement about the core sections, see for
example [Coc00]:

Use case name. as unique identifier for the use case. It should be written in verb-noun
format, should describe an achievable goal, and should be sufficient for the end-user to
understand what the use case is about.

Actors. involved actors that either act on the system – a primary actors – or are acted
on by the system – a secondary actors.

Preconditions. conditions that must be true for the trigger (see below) to meaningfully
cause the initiation of the use case.

Triggers. events that causes the use case to be initiated.

Basic course of events: typical course of events, also called basic flow, normal flow, or
happy flow.

Alternative paths, extensions, exceptions. secondary paths or alternative scenarios, which
are variations on the main theme. Exceptions, or what happens when things go wrong at
the system level, may also be described in a section of their own.

Postconditions. The postconditions section describes what the change in state of the
system will be after the use case completes.

3.2.3 Classification of the Specification Techniques

Covered system views. Use Cases are typically used to specify the functional view.

Underlying model of computation. Since use cases described the behavioural aspects of a
system only informally by natural language, they cannot be classified according to the under-
lying model of computation.

Addressed stage of the development process. Use cases are typically used during the re-
quirements engineering phase of the software development process. They aim at capturing and
structuring the system’s behavioural requirements from a black-box point of view.

Supported abstraction layers. Use cases are used in the functional view to elicitate, structure,
and (textually) describe the system functionality from the user’s point of view.

Available tool support. Modelling of use case diagrams is supported by every UML Case tool
(e. g., Visio, ArgoUML, Enterprise Architect).

Compositionality. Since their lack a formal foundation, use cases do not offer a well-defined
meaning of compositionality. However, use case diagrams are employed to provide a graphical
overview of the different use cases of the system including relations between them.

34

Analysis techniques. Informal methods as inspections, reviews and walkthroughs can be
applied to use case diagrams and use case descriptions for verifying and validating them.
Formal analysis techniques and testing, simulation, and runtime verification can not be applied
since use case specifications are are neither formally founded nor executable.

Typical notations. Use case diagrams are typically represented graphically (cf. Figure 11),
the description of single use cases is normally given as structured text.

3.3 Automata

3.3.1 General Description of the Paradigm

A state machine or state automaton is a model of behaviour composed of a number of states,
transitions between those states, and actions. The current state of a system is determined by
the foregoing state and the received input of the system. A transition indicates a state change
and is described by a condition that must be fulfilled to enable the transition. An action is a
description of an activity that is to be performed at a given moment. Automata are usually
used to formally define the operational semantics of a system.

As an example of the basic formalisation of automata, we describe in the following a Mealy
machine. A Mealy machine is a finite state automaton that generates an output based on its
current state and input. This means that the state diagram will include both an input and
output signal for each transition edge (cf. Figure 12).

Figure 12: Example of Mealy Machine[Mea09]

Formally, a Mealy machine is a 6-tuple (S, s0,Σ,Γ, T,G), where

S is a set of states;

s0 is a initial state with s0 ∈ S;

Σ is the input alphabet;

Γ is the output alphabet;

35

T is a transition function T : S × Σ → S which maps a state and the input alphabet to
the next state;

G is an output function G : S ×Σ → Γ which maps each state and the input alphabet to
the output alphabet.

3.3.2 Specification Techniques Comprised in the Paradigm

There are several kinds of state automata, e. g., Moore machines [Moo56], Mealy machines,
Statecharts by Harel [Har87], I/O Automata by Lynch and Tuttle [LT89], Hybrid Automata
by Henzinger [Hen96], Timed Automata by Alur [Alu99], Interface Automata by de Alfaro and
Henzinger [dAH01], Timed I/O Automata by Kaynar et al. [KLSV03], Hybrid I/O Automata
by Lynch et al. [LSV03], AutoFocus Automata by Schätz et al. [SPHP02], and many others.

3.3.3 Classification of the Specification Techniques

In the following automata are classified according to the criteria introduced in Section 2.

Covered system views. Automata are typically used to specify the behaviour and process
views. They describe the dynamic aspects of the system.

Underlying model of computation. Below we detail the aspects of models of computation
for automata (see also Table 2):

Time. There are automata dialects supporting discrete (e. g., Statecharts or I/O Au-
tomata) as well as continuous time (e. g., Hybrid or Timed Automata).

Clock. Local (e. g., Timed Automata) as well as global (e. g., I/O Automata) clocks are
supported by automata.

Concurrency. Automata can be executed simultaneously. There are synchronised (e. g.,
I/O Automata) and asynchronised (e. g., AutoFocus Automata) execution semantics of
automata.

Behaviour. Time-triggered (e. g., Timed Automata) as well as event-triggered (e. g., I/O
Automata) behaviour is supported.

Flow. Automata specify control flow.

Determinism. Automata may be non-deterministic.

Data. There are automata that can deal with continuous and infinite data (e. g., Hybrid
Automata). However, most automata dialects are defined for discrete data.

36

Addressed stage of the development process. Automata are originally introduced to give
meaning to computer programs in a mathematically rigorous way. Thus, they were initially
used in the detailed design and implementation phases of the development process. However,
over the years automata have been establishing in the system and software design and even
in the requirements engineering phases, especially in the domain of reactive systems, where
the relation between actions and reactions is in focus of consideration. This trend has been
supported by the introduction of several modelling and analysis tools. For example, Hybrid
Automata are used in the requirements engineering and system and software design phases
to describe the whole system (i. e., software and physical components of the system) and its
physical environment. In the detailed design and implementation phases discrete automata
(e. g., I/O Automata) are used.

Supported abstraction layers. Discrete automata are basically used in the logical view, where
the behaviour of components is described by automata. However, they also address the func-
tional and technical views. Continuous automata (like Hybrid Automata) are often used in
the functional view. There are approaches (i.e. [BH09]) which describe scenarios or functions
by automata. Since all computer programs (written in a embedded-system typical language
like C) are state machines, discrete automata can be used in the technical view, too.

Compositionality. All established automata-based approaches are compositional, i. e., the
meaning of a combined automaton can be determined by the meanings of its constituent
automata.

Available tool support. Modelling of statecharts is supported by every UML and further case
tool (e. g., Visio, StarUML, Eclipse, AutoFocus, etc.). A lot of them support code generation.
For analysis and simulation tools for automata see next paragraph and Appendix A.

Analysis techniques. Informal methods as inspections, reviews and walkthroughs can be
applied to state machine specification for verification and validation. Analysis techniques as
testing, simulation and runtime verification can be used to ensure that the state machine
behaviour accords to the state diagram specification. Usually these techniques explore only
a small number of cases in the state space. Formal verification techniques can guarantee a
comprehensive check, but on the other hand they face the state explosion problem. In order
to reduce this problem, especially in model checking, it is possible to translate a state machine
into an abstract model that has the same properties as the original system. For instance an
abstraction widely used in model checking is to encode the state machine model using a data
structure called Reduced Ordered Binary Decision Diagrams (ROBDDs) [Bry86], that can be
used to represent boolean functions and operations on such in an efficient manner.

In the appendix (A.6) is described a tool for runtime verification. The Assessment Studio
module for ASCET provides model checking (A.4). Testing and dynamic simulation are sup-
ported by Rational Rhapsody and WinA&D (see Appendix A.2). We have also tool support
for model checking which verifies specifications composed by a UML statechart diagram and
other UML diagrams together: Papyrus UML, Hugo/RT, PROCO and Rhapsody in C++ (see
Appendix A.4).

37

Typical notations. Automata are typically represented graphically (cf. Figure 12) or as tables
(cf. Figure 6).

3.4 Control Flow Specification

3.4.1 General Description of the Paradigm

Control flow specifications describe the control flow of a business process, process or program
by breaking a process down to a finite number of steps that get executed one at a time. The
control flow governs how the next step to be executed is determined (step B after step A), but
it does not say anything about what the inputs and outputs of the steps are, how the steps
get performed internally, or why we might want to perform step A and then step B [Rid04].

In general, control flow diagrams show sequential steps, if-then-else conditions, repetition,
and/or case conditions. Control flow specifications are usually graphically represented by
control flow diagrams using suitably annotated geometrical figures to represent operations,
data, or equipment, and arrows to indicate the sequential flow from one to another.

Control flow specifications can be modelled from the perspective of different user groups (such
as managers, system analysts and clerks), leading to different classes of control flow diagrams,
e. g.,

document flowcharts, showing controls over a document-flow through a system,

data flowcharts, showing controls over a data flows in a system,

system flowcharts showing controls at a physical or resource level, or

program flowcharts, showing the controls in a program within a system [Ste03].

Notice that every type of flowchart focuses on some kind of control, rather than on the partic-
ular flow itself.

3.4.2 Specification Techniques Comprised in the Paradigm

Flowcharts. A flowchart is a common type of diagram, that represents an algorithm or pro-
cess, showing the steps as boxes of various kinds, and their order by connecting these with
arrows.

A typical flowchart is depicted in Figure 13. Typical building blocks used in flowcharts are:

Start and end symbols represented as circles, ovals or rounded rectangles, usually con-
taining the word “Start” or “End”, or another phrase signaling the start or end of a
process.

Arrows showing the “flow of control”.

Processing steps represented as rectangles.

Conditional or decision represented as a diamond. Decision blocks typically contain a
Yes/No question or True/False test. Decision blocks have (at least) two (labeled) arrows
coming out of it, one corresponding to Yes or True, and one corresponding to No or False.

38

Figure 13: Sample Flowchart [Han09]

In some dialects, further symbols are available to denote e. g., input/output (represented as a
parallelogram), manual operations (trapezoid with the longest parallel side at the top) or data
files (cylinder).

Many diagram techniques exist that are similar to flowcharts and can be seen as a variation
their of (e. g., UML activity diagrams).

UML Activity Diagrams. An UML activity diagram[OMG09], is a diagram to specify the
dynamics of a system. In the UML, activity diagrams can be used to describe the business
and operational step-by-step workflows of components in a system. UML 2 activity diagrams
are typically used for business process modelling, for modelling the logic captured by a single
use case or usage scenario, or for modelling the detailed logic of a business rule. It has
constructs to express sequence, choice and parallelism. Its syntax is inspired by both Petri
nets (see Section 3.7), statecharts (see Section 3.3) and flowcharts. In many ways UML activity
diagrams are the object-oriented equivalent of flow charts and data flow diagrams (DFDs) (see
Section 3.5)

An activity diagram consists of the following basic elements depicted in Figure 14 (cf. [Amb04]):

Initial activity.

Final activity.

Activity.

Decisions. Similar to flowcharts, a logic where a decision is to be made is depicted by
a diamond, with the options written on either sides of the arrows emerging from the
diamond.

Signal. An activity can send or receives messages. These activities are called input and
output signal, respectively.

39

Initial Activity /
Final Activity

Activity

[Opt. 1] [Opt. 2]

Decision

Output

Input

Input/Output
Signal

Activity Descr.
Act. 1 Act. 2

Concurrent
Activities

Figure 14: Basic Elements of an UML Activity Diagram

Concurrent activities. are activities that occur simultaneously or in parallel. This is
represented by a horizontal split (Fork) and the two concurrent activities next to each
other, and the horizontal line again (Join) to show the end of the parallel activity.

Merge. A diamond with several flows entering and one leaving. The implication is that
one or more incoming flows must reach this point until processing continues, based on any
guards on the outgoing flow.

There are further constructs to structure and hierarchically decompose activity diagrams:

Partition (Swimlanes). Indicate who/what is performing the activities.

Sub-activity indicator. A rake in the bottom corner of an activity indicates that the
activity is described by a more finely detailed activity diagram.

UML activity diagrams are expressive enough to model all the constructs needed in work-
flow models. Unfortunately, the activity diagram semantics defined by the OMG is informal
and ambiguous. However, there exist different approaches to assign a formal semantics to
UML activity diagrams (e. g., in [EW01] based on statecharts or in [YzYzYf04] based on Petri
nets).

Control flow graph. A control flow graph (CFG) in computer science is a representation, using
graph notation, of all paths that might be traversed through a program during its execution.

In a control flow graph each node in the graph represents a basic block, i. e., a straight-line
piece of code without any jumps or jump targets; jump targets start a block, and jumps end
a block. Directed edges are used to represent jumps in the control flow. There are, in most
presentations, two specially designated blocks: the entry block, through which control enters
into the flow graph, and the exit block, through which all control flow leaves.

The CFG is essential to many compiler optimisations and static analysis tools, e. g., to analyse
for reachability or infinite loops.

Further specification techniques. There exist further techniques for the control flow ori-
ented specification of software systems, e. g., Nassi-Shneiderman [NS73] or Jackson diagrams
[Jac75].

40

3.4.3 Classification of the Specification Techniques

In the following DFDs are classified according to the criteria introduced in Section 2.

Covered system views. Control flow specifications are primarily used to describe business
processes, thus they address the process view. However, they can also be used to describe the
behaviour of a system.

Underlying model of computation. Below we detail the aspects of models of computation
for control flow specifications (see also Table 2):

Time. Control flow specifications do not reason about time. Only a precedence relation-
ship is defined between the but no information about the timing issues is modelled.

Clock. There is no clock in control flow specification. Events are only ordered according
to their precedence relation.

Concurrency. In control flow specifications, e. g., in activity diagrams, concurrent activi-
ties can be explicitly modelled. For instance in activity diagrams, synchronisation between
the concurrent activities is explicitly realised by the fork and join operator.

Behaviour. Event-triggered behaviour is modelled.

Flow. Obviously, control flow specifications specify control flow.

Determinism. In general, control flow specifications might be non-deterministic.

Data. The data aspect is not addressed by control flow specifications. However, in general,
they are based on discrete data.

Addressed stage of the development process. Control flow specifications (esp. activity di-
agrams) address the early phases of the development process and are used for requirements
modelling and in systems and software design. Control flow graphs support the design and
analyses of algorithms and programs. Therefore, they are used in the detailed design, imple-
mentation as well as validation and verification phase.

Supported abstraction layers. Activity diagrams support the functional layer and help to
identify the systems functionalities. Control flow specifications can be used in the specification
of the behaviour in the logical layer, too.

Compositionality. Structuring mechanisms to hierarchically decompose a model are indis-
pensable in order to deal with complex real-world systems. In general, control flow oriented
specifcation like activity diagrams do not offer such hierarchy mechanisms. Thus, they must
not be regarded to be compositional.

Available tool support. There is a broad range of tools available for modelling control floe
specifications. Almost every UML-tool (e. g., Visio, Rational Rhapsody, Enterprise Architect,
SmartDraw,...) supports activity diagrams.

41

Analysis techniques. Informal methods as inspections, reviews and walkthroughs can be
applied to control flow specifications for verification and validation. Different static analysis
tools perform various analyses on control flow graphs e. g., analyses for reachability or infinite
loops. Testing, simulation, and model checking is supported too, e. g., by Rational Rhapsody,
Toolkit for Conceptual Modelling.

Typical notations. Control flow specifications are graphically represented.

3.5 Data Flow Specification

3.5.1 General Description of the Paradigm

In the late 1970s data-flow diagrams (DFDs) were introduced and popularised for structured
analysis and design [GS77, DeM79]. DFDs show the flow of data through an information
system – from external entities into the system, how the data moved from one internal process
to another, as well as its logical storage.

Note, that a DFD provides no information about the timing or ordering of processes, or about
whether processes will operate in sequence or in parallel. It is therefore quite different from a
flowchart, which shows the flow of control through an algorithm, allowing a reader to determine
what operations will be performed, in what order, and under what circumstances, but not what
kinds of data will be input to and output from the system, nor where the data will come from
and go to, nor where the data will be stored (all of which are shown on a DFD).

3.5.2 Specification Techniques Comprised in the Paradigm

Basic Data Flow Diagrams. Basic data flow diagrams show

the processes within the system,

the data stores (files) supporting the system’s operation,

the information flows within the system,

the system boundary, and

interactions with external entities.

In Figure 15 a typical graphical notation of the basic elements of DFDs is depicted. DFDs

Process Data Store External
Data Flow

Figure 15: Data Flow Diagram – Notation

can be hierarchical organised in a top-level diagram, the context diagram, (Level 0) underlain
by cascading lower level diagrams (Level 1, Level 2,. . .) that represent different parts of the
system. The context diagram only contains one process node that generalises the function

42

of the entire system in relationship to external entities. The first level DFD shows the main
processes within the system. Each of these processes can be broken into further processes.

Data Flow Diagrams for real-time systems. In [WM86, You89] extensions of classic DFDs
for real-time systems are introduced. In addition to the previously introduced concepts, we
need a way of modelling

control flows (i. e., signals or interrupts),

control processes (i. e., bubbles whose only job is to coordinate and synchronise the activ-
ities of other bubbles in the DFD), and

buffers

These elements are shown graphically with dashed lines on the DFD, as illustrated in Figure 16.

Figure 16: Example of a Real-Time DFD [You09]

3.5.3 Classification of the Specification Techniques

In the following DFDs are classified according to the criteria introduced in Section 2.

Covered system views. DFDs are used to model the behaviour of a system by showing the
flow of data through the system.

Underlying model of computation. Below we detail the aspects of models of computation
for DFDs (see also Table 2):

43

Time and Clock. As mentioned before, Basic DFDs provide no information about the
timing or ordering of processes, or about whether processes will operate in sequence or in
parallel. Their extension for real-time systems, however, introduce control processes that
explicitly coordinate other possibly (concurrent) processes. Their are different implemen-
tations of DFDs, like synchronous dataflow models as implemented in Matlab Simulink,
Lustre/Esterel [HCRP91], or Kahn process networks [Kah74] with a precise semantics. In
general, they assume discrete time. For instance, Simulink uses an idealised timing model
for block execution and communication. Both happen infinitely fast at exact points in
simulated time. Thereafter, simulated time is advanced by exact time steps. All values
on edges are constant in between time steps [MM07].

Concurrency. In DFDs communication between concurrent processes is explicitly mod-
elled by message exchangw. Synchronous DFDs assume synchronous message passing,
while in other dialects like Kahn process networks communication is realised by asyn-
chronous message passing via infinitely large FIFOs.

Behaviour. DFDs are event-triggered.

Flow. DFDs specify the flow of data through the system. Extended DFD dialects (e. g.,
Real-Time DFDs), allow to model the control flow in addition to the pure data view.

Determinism. Kahn process networks, for example, are deterministic. In general, however,
control flow specifications might be non-deterministic.

Data. Basic DFDs are defined for discrete data, but their exist extensions that can deal
with continuous data.

Addressed stage of the development process. DFDs were originally introduced in the con-
text of structured analysis and design method (SADM) [GS77, DeM79], a software engineering
methodology for describing systems as a hierarchy of functions. They are one of the three
essential perspectives of the SSADM.

Consequently, data flow diagrams are used in the requirements engineering and the design
phases. With a data-flow diagram, users are able to visualise how the system will operate,
what the system will accomplish, and how the system will be implemented.

Supported abstraction layers. Since SADM aims at describing systems as a hierarchy of
functions, DFDs clearly address the functional view.

Compositionality. DFDs offer mechanisms to hierarchically describe a system by a top-level
diagram underlain by cascading lower level diagrams that detail different parts of the system.
Thus they can be considered to be compositional.

Available tool support. There exist many commercial tools for drawing basic DFDs (e. g.,
Visio). For the real-time extensions there might exist some research tools. However, real-time
DFDs are not supported by the commercial tools as Vision. Simulink and SCADE offer tool-
chains for the modelling of data flow diagrams as well as simulation, formal verification, and
code generation.

44

Analysis techniques. Inspections, reviews and walkthroughs can be applied for checking er-
rors in the data flow diagrams. We can specify test cases for checking the conformance of the
diagram to its specification. There are two tools which provide testing techniques: Rational
Rhapsody and WinA&D (see Appendix A.2).

Typical notations. Typically, DFDs are represented graphically, as depicted in Figures 15
and 16.

3.6 Function Block Specification

3.6.1 General Description of the Paradigm

A function block diagram is a diagram of a system, in which the principal parts or functions
are represented by blocks connected by lines, that show the relationships of the blocks. The
blocks portray mathematical or logical operations that occur in time sequence. They do not
represent the physical entities, such as processors or relays, that perform those operations.

3.6.2 Specification Techniques Comprised in the Paradigm

Function Block Diagram (FBD). A function block diagram (FBD) is a diagram, that de-
scribes a function between input variables and output variables as a set of interconnected
blocks (see Figure 17).

plc fb - 21.1

21. FUNCTION BLOCK PROGRAMMING

21.1 INTRODUCTION

Function Block Diagrams (FBDs) are another part of the IEC 61131-3 standard.
The primary concept behind a FBD is data flow. In these types of programs the values
flow from the inputs to the outputs, through function blocks. A sample FBD is shown in
Figure 21.1. In this program the inputs N7:0 and N7:1 are used to calculate a value
sin(N7:0) * ln(N7:1). The result of this calculation is compared to N7:2. If the calculated
value is less than N7:2 then the output O:000/01 is turned on, otherwise it is turned off.
Many readers will note the similarity of the program to block diagrams for control sys-
tems.

Figure 21.1 A Simple Comparison Program

Topics:

Objectives:
• To be able to write simple FBD programs

• The basic construction of FBDs
• The relationship between ST and FBDs
• Constructing function blocks with structured text
• Design case

N7:0

N7:1

SIN

LN

* A < B O:000/01

N7:2

A

B

Figure 17: Sample Function Block Diagram [Jac05]

Directed lines are used to connect input variables to function inputs, function outputs to
output variables, and function outputs to inputs of other functions. The connection is oriented,
meaning that the line carries associated data from the left end to the right end. The left and
right ends of the connection line must be of the same type. Multiple right connection, also
called divergence can be used to broadcast information from its left end to each of its right
ends.

Function block diagram is one of five languages for logic or control configuration supported by
standard IEC 61131-3 for a control system such as a Programmable Logic Controller (PLC,
Speicherprogrammierbare Steuerung SPS).

45

Function Flow Block Diagram (FFBD). (Synonyms: Functional Flow Diagrams, functional
block diagrams, functional flows)

The FFBD notation was developed in the 1950s, and is widely used in classical systems engi-
neering [NAS95, Lon95].

An FFBD shows the functions that a system is to perform and the order in which they are
to be enabled (and performed). Each function (represented by a block) occurs following the
preceding function. Some functions may be performed in parallel, or alternate paths may
be taken. The duration of the function and the time between functions is not shown. The
FFBD does not contain any information relating to the flow of data between functions, and
therefore does not represent any data triggering of functions. The FFBD only presents the
control sequencing for the functions.

An sample FFBD is given in Figure 18.

Function Flow Block Diagram

The Function Flow Block Diagram (FFBD) was the first to be favored by systems engineers and continues
to be widely used today (DSMC 1989, Blanchard and Fabrycky 1990). Figure 1 shows a sample FFBD.
An FFBD shows the functions that a system is to perform and the order in which they are to be enabled
(and performed). The order of performance is specified from the set of available control constructs shown
in Figure 2. The control enablement of the first function is shown by the reference node(s) which precede
it, and the reference node(s) at the end of the function logic indicate what functions are enabled next.
The FFBD also shows completion criterion for functions as needed for specification (for example, the exits
for the multi-exit function in Figure 1). The FFBD does not contain any information relating to the flow of
data between functions, and therefore does not represent any data triggering of functions. The FFBD only
presents the control sequencing for the functions.

Ref.

1

Serial Function AND AND

2
Function in

Concurrency

3
Multi-exit
Function OR

IT IT

4
Function in

Iterate

OR OR

5
Function in

Select Construct

6
Function 2 in

Select Construct

7

Output Function Ref.

cc#1

cc#2

3 times

Figure 1 – Sample Function Flow Block Diagram (FFBD)

Ref. AND AND

1
Function in a
Concurrency

2
Second

Function in a
Concurrency

OR OR

IT IT

3
Function in an

Iterate

LP LP

4
Multi-exit
Function OR

5
Function on Exit

Branch

RP RP

7
Function in a

Replicate

6
Function on a
Coordinate

Branch

Ref.

annotation

domain set for iterate

branch #2

cc #1

cc #2

loop annotation

branch #3

domain set for replicate
With coordination

ITERATE

CONCURRENCY

SELECT

MULTIPLE EXIT FUNCTION

LOOP

BRANCH ANNOTATION

REPLICATE

COMPLETION CRITERION

Figure 2 – Control Constructs Available for Function Flow Block Diagrams

Copyright © 2002 Vitech Corporation. All rights reserved. Relationships between Graphical Representations Page 2

Figure 18: Sample FFBD [Lon95]

FFBDs can be developed in a series of levels - reflecting the functional decomposition of the
system. Each block in a top level diagram can then be expanded to a series of functions in the
next level diagram.

Enhanced Function Flow Block Diagram (EFFBD). The EFFBD combines the control di-
mension of the functional model in an FFBD format with data flow aspects to effectively
capture data dependencies [Lon95].Thus, the Enhanced FFBD represents:

1. functions,

46

2. control flows, and

3. data flows.

The logic constructs allow you to indicate the control structure and sequencing relationships
of all functions accomplished by the system being analysed and specified. When displaying
the data flow as an overlay on the control flow, the EFFBD graphically distinguishes between
triggering and non-triggering data inputs. Triggering data is required before a function can
begin execution. Therefore, triggers are actually data items with control implications. In
Figure 19, triggers are shown with green backgrounds and with the double-headed arrows.
Non-triggering data inputs are shown with gray backgrounds and with single-headed arrows.

cc#2

3 times

cc#1

1

Serial Function AND

2

Multi-exit
Function

4
Function in
Multi-exit
Construct

IT

5

Function in
Iterate

IT

OR

3

Function in
Concurrency

AND

6

Output Function

External
Input

Data 1 Data 2

Data 3

Data 5

Data 4

External
Output

Figure 8 – Sample Enhanced FFBD

Figure 9 – Dynamic Timeline

Behavior Diagram

The Behavior Diagram (BD) (Figure 10) is a graphical representation equivalent to the Enhanced FFBD
(Figure 8). The primary difference is in the orientation of the control flow: in the EFFBD, control
sequencing is from left to right; in the BD, control sequencing is from top to bottom. While it is not shown
on the graphical construct, the BD model allows data inputs to a function to be characterized as either
triggering (a control capability) or data update (not a control implementation).

As with the Enhanced FFBD, the Behavior Diagram specification of a system is sufficient to form an
executable model allowing dynamic validation via discrete event simulation methods.

Copyright © 2002 Vitech Corporation. All rights reserved. Relationships between Graphical Representations Page 7

Figure 19: Sample EFFBD [Lon95]

The Enhanced FFBD specification of a system is complete enough that it is executable as a
discrete event model, providing the capability of dynamic, as well as static, validation.

3.6.3 Classification of the Specification Techniques

In the following FBDs are classified according to the criteria introduced in Section 2.

Covered system views. Functional block diagrams are used to model the behaviour of a
system by showing the system’s functions and their connections.

Underlying model of computation. Below we detail the aspects of models of computation
for FBDs (see also Table 2):

47

Time, Clock, and Concurrency. In general, FBDs provide no information about the
execution time of the function blocks.

Behaviour. Function flow diagrams are event-triggered.

Flow. FBDs and FFBDs specify data flow, EFFBDs additionally specify control flow.

Determinism. In general, control flow specifications might be non-deterministic.

Data. In general, function block specifications can be specified for discrete as well as
continuous data.

Addressed stage of the development process. Block diagram are typically used for a higher
level description aimed at understanding the overall concepts. To this end, they are used
during the requirements engineering and early design phases. In the detailed design phase,
FBDs and (E)FFBDs are used for a detailed specification of the system’s behaviour.

Supported abstraction layers. High-level FBDs are primarily used on the functional layer,
more detailed FBDs and EFFBDs are also used on the logical layer.

Compositionality. Analogously to control flow specifications (see cf. Section 3.4), FBDs do
not offer a hierarchy mechanism and consequently are not compositional.

Available tool support. A multitude of tools support FBDs (e. g., Visio). Besides, there exists
a Siemens proprietary tool chain including editors, analysis functionality and code generation
for PLCs.

Analysis techniques. Inspections, reviews and walkthroughs can be applied to perform infor-
mal verification to function block diagrams. It is possible to apply formal verification translat-
ing the function block in an input format for model checkers, as well as testing and simulation.
ASCET tool supports testing and simulation; SCADE has a Simulator module for executing
simulations and Simulink generates test cases for their function block specifications (see Ap-
pendix A.2). SCADE and Simulink support also formal verification by the Prover Plug-In
(see Appendix A.3). It is also reported two model checking tools for function block diagram:
Prise and the Assessment Studio module for ASCET (see Appendix A.4).

Typical Notation Block Diagrams are typically represented graphically. A typical example
for a function block diagram is depicted in Figure 17.

48

3.7 Petri Nets

3.7.1 General Description of the Paradigm

Petri Nets is a formal and graphical language for modelling systems with concurrency and
resource sharing. Petri Nets have been under development since the beginning of the 60s,
where Carl Adam Petri defined the language. It was the first time a general theory for discrete
parallel systems was formulated. The language is a generalisation of automata theory such
that the concept of concurrently occurring events can be expressed.

A Petri Net consists of two types of nodes: places (pictured as circles) and transitions (usually
pictured as bars). Arcs can exist only between places and transitions. In each place can exist
several tokens (illustrated through dots). With respect to a transition, a place is called an
“input place” if it is before the transition, or vice versa an “output place”. A transition is
ready to fire (i. e., activated) iff there is at least one token at each one of its input places.

In Figure 20 we illustrate an example of a Petri Net that models two processes: a sender and
a receiver. The sender and receiver synchronise themselves by having the same transition that
will be enabled only when both input places have tokens.

Wait
for ack.

Ready to
send

Ack.
received

Ready to
receive

Send
message

Buffer full

Message
received

Receive
message

Send
ack.

Ack.
sent

Buffer full

Receive
ack.

Prepare
to send

Prepare
to receive

Sender process Receiver process

Legend: Place Transition Transition Token

Figure 20: Petri Nets example for modelling Sender/Receiver (adapted from [Mur89])

Formally, a Petri Net is a 5-tuple (P, T, F,W,M0), where

P = {p1, p2, . . . , pm} is a finite set of places;

T = {t1, t2, . . . , tn} is a finite set of transitions;

F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation);

W : F → {1, 2, 3, . . . } is a weight function;

49

M0 : P → {0, 1, 2, 3, . . . } is the initial marking;

P ∩ T = ∅ and P ∪ T 6= ∅.

Petri nets have been used to model concurrent processes and distributed systems. Various
kinds of Petri net classes with numerous features and analysis methods have been proposed
in literature (among many others [Bra80], [BRR87a], [BRR87b]) for different purposes and
application areas. The fact that Petri nets are widely used and are still considered to be
an important topic in research, shows the usefulness and the power of this formalism. Petri
nets have been used to model various kinds of dynamic event-driven systems like computers
networks [Liu98], communication systems [Wan07], manufacturing plants [ZD89], command
and control systems [AL88], real-time computing systems [TYC95], logistic networks [LB02],
and workflows [LIRM02] to mention only a few important examples.

Interpretations of Petri Nets. Petri Nets are a generic modelling method since input places,
output places, and transitions can be interpreted in different manners as shown below [Mur89]:

input places can be seen as preconditions, transitions as events, and output places as
postconditions. In this case, Petri Nets are like state automata.

input places can be seen as input data, transitions as computation steps, and output
places as output data. In this case, Petri Nets are like data flow languages.

3.7.2 Specification Techniques Comprised in the Paradigm

Standard Petri Nets do not have time and transitions are taken immediately after their acti-
vation. There are several timed extensions of the standard Petri Nets [Mur89] by considering
time delays associated with places or transitions.

An ordinary Petri net has only one kind of tokens and no modules. Coloured Petri Nets define
use data types and complex data manipulation [Jen81]. Each token has attached a data value
called the token colour, which can be investigated and modified by the occurring transitions.
Besides a large model can be obtained by combining a set of submodels.

3.7.3 Classification of the Specification Techniques

In the following Petri Nets are classified according to the criteria introduced in Section 2.

Covered system views. Petri Nets are typically used to model the behaviour of a system.
Analysis of the Petri net can then, reveal important information about the structure and
dynamic behaviour of the modelled system. This information can then be used to evaluate the
modelled system and suggest improvements or changes.

50

Underlying model of computation. Below we detail the aspects of models of computation
for Petri Nets (see also Table 2):

Time. Petri Nets support the discrete time (e. g., Timed Petri Nets).

Clock. Local as well as global (e. g., Timed Petri Nets) clocks are supported by Petri Nets.

Concurrency. Petri nets are asynchronous, concurrent models. Events can happen at any
time and there exists a partial order of events.

Behaviour. Time- (e. g., Timed Petri Nets) as well as event-triggered behaviour is sup-
ported.

Flow. Petri Nets specify a data flow.

Determinism. Petri Nets may be non-deterministic.

Data. Petri Nets can model continuous and discrete data.

Addressed stage of the development process. Petri Nets are typically used for the speci-
fication of requirements with focus on sequencing of activities, parallelism, concurrency, and
branching. Since Petri Nets are typically represented through diagrams, they can be simulated
and therefore are useful for requirements validation. Petri Nets can be used also for system
design, for detailed design, or for system verification.

Supported abstraction layers. Petri Nets are a graphical language that is usually used in
the logical view. In fact, Petri nets are intuitive and can be used to describe the behaviour of
components. They were devised for use in the modelling of a specific class of problems, the
class of discrete-event systems with concurrent or parallel events.

Compositionality. Modelling large real-world systems with Petri nets is feasible when using
structuring mechanisms as the hierarchical modelling. In this model it is possible to inspect
the modelled system at varying levels of detail, to visualise selected parts of the system, and
to facilitate the multiple (re-)use of parts of the model. There are many extensions to Petri
nets, one important extension is hierarchy: approaches as Coloured Petri Nets [Jen81] and
hierarchical Petri net [Feh93] provide the semantic for combining a set of subcomponent Petri
nets in an hierarchical model.

Available tool support. There is a common infrastructure the Petri Net Kernel used to
construct Petri Net tools, which supports all kind of Petri Nets, provides basic modification
and save operations and a graphical user interface. CPN Tools [JKW07]10 is a tool for editing,
simulating and analysing untimed and timed, hierarchical Coloured Petri nets. It is freely
available and maintained by the CPN Group at the University of Aarhus in Denmark. Most of
the Petri Nets tool can be found at the so-called Petri Nets Tool Database11. Unfortunately,
many of the tools described on the database or in literature are not longer maintained or
available. Model checkers for Petri Nets are described in next paragraph and Appendix A.4

10http://wiki.daimi.au.dk/cpntools/cpntools.wiki
11http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

51

Analysis techniques. Inspections, reviews and walkthroughs can be applied to Petri nets
for informal verification and validation. Due to the well founded mathematics of Petri nets,
automatic verification of models is possible. The techniques developed in this area range from
simple deadlock checks to sophisticated model checking tools. We can apply testing, formal
verification and runtime verification. In the appendix (A.4) is described a tool for PERS+
which supports model checking.

Typical notations. Petri Nets are typically represented graphically (Figure 20).

3.8 Sequence Diagrams

3.8.1 General Description of the Paradigm

Sequence diagrams designates a graphical and textual language for the description and speci-
fication of the interactions between system components, in particular as an overview specifica-
tion of the communication behaviour of systems, be they, e. g., real-time or telecommunication
switching systems. More precisely, a sequence diagram is a scenario description of the interac-
tion –prominently communication, among other events– between a number of message-passing
instances and their environment. Additionally, the language allows for expressing restrictions
on transmitted data values and on the timing of events. Sequence diagrams may be used for
requirement specification, simulation and validation, test-case specification and documentation
of systems.

3.8.2 Specification Techniques comprised in the Paradigm

Message Sequence Charts (MSC). The first specification technique representative of this
paradigm is MSC (Message Sequence Charts) released in 1992, that emerged from SDL (Spec-
ification and Description Language). The MSC standard was added references, ordering and
inlining expressions concepts, and introduced HMSC (High-level Message Sequence Charts) in
1996; this latter construct allows the expression of state diagrams. The latest MSC version of
2000 added object orientation, refined the use of data and time in diagrams, and added the
concept of remote method calls; see [Hau01, Hau05].

Live Sequence Charts (LSC). A reported weakness of MSC is the fundamental meaning
of a scenario: in early stages of development, scenarios constitute just sample examples of
system behaviour, whereas in later stages and if the condition at the beginning of the chart
(if any) becomes true, then the system has to behave as described by the scenario. That is,
the initially existential interpretation becomes universal, and only the latter interpretation
allows for the expression of liveness properties. This motivated the enhancement to LSC (Live
Sequence Charts). An LSC diagram is in general constituted by a pre-chart and a chart.
The live interpretation of an LSC diagram requires that the behaviour specified by the chart
must be exhibited by a system whenever the system has shown the behaviour specified by the
pre-chart. Live elements, called hot (indicating that progress is enforced), make it possible to
define forbidden scenarios. Furthermore, also mandatory and possible conditions, invariants,

52

Figure 21: Sample LSC: universal chart [HMS08]

simultaneous regions and coregions, activation and quantification, may be specified; see [DH01].
Examples of LSC diagrams are shown in Figures 21 and 22.

Formally, let Θ = {hot , cold}. An LSC body is a tuple

((L,¹), I,∼, B, V,X,Msg ,Cond ,LocInv , Z,Tmr)

where

(L,¹) is a finite, non-empty, partially ordered set of locations, each l ∈ L associated with
timing interval T (l) ⊆ Q+

0 ∪̇{∞}, temperature θ(l) ∈ Θ, and with one of the finitely many
instance lines il ∈ I,
∼ ⊆ L× L is an equivalence relation on locations, the simultaneity relation,

B is an alphabet, V a set of variables, X a set of clocks,

Msg ⊆ L×B × L is a set of instantaneous messages with (l, b, l′) ∈ Msg only if l ∼ l′,

Cond ⊆ (2L \ ∅)× Φ(X,V)×Θ is a set of conditions with (L, ϕ, θ) ∈ Cond only if l ∼ l′

for all l, l′ ∈ L,

LocInv ⊆ L× {◦, •} × Φ(X,V)×Θ× L× {◦, •} is a set of local invariants,

Tmr ⊆ L×Z × (Q+
0 ∪̇{reset , timeout}) is a set of timers with (l, z, d) ∈ Tmr and d 6∈ Q+

0

implies that there exist unique l′ ¹ l, d′ ∈ Q+
0 such that (l′, z, d′) ∈ Tmr .

For each l ∈ L, if l is the location of a condition, a local invariant, or a timer set or reset,
then there exists l′ equivalent to l which is the location of a message or an instance head. An
LSC is a tuple L = (b, ac, pch, amode, quant) with b the body of the LSC, ac the activation
condition, pch the pre-chart, amode ∈ {initial , invariant , iterative} the activation mode, and

53

Figure 22: Sample LSC: existential chart [HMS08]

quant ∈ {existential , universal} the quantification. The LSC formal semantics is based on the
concept of timed Büchi automata; see [BDK+04].

UML Sequence Diagrams. UML interactions describe inter-object communication by mes-
sage exchange patterns. Interactions can be expressed by means of sequence diagrams, com-
munication diagrams (formerly called collaboration diagrams), interaction overview diagrams,
or timing diagrams; see [OMG09]. These languages are comparable with respect to their ex-
pressive power; see [CG09]. Moreover, UML sequence diagrams and MSC have influenced each
other and there is no noteworthy difference between them; see [Hau05]. Examples of UML
sequence diagrams are depicted in Figures 23 and 24.

The abstract syntax of UML sequence diagrams is as follows:

Basic ::= skip | E | A
SDiagram ::= Basic

| CombinedFragment
CombinedFragment ::= strict(SDiagram, SDiagram)

| seq(SDiagram, SDiagram)

| par(SDiagram, SDiagram)

| loop(N, (N ∪∞), SDiagram)

| ignore(M, SDiagram)

| alt(SDiagram, SDiagram)

| neg(SDiagram)

| assert(SDiagram)

| constraint(Term, SDiagram)

where, for given sets of lifelines and M of messages, E is a set of send and receive events, A
is a set of arrows (i. e., of synchronous send and receive events), N denotes the set of natural

54

sd Beef
Cook Stove Refrigerator

main dish please

turn on heat

fetch_meat()

fetch_meat():sirloin

heat is adequate

put on grill (sirloin)

fetch_meat()

fetch_meat():sirloin
main dish:sirloin

Figure 23: Sample basic sequence diagram [HS03]

:ACSystem
ref AC_UserAccess

sd UserAccess

EstablishAccess ("Illegal PIN")
ref

opt

OpenDoorref

Idle

Idle

:User

msg("Please Enter")

CardOut

PIN OK

Figure 24: Sample sequence diagram: combined fragment [Hau05]

55

numbers, and n denotes a member of N ∪ {∞}. The semantics of UML sequence diagrams is
trace based and not necessarily a trace is either positive or negative for a given UML sequence
diagram. Indeed, a trace may be inconclusive (see [KRHS05]), and moreover a trace may be
both positive and negative for a UML sequence diagram; see also [CK04].

3.8.3 Classification of the Specification Techniques

Covered system views. Sequence diagrams are designed for the description of the interaction
among sub-systems, that is, they are typically used for the specification of the behaviour view
of a system.

Underlying model of computation. Below we detail the aspects of models of computation
for sequence diagrams (see also Table 2):

Time and Clock. In sequence diagrams, the time is event discrete and there are multiple
clocks, whereby the precedence ordering among events is partial.

Concurrency. Sequence diagrams describe concurrent systems with no synchronisation
taking place besides maybe through communication, which typically is asynchronous (al-
though mechanisms for the expression of synchronous message passing are put at disposal),
non-deterministic, explicit, and it is abstracted away from dynamic vs. static communi-
cation.

Behaviour and Flow. The behaviour of sequence diagrams is event triggered.

Flow. The flow of computation is through data being exchanged among participant sub-
systems.

Determinism. Sequence diagrams are non-deterministic.

Data. They do not address data (i. e., no mechanism for data description is offered by the
paradigm).

Addressed stage of the development process. Sequence diagrams are mainly used at early
stages of development, i. e., for requirements elicitation and engineering as well as analysis.
They can also be used during design, although allegedly the LSC specification technique ap-
pears to be more adequate for design than MSC and UML sequence diagrams.

Supported abstraction layers. Sequence diagrams are primarily used for the specification of
the functional and logical views on a system.

Compositionality. There is no concept of operators on LSCs, i. e., two LSCs cannot be com-
bined by means of, e. g., a union or sum operator. Thus, besides “putting scenarios together”
there is no way to compose LSCs, and consequently the matter of compositionality does not
apply.

On the contrary, MSCs and UML Sequence Diagrams can be composed as well as equipped
with a compositional semantics.

56

Available tool support. UML sequence diagrams are supported by, e. g., Rational Rhapsody,
ArgoUML, UMLet. LSC diagrams can be created using the Play Engine [HM03].

Analysis techniques. Reviews, inspections and walkthroughs can be used for the informal
validation and verification of sequence diagrams. Sequence diagrams can be animated: TUR-
TLE [ACLSS04] for UML sequence diagrams, and the Play Engine [HM03] for LSC diagrams.

Typical notations. Almost exclusively, sequence diagrams are graphically represented. Other
representations via, e. g., words of an abstract syntax or XML encoding, can be used for the
purposes of verification and/or exchange between tools.

3.9 Contraint-based Specification

3.9.1 General Description of the Paradigm

The constraint programming paradigm allows the declaration of relations between variables
in form of constraints. Contrarily to imperative programming, constraints do not specify
sequences of steps to execute, they rather specify properties of a solution, i. e., constraint pro-
gramming is a declarative paradigm. Usually, constraint solvers are embedded in a program-
ming language, which typically is but is not circumscribed to a logic programming language.
The host language can also be for instance functional, imperative, and even term rewriting.

Constraints can be from different domains. Some popular ones are:

boolean domains, e. g., ϕ ∨ ψ is true

integer domains, rational domains

linear domains, e. g., x ≤ y, where only linear functions are described and analysed

finite domains, where constraints are defined over finite sets

mixed domains, involving two or more of the above

Finite domains is one of the most successful domains of constraint programming. Constraint
solvers are often realised as a separate library in an imperative programming language.

3.9.2 Specification Techniques Comprised in the Paradigm

The above domains can be compiled and handled by use of the Constraint Handling Rules
(CHR [Frü09]). CHR is a declarative programming language extension originally designed
for developing (prototypes of) constraint programming systems. Although CHR is Turing
complete, it was not devised as a programming language in its own right but rather to extend
a host language with constraints. These host languages include Prolog, Java and Haskell,
among others.

CHR is nowadays increasingly used as a high-level general-purpose programming language.
Typical application domains of CHR are multi-agent systems, natural language processing,

57

compilation, scheduling, spatial-temporal reasoning, testing and verification, and type sys-
tems.

A CHR program, sometimes called a constraint handler, is a sequence of guarded rules for
simplification, propagation, and “simpagation” (a mix of simplification and propagation) of
conjunctions of constraints. The CHR constraint store is a multi-set. In contrast to Prolog,
the rules are multi-headed and are executed in a committed-choice manner.

The Object Constraint Language (OCL [KW99]) provides a specification language for the
definition of constraints and well-formedness requirements, like invariants and pre- and post-
conditions, for models of the Unified Modeling Language (UML [OMG09]). OCL comprises
a navigational expression language which can be used to compute object values in a UML
model. For pre- and post-conditions associated with methods, which are akin to contracts and
assumption/guarantee specifications, there exists the pre- and post-condition times as well as
a time “in between” as provided by the action clause (see [KW02]).

3.9.3 Classification of the Specification Techniques

The classification is done over the domains of application of the constraints.

Covered system views. For any system view an adequate domain can be identified in which
constraints of interest are expressible.

Underlying model of computation.

Time and Clock. Depending on the domain, time might be relevant and one or more
clocks might be present.

Concurrency. Constraints are concurrent in character, since all of them have to be satis-
fied.

Flow. Constraint solvers can be both event and time triggered.

Determinism. They are typically non-deterministic.

Data. Depending on the addressed domain the data they handle can be any of finite,
discrete and even continuous nature.

Addressed stage of the development process. Constraints are better suited for (detailed)
design, implementation and verification.

Supported abstraction layers. Constraints are suited for any abstraction layer.

Compositionality. CHR and OCL are compositional approaches.

58

Lecturer
teaches_subject

isFree_hour

Lecture Room
capacity

isFree_hour

Class
attends_subject

has_attendants

isFree_hour

= >=

=

Figure 25: Constraints: graphical notation

Available tool support. CHR libraries are implemented for Prolog, Java, Haskell, Curry. Sev-
eral implementations for OCL have been provided, among them the Bremen USE tool [RG01],
the Dresden OCL tool [DW09], the KeY tool [ABHS07], and the pUML Meta-Modelling Frame-
work (MMF [CEK02]).

Analysis techniques. There is not much literature on how constraint handlers are analysed.
Obviously inspections, reviews and walkthroughs are suitable for the task. Certainly testing
is also applied.

Typical notations. Constraints are usually expressed as a logic formula or a multi-headed
Prolog clause. For instance,

(∀x)(∃y)P1 ∧ · · · ∧ Pm → Q1 ∨ · · · ∨Qn

where x are the variables occurring free in Q1, . . . , Qn and y are the other variables occurring
free in P1, . . . , Pm, is classically denoted by

Q1;...;Qn :- P1,...,Pm.

Also a graphical notation can be used as exemplary depicted in Figure 25; this notation soon
hinders more than eases the understanding of constraints, when many individual constraints
are involved.

3.10 Algebraic Specification

3.10.1 General Description of the Paradigm

Algebraic specifications are a generalisation of the abstract data type concept. They con-
centrate on the functionality of a system and provide a systematic means for describing the
properties of the system. Basically, a specification is composed of a signature and restrictions
(also called axioms) associated with it. A signature consists of name declarations for data sets

59

and data operations, and possibly also for data relations. The associated restrictions are for-
mulae over the signature; depending on the formalism chosen, they can be, e. g., equations or
first-order formulae with equality. These restrictions must be fulfilled by any implementation
of the specification.

Not one but a class of algebras or structures is denoted by an algebraic specification; the term
structure is used when the signature is allowed to declare data relations. Moreover, the choice of
those structures can be done by more than one criterion. The initial approach takes the initial
semantics of a specification whose restrictions are expressed by equations; see [GTW78]. The
loose approach assigns a class of (non-isomorphic) algebras to a specification whose restrictions
are first-order formulae; see [SW83]. Of course the restrictions can be expressed in any logic
as, e. g., temporal logic; see [FL90].

For larger systems, specifications may become quite unmanageable: specification-building op-
erators are usually put at designer’s disposal. These allow the construction of new, larger speci-
fications (also called structured specifications) out of smaller ones. Moreover, new specification-
building operators can be defined by constructs like parameterisation and lambda abstraction;
see [Wir90, SST92, Cen94, Dim98].

In any case, algebraic specifications, be simple ones or structured (i. e., obtained by use of
specification-building operators), imply further properties of the system-to-be other than the
ones expressed by their axioms, and are pairwise related by a so-called refinement relation.
Typically, refinement is semantically equivalent to model class inclusion. A formalisation of
the kind offered by algebraic specifications should be accompanied by means for performing
proofs and deriving the refinement relation; see [BCH99].

3.10.2 Specification Techniques Comprised in the Paradigm

Algebraic specification present programs as algebras consisting of datatypes and operations
(signature). The intended behaviour of a program is specified by means of formulas (say,
equations) concerning these operations (restrictions/axioms). There are several kinds of al-
gebraic specifications comprising different algebras and different formalisms for introducing
restrictions. One of the most prominent representative is the Common Algebraic Specification
Language (CASL). CASL is a general-purpose specification language based on first-order logic
with induction. Partial functions and subsorting are also supported. Basic specifications in
CASL denote classes of partial first-order structures: algebras where the functions are par-
tial or total, and where also predicates are allowed. Axioms are first-order formulae built
from definedness assertions and both strong and existential equations. Datatype declarations
are provided for concise specification of sorts equipped with some constructors and (optional)
selectors, including enumerations and products. Later, we present two interesting CASL’s
extensions: HOL-CASL and CASL-LTL.

3.10.3 Classification of the Specification Techniques

In the following, algebraic specifications, namely HOL-CASL and CASL-LTL, are classified
according to the criteria introduced in Section 2.

60

Covered system views. All algebraic specifications cover data system view through signa-
tures which represent the data structure of the system and their interdependancies. Some
of algebraic specifications also support structure system view, e. g., HOL-CASL and CASL-
LTL. A structured specification in CASL is formed by combining specifications in various ways,
starting from basic specifications. The structure of a specification is not reflected in its models:
it is used only to present the specification in a modular style. Through restrictions, algebraic
specification define a desired behaviour of a modelled system, i. e., they also support behaviour
system view.

Underlying model of computation. The criterion is relevant only for axioms or restrictions,
since signatures describe static aspects of a system. Thus, the classification depends on the
concrete formalism chosen for introducing restrictions. In the case of HOL-CASL, this is
high-order logic. Below we detail the aspects of models of computation for HOL (see also
Table 3):

Time. No time.

Clock. No Clock.

Concurrency. No notion to introduce concurrency.

Behaviour. No notion to express time-triggered (periodic) behavoiur.

Flow. Not covered.

Determinism. Not covered.

Data. Depends of a chosen signature.

In the case of CASL-LTL, the formalism used to define restrictions is Linear Temporal Logic.
Below we detail the aspects of models of computation for LTL (see also Table 3):

Time. No metric time. Only precedence relationship is defined.

Clock. No Clock.

Concurrency. No notion to introduce concurrency.

Behaviour. No notion to express time-triggered (periodic) behavoiur.

Flow. Not covered.

Determinism. Not covered.

Data. Depends on a chosen signature.

Addressed stage of the development process. Algebraic specifications are typically used
for specifying requirements and design of conventional software packages, i. e., the addressed
software development process stage are Requirements engineering and System and software
design.

Supported abstraction layers. The functional view is supported because the restrictions allow
specifying functional properties of a system. The logical view is also supported since the data
structures can be specified for components first and combined further in various ways thus
building a structure.

61

Compositionality. HOL-CASL and CALS-LTL are compositional since they support speci-
fication-building operators (structured specifications) which allow the construction of larger
specifications out of smaller ones.

Available tool support. Axioms for HOL-CASL can be written in, e. g., Isabelle/HOL. Ax-
ioms for LTL-CASL can be written in any tool supporting LTL, e. g., Maude LTL model
checker [EMS03].

Analysis techniques. Inspections, reviews and walkthroughs can be applied to algebraic spec-
ification for performing informal verifications. We can apply formal verification by static
analysis techniques, for checking the syntactic and semantic correctness. In high-order logic
representation, i. e., HOL-CASL, it is possible to verify correctness with a theorem prover, e. g.,
Isabelle. The Heterogeneous Tool Set supports this latter techniques for the CASL language;
see Sect. A.5 below. There exist multiple tools (so called model checkers) supporting verifica-
tion of temporal logic formula, among others LTL, e.g. Maude LTL model checker [EMS03].

Typical notations. Typical notation for algebraic specification is textual.

3.11 Process Algebra

3.11.1 General Description of the Paradigm

Process algebra denotes any approach devised to formally modelling concurrent systems that,
given a set of names, allow the definition of terms out of these names by means of a number
of operators, typically

parallel composition,

sequential composition,

data communication,

hiding or scope restriction, and

recursion or process replication.

Names stand for (basic) processes or channels, whose purpose is to provide means of commu-
nication. Channels may have rich internal structure, in particular some implementations take
advantage of an internal structure in order to improve efficiency, but this is abstracted away
in most theoretic models.

Process algebras are calculi, that is, they also provide algebraic laws that allow process de-
scriptions to be manipulated and analysed, and permit formal reasoning about equivalences
between processes (e. g., using bisimulation [Par81, Mil89]).

More formally, a process algebra consists of a set of operators and syntactic rules for construct-
ing process terms, a semantic mapping assigning meaning to every process term, and a notion
of equivalence and/or partial order between processes. Equality for the process algebra is also
a congruence relation and thus permits the substitution of one component with another equal

62

component in large systems. Therefore correctness can be modularly proved since, moreover,
a large system can be partitioned into simpler sub-systems. A hiding or restriction operator
allows one to abstract away unnecessary details.

3.11.2 Specification Techniques comprised in the Paradigm

The first sustainable approach was the Calculus of Communicating Systems (CCS, [Mil80]),
followed by the Communicating Sequential Processes (CSP, [Hoa85]) and by the Algebra of
Communicating Processes (ACP, [BK85]), which coined the term process algebra.

Calculus of Communicating Systems Let τ denote the silent action andN be a set of process
names. Let A be a set of action names and A = {a : a ∈ A} be the set of co-names; A ∪ A
represent the externally visible actions. Let A denote the set A ∪ A ∪ {τ}. The set of CCS
processes is defined by the following BNF grammar:

P ::= ∅ | α.P1 | N | P1 + P2 | P1|P2 | P1[b/a] | P1\a

where α ∈ A, a ∈ A \ {τ}, and N ∈ N .

The informal semantics of the expressions generated by the above semantics can be summarised
as follows:

empty process the empty process ∅ is a valid CCS process

action the process a.P1 can perform an action a and continue as the process P1

process identifier write N def= P1 to use the identifier N to refer to the process P1

choice the process P1 + P2 can proceed either as the process P1 or the process P2

parallel composition processes P1 and P2 exist simultaneously

renaming P1[b/a] is the process P1 with all actions named a renamed as b

restriction P1\a is the process P1 without action a

The expressions of the language are interpreted as a labelled transition system. Between these
models, bisimilarity is used as a semantic equivalence.

The operational semantics defines a relation with judgements of the form P
α→ P ′ defined by

63

the following axiom and inference rules:

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

Q
α→ Q′

P +Q
α→ Q′

P
α→ P ′

P |Q α→ P ′|Q
Q

α→ Q′

P |Q α→ P |Q′

P
a→ P ′

Q
a→ Q′

P |Q τ→ P ′|Q′

P
b→ P ′

P\a b→ P ′\a
b 6∈ {a, a}

P
a→ P ′

P [b/a] b→ P ′[b/a]
P

c→ P ′

P [b/a] c→ P ′[b/a]
c 6= a

The reflexive and transitive closure of the above relation, denoted by P σ→ Q and defined by
P

ε→ P plus P a·σ−→ Q if there exists P ′ with P a→ P ′ and P ′ σ→ Q, is the basis on which a trace
semantics of CCS is defined. Trace equivalence is termed observational if occurrences of the
silent action are removed from the trace.

CCS is useful for evaluating the qualitative correctness of properties of a system such as dead-
lock or livelock. The expressions of the language are interpreted as a labelled transition system,
as induced by the inference system of above. Between these models, bisimilarity is used as
a semantic equivalence. Specification languages and formalisms based on CCS include the
π-calculus [MPW92a, MPW92b], which provides mobility of communication links by allowing
processes to communicate the names of communication channels themselves, the Performance
Evaluation Process Algebra (PEPA, [GH94]), which introduces activity timing and probabilis-
tic choice thus allowing performance metrics to be evaluated, the Calculus of Broadcasting
Systems (CBS, [Pra95]), where handshake communication is replaced by broadcast communi-
cation which implies different observationally meaningful laws, and the Language Of Temporal
Ordering Specification (LOTOS, [EDV89]), a formal specification language based on temporal
ordering used for protocol specification in ISO OSI standards.

Communicating Sequential Processes CSP was influential in the development of the occam
programming language [RH88], and has been practically applied in industry as a tool for
specifying and verifying the concurrent aspects of a variety of different systems, such as a
secure ecommerce system. The theory of CSP itself is also the subject of active research,
including work to increase its range of practical applicability (e. g., increasing the scale of the
systems that can be tractably analyzed). CSP allows the description of systems in terms of
component processes that operate independently, and interact with each other solely through

64

message-passing communication. The formal syntax of CSP-terms in its core is as follows:

P ::= SKIP successful terminating process
| STOP deadlock process
| α→ P1 prefixing
| P1;P2 sequential composition
| if b then P1 else P2 boolean conditional
| P1 ¤ P2 external choice
| P1 u P2 non-deterministic choice
| P1 ||| P2 interleaving
| P1 |[X]| P2 interface parallel
| P1\X hiding
| P1 4 P2 P1 interrupted by P2

| µX.F (X) process X s.t. X = F (X)

where α can be, among others, a variable assignment of the form x := e for x a variable and e an
expression, an output of the form c!e meaning “on channel c output the value of e,” or an input
of the form c?x menaning “on variable x store the value input on channel c.” Modern CSP
allows those component processes to be sequential as well as obtained by parallel composition of
more primitive ones. The theory of CSP includes mutually consistent denotational semantics,
algebraic semantics, and operational semantics. The three major denotational models of CSP
are the traces model, the stable failures model, and the failures/divergences model. The traces
model defines the meaning of a process expression as the set of sequences of events (traces)
that the process can be observed to perform.

Specification languages and formalisms based on the classic untimed CSP include Timed
CSP [SDJ+92], which incorporates timing information for reasoning about real-time systems,
Receptive Process Theory [Jos92], a specialisation of CSP that assumes an asynchronous (i. e.,
nonblocking) send operation, CSPP [Law01], an extension of CSP that includes priority and
addresses systems which are massively parallel, widely distributed, implemented in either hard-
ware or software or both, HCSP [Law02], a superset of CSPP which captures the semantics of
hardware compilation and can thus describe both hardware and software and so is useful for
co-design, Wright [All97], an architecture description language based on the formal description
of the abstract behaviour of architectural components and connectors that provides a practical
formal basis for the description of both architectural configurations and of architectural styles,
TCOZ [MD98], an integration of Timed CSP and Object Z, Circus [WC02], an integration
of CSP and Z based on the Unifying Theories of Programming, and CSPC-ASL [Rog06], an
extension of CASL that integrates CSP.

Algebra of Communicating Processes ACP was initially developed as part of an effort to
investigate the solutions of unguarded recursive equations. More so than CCS and CSP, the
development of ACP focused on the algebra of processes, and sought to create an abstract,
generalised axiomatic system for processes. ACP is fundamentally an algebra, in the sense
of universal algebra, which provides a way to describe systems in terms of algebraic process
expressions that define compositions of other processes, or of certain primitive elements. ACP
fundamentally adopts an axiomatic, algebraic approach to the formal definition of its various

65

operators. A process algebra over a set of atomic actions A is a structure

A = 〈A, δ, (∂H)H⊆A,+, ·, ||〉

where A is a set containing A, δ (deadlock) is a constant in A, ∂H (encapsulation) is a unary
operator on A, and + (alternative composition), · (sequential composition), and || (left merge)
are binary operators on A, such that for all x, y, z ∈ A, H ⊆ A, and a ∈ A the following axioms
are satisfied:

x+ y = y + x (A1)
x+ (y + z) = (x+ y) + z (A2)

x+ x = x (A3)
x · (y · z) = (x · y) · z (A4)

(x+ y) · z = x · z + y · z (A5)

x+ δ = x (A6)
δ · x = δ (A7)

a || x = a · x (M1)
a · x || y = a · (x || y + y || x) (M2)

(x+ y) || z = x || z + y || z (M3)

∂H(a) = a if a 6∈ H (D1)
∂H(a) = δ if a ∈ H (D2)

∂H(x+ y) = ∂H(x) + ∂H(y) (D3)
∂H(x · y) = ∂H(x) · ∂H(y) (D4)

Parallel composition is a derived operator defined by x||y = x || y + y || x and thus the axiom
(M2) can be rewritten as a · x || y = a · (x||y). A description of this algebra can be found
in [BK84], that includes comparisons to CCS.

ACP has served as the basis for some other formalisms that can be used to describe and analyse
concurrent systems, including: the Process Specification Formalism (PSF, [MV90]), suitable
for the specification of all kinds of processes based on ACP and Algebraic Specification of
data (ASF), µCRL [GP95], especially developed to take account of data in the analysis of
communicating processes and basically intended to study description and analysis techniques
for (large) distributed systems, mCRL2 [GMR+07], a specification language for describing
concurrent discrete event systems, accompanied with a toolset suitable for simulation, analysis
and visualisation of behaviour, which is based on ACP whereas data is based on abstract
equational data types extended with higher-order functions, and HyPA [CR05], a process
algebra for hybrid systems that extends ACP, includes the disrupt operator from LOTOS as
well as flow clauses and re-initialisation clauses for the description of continuous behaviour and
discontinuities. A brief summary of the history of process algebras can be found in [Bae05].

3.11.3 Classification of the Specification Techniques

Covered system views. Process algebras are typically designed for the description of the
communication between sub-systems and thus usually used for the specification of both the

66

behaviour view and the process view of a system. Some dialects as, e. g., Wright may besides
allow the specification of the structural view. Some dialects as, e. g., PSF and µCRL may also
permit the specification of the data view.

Underlying model of computation. Below we detail the aspects of models of computation
for sequence diagrams (see also Table 3):

Time and Clock. Process algebra terms behave event discrete with multiple clocks, thus
the precedence ordering between events is partial.

Concurrency. Process algebras address concurrent systems with handshaking communi-
cation.

Behaviour. The behaviour of terms in a process algebra is usually event triggered.

Flow. The flow of computation denoted by a term of a pure process algebra is given by
data exchanged between participant processes or sent to the environment.

Determinism. Terms of any process algebra typically denote non-deterministic computa-
tion(s).

Data. In pure form, a process algebra does not take care of data.

Addressed stage of the development process. Process algebras can be used both at early
stages of development and, more suitably, for verification purposes.

Supported abstraction layers. Process algebras are primarily used for the specification of the
functional and logical views on a system.

Compositionality. All the above approaches support stepwise modelling and are moreover
provided with compositional semantics.

Available tool support. As pointed out above, there is an overpopulation of variants and
dialects of process algebras, many of them accompanied by tool support with diverse foci.

Analysis techniques. Inspections, reviews and walkthroughs techniques can be applied to
the process algebra specifications. Also formal verification as well as testing and simulation
methods have been used. This implentations have been constructed on different process algebra
dialects considering their specific characteristics. In appendix are described the mCRL2 toolset
A.2 which implements model checking, theorem proving and simulation and the model checker
FDR (Failures-Divergence Refinement) A.4. The CSP-Prover [IR05] is an interactive theorem
prover dedicated to refinement proofs within the process algebra CSP, that specifically aims
at proofs on infinite state systems, which may also involve infinite non-determinism. The
CSP-Prover focuses on the stable failures model as the underlying denotational semantics of
CSP.

67

Typical notations. Process algebra terms are typically expressed as words of a language
presented using a BNF as done above for CCS.

68

4 Conclusion

Model-based development assumes the use of adequate models in each development phase.
In practice, the models are built with the help of modelling tools that provide their users a
multitude of concepts, analysis functionality or model editors. Behind the scene, modelling
tools use modelling languages whose concepts, well hidden by the tool, can be difficult to grasp
by end-users if they are visible at all.

By taking a closer look at modelling languages, we notice that they are built from a handful
of specification techniques. Being aware of this fact helps us to gain a broader view over
different modelling languages, about their interoperability and powerfulness. Each specification
technique is based on a certain set of concepts that defines its capabilities and limitations.
Depending on the supported specification technique, a modelling language can be adequate
or not to model a certain situation, to support a certain kind of analyses, or to enable the
(partial) interoperability of models developed in different modelling languages.

In this document we presented a catalogue of criteria for the classification of specification
techniques. We focused on practical aspects like: the system view typically covered by the
technique, the underlying model of computation assumed by the technique, the typical devel-
opment process stage in which a technique is used, the abstraction layer where the technique
can be used, tool support for analyzing the models, analyses supported by the specification
techniques, and typical notations used in practice to build the models. We used our criteria to
classify different specification techniques. Our longer term goal is to develop a comprehensive
set of criteria that is capable to realise a unifying view over different specification techniques
and their dialects.

69

References

[ABHS07] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt.
KeY: A Formal Method for Object-Oriented Systems. In M.M. Bonsangue and
E.B. Johnsen, editors, Formal Methods for Open Object-Based Distributed Sys-
tems (9th FMOODS, Proceedings), volume 4468 of Lecture Notes in Computer
Science. Springer, 2007.

[ACLSS04] Ludovic Apvrille, Jean-Pierre Courtiat, Christophe Lohr, and Pierre De Saqui-
Sannes. TURTLE: A real-time UML profile supported by a formal validation
toolkit. IEEE Transactions on Software Engineering, 30(7):473–487, 2004.

[AL88] Stamos K. Andreadakis and Alexander H. Levis. Synthesis of Distributed Com-
mand and Control for the Outer Air Battle. In Symposium on C2 Research
(Proceedings). Science Applications International Corporation (SAIC), 1988.

[All97] Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, January 1997. Issued as CMU Technical
Report CMU-CS-97-144.

[Alu99] Rajeev Alur. Timed Automata. In Nicolas Halbwachs and Doron Peled, edi-
tors, 11th International Conference on Computer Aided Verification (CAV’99,
Proceedings), volume 1633 of Lecture Notes in Computer Science, pages 8–22.
Springer, 1999.

[Amb04] Scott W. Ambler. The Object Primer: Agile Model-Driven Development with
UML 2.0. Cambridge University Press, March 2004.

[AR79] I. I. Amitan and I. V. Romanovskii. Signal language to describe the interaction
of parallel processes. Cybernetics and Systems Analysis, 15(1):82–89, 1979.

[Bae05] Jos C. M. Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2–3):131–146, 2005.

[BBK+04] Michael Balser, Simon Bäumler, Alexander Knapp, Wolfgang Reif, and Andreas
Thums. Interactive Verification of UML State Machines. In Jim Davies, Wol-
fram Schulte, and Mike Barnett, editors, 6th International Conference on Formal
Engineering Methods (ICFEM’04, Proceedings), volume 3308 of Lecture Notes in
Computer Science, pages 434–448. Springer, 2004. http://www.pst.ifi.lmu.de/
veroeffentlichungen/balser-et-al:icfem:2004.pdf(26/04/10).

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert De Simone. The Synchronous Languages 12 Years Later.
In Proceedings of the IEEE, volume 91, pages 64–83, 2003.

[BCH99] Michel Bidoit, Maŕıa Victoria Cengarle, and Rolf Hennicker. Proof systems for
structured specifications and their refinements. In Egidio Astesiano, Hans-Jörg
Kreowski, and Bernd Krieg-Brückner, editors, Algebraic Foundations of Systems
Specification. Springer, 1999.

[BDK+04] Matthias Brill, Werner Damm, Jochen Klose, Bernd Westphal, and Hartmut
Wittke. Live Sequence Charts: An Introduction to Lines, Arrows, and Strange
Boxes in the Context of Formal Verification. In Hartmut Ehrig, Werner Damm,

70

http://www.pst.ifi.lmu.de/veroeffentlichungen/balser-et-al:icfem:2004.pdf
http://www.pst.ifi.lmu.de/veroeffentlichungen/balser-et-al:icfem:2004.pdf

Jörg Desel, Martin Große-Rhode, Wolfgang Reif, Eckehard Schnieder, and En-
gelbert Westkämper, editors, Integration of Software Specification Techniques for
Applications in Engineering, Priority Program SoftSpez of the German Research
Foundation (DFG), Final Report, volume 3147 of Lecture Notes in Computer
Science, pages 374–399. Springer, 2004.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal.
In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the De-
sign of Real-Time Systems: 4th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM-RT’04, Pro-
ceedings), number 3185 in Lecture Notes in Computer Science, pages 200–236.
Springer, September 2004.

[Bel04] Donald Bell. UML Basics: The component diagram. Technical report, IBM Cor-
poration, 2004. http://www.ibm.com/developerworks/rational/library/dec04/
bell/(26/04/10).

[BH09] Jewgenij Botaschanjan and Alexander Harhurin. Property-Driven Scenario In-
tegration. In 7th IEEE International Conference on Software Engineering and
Formal Methods (SEFM). IEEE Computer Society, November 2009.

[BHSV+96] Robert K. Brayton, Gary D. Hachtel, Alberto L. Sangiovanni-Vincentelli, Fabio
Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen A. Edwards, Sunil P. Kha-
tri, Yuji Kukimoto, Abelardo Pardo, Shaz Qadeer, Rajeev K. Ranjan, Shaker
Sarwary, Thomas R. Shiple, Gitanjali Swamy, and Tiziano Villa. Vis: A sys-
tem for verification and synthesis. In Rajeev Alur and Thomas A. Henzinger,
editors, 8th International Conference on Computer Aided Verification (CAV’96,
Proceedings), volume 1102 of Lecture Notes in Computer Science, pages 428–432.
Springer, 1996.

[Bit02] Kurt Bittner. Use Case Modeling. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[BK84] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous commu-
nication. Information and Control, 60(1–3):109–137, 1984.

[BK85] Jan A. Bergstra and Jan Willem Klop. Algebra of Communicating Processes
with Abstraction. Theoretical Computer Science, 37:77–121, 1985.

[Bra80] Wilfried Brauer, editor. Net Theory and Applications, Proceedings of the Ad-
vanced Course on General Net Theory of Processes and Systems, volume 84 of
Lecture Notes in Computer Science. Springer, 1980.

[Bro95] Manfred Broy. Mathematics of Software Engineering. In Bernhard Möller, editor,
Mathematics of Program Construction (MPC’95, Proceedings), volume 947 of
Lecture Notes in Computer Science, pages 18–48. Springer, 1995.

[Bro07] Manfred Broy. Two Sides of Structuring Multi-Functional Software Systems:
Function Hierarchy and Component Architecture. In 5th ACIS International
Conference on Software Engineering Research, Management & Applications
(SERA’07, Proceedings), pages 3–12. IEEE Computer Society, 2007.

[BRR87a] Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors. Petri Nets:
Central Models and Their Properties, Advances in Petri Nets 1986, Part I (Pro-

71

http://www.ibm.com/developerworks/rational/library/dec04/bell/
http://www.ibm.com/developerworks/rational/library/dec04/bell/

ceedings of an Advanced Course), volume 254 of Lecture Notes in Computer Sci-
ence. Springer, 1987.

[BRR87b] Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors. Petri Nets:
Central Models and Their Properties, Advances in Petri Nets 1986, Part I (Pro-
ceedings of an Advanced Course), volume 255 of Lecture Notes in Computer Sci-
ence. Springer, 1987.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35:677–691, 1986.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In In-
ternational Conference on Computer-Aided Verification (CAV’02, Proceedings),
volume 2404 of Lecture Notes in Computer Science. Springer, July 2002.

[CEK02] Tony Clark, Andy Evans, and Stuart Kent. Engineering Modelling Languages:
A Precise Meta-Modelling Approach. In Ralf-Detlef Kutsche and Herbert We-
ber, editors, Fundamental Approaches to Software Engineering (FASE’02, Pro-
ceedings), volume 2306 of Lecture Notes in Computer Science, pages 159–173.
Springer, 2002.

[Cen94] Maŕıa Victoria Cengarle. Formal Specifications with Higher-Order Parameter-
ization. PhD thesis, Institut für Informatik, Ludwig-Maximilians-Universität
München, 1994.

[CEP00] Luis Alejandro Cortés, Petru Eles, and Zebo Peng. Verification of Embedded Sys-
tems using a Petri Net based Representation. In 13th International Symposium
on System Synthesis (ISSS’00, Proceedings), pages 149–156. IEEE Computer So-
ciety, 2000.

[CG09] Maŕıa Victoria Cengarle and Hans Grönniger. System Model Semantics of In-
teractions. Technical Report TUM-I0932, Institut für Informatik, Technische
Universität München, 2009.

[CK04] Maŕıa Victoria Cengarle and Alexander Knapp. UML 2.0 Interactions: Seman-
tics and Refinement. In Jan Jürjens, Eduardo B. Fernandez, Robert France, and
Bernhard Rumpe, editors, 3rd International Workshop on Critical Systems De-
velopment with UML (CSDUML’04, Proceedings), pages 85–99. Technical Report
TUM-I0415, Institut für Informatik, Technische Universität München, 2004.

[CLB03] Marcus Ciolkowski, Oliver Laitenberger, and Stefan Biffl. Software reviews: The
state of the practice. IEEE Software, 20(6):46–51, 2003.

[CM04] Séverine Colin and Leonardo Mariani. Run-Time Verification. In Manfred Broy,
Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner,
editors, Model-Based Testing of Reactive Systems, volume 3472 of Lecture Notes
in Computer Science, pages 525–555. Springer, 2004.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2000.

[Cor96] Steve Cornett. Code coverage analysis. Technical report, Bullseye Testing Tech-
nology, 1996. http://www.bullseye.com/coverage.html.

72

http://www.bullseye.com/coverage.html

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. LUSTRE:
a declarative language for real-time programming. In 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL’87, Pro-
ceedings), pages 178–188, New York, 1987. ACM.

[CR05] Pieter J. L. Cuijpers and Michel A. Reniers. Hybrid process algebra. Journal of
Logic and Algebraic Programming, 62(2):191–245, 2005.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of the Art
and Future Directions. ACM Computing Surveys, 28(4):626–643, December 1996.
Report by the Working Group on Formal Methods for the ACM Workshop on
Strategic Directions in Computing Research.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. SIGSOFT Soft-
ware Engineering Notes, 26(5):109–120, 2001.

[DeM79] Tom DeMarco. Structured analysis and system specification. pages 409–424,
1979.

[DH01] Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, 19(1):45–80, 2001.

[Dim98] Theodosis Dimitrakos. Parameterising (Algebraic) Specifications on Diagrams.
In 13th IEEE International Conference on Automated Software Engineering
(ASE’98, Proceedings), pages 221–224, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[DVM+05] Werner Damm, Angelika Votintseva, Alexander Metzner, Bernhard Josko,
Thomas Peikenkamp, and Eckard Böde. Boosting Re-use of Embedded Auto-
motive Applications Through Rich Components. In Foundations of Interface
Technologies (FIT’05, Proceedings), 2005.

[DW09] Birgit Demuth and Claas Wilke. Model and Object Verification by Using Dresden
OCL. In Russian-German Workshop on Innovation Information Technologies:
Theory and Practice (Proceedings), page 81, 2009.

[DY95] Conrado Daws and Sergio Yovine. Two examples of verification of multirate
timed automata with Kronos. In IEEE Real-Time Systems Symposium (RTSS’95,
Proceedings), pages 66–75. IEEE Computer Society Press, 1995.

[EDV89] Peter H. J. van Eijk, Michel Diaz, and Chris A. Vissers, editors. Formal De-
scription Technique Lotos: Results of the Esprit Sedos Project. Elsevier Science,
1989.

[EMS03] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL
model checker and its implementation. In Thomas Ball and Sriram K. Rajamani,
editors, 10th International Conference on Model Checking Software (SPIN’03,
Proceedings), volume 2648 of Lecture Notes in Computer Science, pages 230–234.
Springer, 2003.

[Est05] The Esterel v7 Reference Manual. Technical report, Esterel Technologies, 679
av. Dr. J. Lefebvre, 06270 Villeneuve-Loubet, France, November 2005. http://
www.esterel-technologies.com/files/Esterel-Language-v7-Ref-Man.pdf(13/04/10).

73

http://www.esterel-technologies.com/files/Esterel-Language-v7-Ref-Man.pdf
http://www.esterel-technologies.com/files/Esterel-Language-v7-Ref-Man.pdf

[EW01] Rik Eshuis and Roel Wieringa. A Formal Semantics for UML Activity Diagrams
– Formalising Workflow Models. CTIT technical reports series 01-04, University
of Twente, 2001. http://doc.utwente.nl/37504/(26/04/10).

[EW04] Rik Eshuis and Roel Wieringa. Tool Support for Verifying UML Activity Dia-
grams. IEEE Transactions on Software Engineering, 30(7):437–447, 2004.

[Fag02] Michael Fagan. Design and code inspections to reduce errors in program devel-
opment. In Manfred Broy and Ernst Denert, editors, Software Pioneers: Contri-
butions to Software Engineering, pages 575–607. Springer, 2002.

[Feh93] Rainer Fehling. A Concept of Hierarchical Petri Nets with Building Blocks. In
Grzegorz Rozenberg, editor, Applications and Theory of Petri Nets (Advances
in Petri Nets 1993, 12th International Conference on Applications and Theory
of Petri Nets, Proceedings), volume 674 of Lecture Notes in Computer Science,
pages 148–168. Springer, 1993.

[FL90] Yulin Feng and Junbo Liu. A Temporal Approach to Algebraic Specifications.
In Jos C. M. Baeten and Jan Willem Klop, editors, Theories of Concurrency:
Unification and Extension (CONCUR’90, Proceedings), volume 458 of Lecture
Notes in Computer Science, pages 216–229. Springer, 1990.

[Frü09] Thom Frühwirth. Constraint Handling Rules. Cambridge University Press, Au-
gust 2009.

[GH94] Stephen Gilmore and Jane Hillston. The PEPA Workbench: A Tool to Support
a Process Algebra-based Approach to Performance Modelling. In Günter Haring
and Gabriele Kotsis, editors, 7th International Conference on Computer Perfor-
mance Evaluation: Modeling Techniques and Tools (Proceedings), volume 794 of
Lecture Notes in Computer Science, pages 353–368. Springer, 1994.

[GMR+07] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck
van Weerdenburg. The Formal Specification Language mCRL2. In Ed Brinksma,
David Harel, Angelika Mader, Perdita Stevens, and Roel Wieringa, editors, Meth-
ods for Modelling Software Systems (MMOSS), number 06351 in Dagstuhl Sem-
inar Proceedings, Dagstuhl, Germany, 2007. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[GP95] Jan Friso Groote and Alban Ponse. The syntax and semantics of µCRL. pages
26–62, 1995.

[GS77] Chris Gane and Trish Sarson. Structured Systems Analysis: Tools and Tech-
niques. McDonnell Douglas Systems Integration Company, 1977.

[GTW78] Joseph A. Goguen, James W. Thatcher, and Eric G. Wagner. An Initial Algebra
Approach to the Specification, Correctness and Implementation of Abstract Data
Types. Prentice-Hall, 1978.

[GW05] Jan Friso Groote and Tim A. C. Willemse. Parameterised Boolean equation
systems. Theoretical Computer Science, 343(3):332–369, 2005.

[Han09] Dexter A. Hansen. Flowcharting help page (Tutorial), December 2009. http:
//home.att.net/∼dexter.a.hansen/flowchart/flowchart.htm.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3):231–274, 1987.

74

http://doc.utwente.nl/37504/
http://home.att.net/~dexter.a.hansen/flowchart/flowchart.htm
http://home.att.net/~dexter.a.hansen/flowchart/flowchart.htm

[Hau01] Øystein Haugen. MSC-2000 interaction diagrams for the new millennium. Com-
puter Networks, 35(6):721–732, 2001.

[Hau05] Øystein Haugen. Comparing UML 2.0 Interactions and MSC-2000. In Daniel
Amyot and Alan W. Williams, editors, System Analysis and Modeling, 4th In-
ternational SDL and MSCWorkshop (SAM’04, Revised Selected Papers), volume
3319 of Lecture Notes in Computer Science, pages 65–79. Springer, 2005.

[HCRP91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous dataflow programming language LUSTRE. In Proceedings of the IEEE,
volume 79, pages 1305–1320, September 1991.

[Hen96] Thomas A. Henzinger. The Theory of Hybrid Automata. In LICS ’96: Proceed-
ings of the 11th Annual IEEE Symposium on Logic in Computer Science, page
278, Washington, DC, USA, 1996. IEEE Computer Society.

[Hil99] Rich Hilliard. Views and Viewpoints in Software Systems Architecture. In First
Working IFIP Conference on Software Architecture (WICSA 1, Proceedings),
February 1999.

[HLL+03] Christopher Hylands, Edward Lee, Jie Liu, Xiaojun Liu, Stephen Neuendorffer,
Yuhong Xiong, Yang Zhao, and Haiyang Zheng. Overview of the PTOLEMY
project. Technical Memorandum UCB/ERL M03/25, University of California,
Berkeley, July 2003.

[HLN+90] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi
Sherman, Aharon Shtull-Trauring, and Mark B. Trakhtenbrot. STATEMATE: A
Working Environment for the Development of Complex Reactive Systems. IEEE
Transactions on Software Engineering, 16(4):403–414, 1990.

[HM03] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer, 2003.

[HMS08] David Harel, Shahar Maoz, and Itai Segall. Some Results on the Expressive
Power and Complexity of LSCs. In Arnon Avron, Nachum Dershowitz, and
Alexander Rabinovich, editors, Pillars of Computer Science, Essays Dedicated to
Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, volume 4800 of
Lecture Notes in Computer Science, pages 351–366. Springer, 2008.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HS03] Øystein Haugen and Ketil Stølen. STAIRS: Steps to Analyze Interactions with
Refinement Semantics. In Perdita Stevens, Jon Whittle, and Grady Booch,
editors, The Unified Modeling Language, Modeling Languages and Applications
(UML 2003 Proceedings), volume 2863 of Lecture Notes in Computer Science,
pages 388–402. Springer, 2003.

[IEE97] IEEE 1028-1997: Standard for Software Reviews. Institute of Electrical and
Electronics Engineers (IEEE), 1997.

[IR05] Yoshinao Isobe and Markus Roggenbach. A Generic Theorem Prover of CSP
Refinement. In Nicolas Halbwachs and Lenore Zuck, editors, 11th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’05, Proceedings), volume 3440 of Lecture Notes in Computer Sci-
ence, pages 108–123. Springer, 2005.

75

[Jac75] Michael A. Jackson. Principles of Program Design. Academic Press, Orlando,
FL, USA, 1975.

[Jac04] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
2004.

[Jac05] Hugh Jack. Automating Manufacturing Systems with PLCs, April 2005.

[JDJ+06] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala, and Ivan Por-
res. Model Checking Dynamic and Hierarchical UML State Machines. In
Benôıt Baudry, David Hearnden, Nicolas Rapin, and Jörn Guy Süß, editors,
3rd International Workshop on Model Development, Validation and Verification
(MoDeV2a’06, Proceedings), pages 94–110, 2006.

[Jen81] Kurt Jensen. Coloured Petri Nets and the Invariant-Method. Theoretical Com-
puter Science, 14:317–336, 1981.

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems. International
Journal on Software Tools for Technology Transfer, 9(3):213–254, 2007.

[Jos92] Mark B. Josephs. Receptive Process Theory. Acta Informatica, 29(1):17–31,
1992.

[Kah74] Gilles Kahn. The semantics of a simple language for parallel programming. In
Jack L. Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP
Congress, pages 471–475. North-Holland, 1974.

[KLSV03] Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager.
Timed I/O Automata: A Mathematical Framework for Modeling and Analyzing
Real-Time Systems. In 24th IEEE Real-Time Systems Symposium (RTSS 2003,
Proceedings), pages 166–177. IEEE Computer Society, 2003.

[KPDRW97] Georg Kösters, Bernd-Uwe Pagel, Thomas De Ridder, and Mario Winter. Ani-
mated Requirements Walkthroughs based on Business Scenarios. In 5th European
Conference on Software Testing, Analysis & Review (euroSTAR’97, Proceedings),
1997.

[KRHS05] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. Refining UML Inter-
actions with Underspecification and Nondeterminism. Nordic Journal of Com-
puting, 12(2):157–188, 2005.

[KSW01] Georg Kösters, Hans-Werner Six, and Mario Winter. Validation and Verifica-
tion of Use Cases and Class Models. In 7th International Workshop on Re-
quirements Engineering: Foundations forSoftware Quality (REFSQ’2001, Pro-
ceedings), 2001.

[KW99] Anneke Kleppe and Jos Warmer. The Object Constraint Language: Precise Mod-
eling with UML. Object Technology. Addison Wesley, 1999.

[KW02] Anneke Kleppe and Jos Warmer. The Semantics of the OCL Action Clause.
In Tony Clark and Jos Warmer, editors, Object Modeling with the OCL: The
Rationale behind the Object Constraint Language, volume 2263 of Lecture Notes
in Computer Science, pages 213–227. Springer, 2002.

76

[Law01] Adrian E. Lawrence. CSPP and Event Priority. In Alan G. Chalmers, Majid
Mirmehdi, and Henk Muller, editors, Communicating Process Architectures, vol-
ume 59 of Concurrent Systems Engineering, pages 67–92. IOS Press, September
2001.

[Law02] Adrian E. Lawrence. HCSP: Imperative State and True Concurrency. In James
Pascoe, Roger Loader, and Vaidy Sunderam, editors, Communicating Process
Architectures, volume 60 of Concurrent Systems Engineering, pages 39–56. IOS
Press, October 2002.

[LB02] Rik Van Landeghem and Carmen-Veronica Bobeanu. Formal Modelling of Sup-
ply Chain: An Incremental Approach Using Petri Nets. In A. Verbraeck and
W. Krug, editors, 14th European Simulation Symposium and Exhibition: Simu-
lation in Industry – Modeling, Simulation and Optimization (ESS 2002, Proceed-
ings), pages 323–327, 2002.

[LIRM02] Chuang Lin, Yang Qu II, Fengyuan Ren, and Dan C. Marinescu. Performance
Equivalent Analysis of Workflow Systems Based on Stochastic Petri Net Mod-
els. In Yanbo Han, Stefan Tai, and Dietmar Wikarski, editors, 1st International
Conference on Engineering and Deployment of Cooperative Information Systems
(EDCIS 2002, Proceedings), volume 2480 of Lecture Notes in Computer Science,
pages 64–79. Springer, 2002.

[Liu98] Zhen Liu. Performance analysis of stochastic timed Petri Nets using linear pro-
gramming approach. IEEE Transactions on Software Engineering, 24(11):1014–
1030, 1998.

[LMM99] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic Verification of a
Behavioural Subset of UML Statechart Diagrams Using the SPIN Model-checker.
Formal Aspects of Computing, V11(6):637–664, December 1999.

[Lon95] Jim Long. Relationships Between Common Graphical Representations used in
Systems Engineering. In 5th Annual International Symposium of the Interna-
tional Council on Systems Engineering (Proceedings), 1995.

[LSV03] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O Automata.
Information and Computation, 185(1):105–157, 2003.

[LT89] Nancy Lynch and Mark Tuttle. An introduction to Input/Output Automata.
CWI-Quarterly, 2(3):219–246, September 1989.

[MD98] Brendan P. Mahony and Jin Song Dong. Blending Object-Z and Timed CSP: An
Introduction to TCOZ. In 20th International Conference on Software Engineering
(ICSE’98, Proceedings), pages 95–104. IEEE Computer Society Press, 1998.

[Mea09] Mealy machine. From Wikipedia, the free encyclopedia, 2009. http://en.
wikipedia.org/wiki/Mealy machine, Accessed 17.11.2009.

[MHST03] Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki.
CASL - The Common Algebraic Specification Language: semantics and proof
theory. In New Methods in Language Processing, Studies in Computational Lin-
guistics, 2003.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

77

http://en.wikipedia.org/wiki/Mealy_machine
http://en.wikipedia.org/wiki/Mealy_machine

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[MM07] Nicolae Marian and Yue Ma. Translation of Simulink Models to Component-
based Software Models. In 8th International Workshop on Research and Educa-
tion in Mechatronics (REM’2007, Proceedings), pages 262–267, June 2007.

[Moo56] Edward F. Moore. Gedanken experiments on sequential machines. Automata
Studies, pages 129–153, 1956.

[Mos05] Till Mossakowski. Heterogeneous theories and the heterogeneous tool set. In
Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab, and M. Uschold, editors,
Semantic Interoperability and Integration, number 04391 in Dagstuhl Semi-
nar Proceedings, Dagstuhl, Germany, 2005. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses (Part I). Information and Computattion, 100(1):1–40, 1992.

[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses (Part II). Information and Computation, 100(1):41–77, 1992.

[Mur89] Tadao Murata. Petri Nets: Properties, Analysis and Applications. Proceedings
of the IEEE, 77(4):541–580, April 1989.

[MV90] S. Mauw and G. J. Veltink. A Process Specification Formalism. Fundamenta
Informaticae, XIII:85–139, 1990.

[NAS95] Techniques of Functional Analysis. Systems Engineering Handbook SP-610S,
NASA, June 1995.

[NB09] Erzsébet Németh and Tamás Bartha. Formal Verification of Safety Functions by
Reinterpretation of Functional Block Based Specifications. In Darren D. Cofer
and Alessandro Fantechi, editors, 13th International on Formal Methods for In-
dustrial Critical Systems, (FMICS 2008, Revised Selected Papers), volume 5596
of Lecture Notes in Computer Science, pages 199–214. Springer, 2009.

[NS73] Isaac Nassi and Ben Shneiderman. Flowchart techniques for structured program-
ming. SIGPLAN Notices, 8(8):12–26, 1973.

[OMG08] OMG Systems Modeling Language (SysML), v1.1. Specification, Object
Management Group, 2008. http://www.omg.org/cgi-bin/doc?formal/08-11-02.
pdf(26/04/10).

[OMG09] Unified Modeling Language (UML): Superstructure, Version 2.2. Specification,
Object Management Group, February 2009. http://www.omg.org/spec/UML/2.
2/Superstructure/PDF/(13/12/09).

[Par81] David Michael Ritchie Park. Concurrency and Automata on Infinite Sequences.
In Peter Deussen, editor, Theoretical Computer Science (5th GI-Conference, Pro-
ceedings), volume 104 of Lecture Notes in Computer Science, pages 167–183.
Springer, 1981.

[Pea09] Jon Pearce. Object-oriented analysis, December 2009. http://www.cs.sjsu.edu/
faculty/pearce/ooa/front.htm.

[PM05] Gergely Pintér and István Majzik. Runtime Verification of Statechart Implemen-
tations. In Rogério de Lemos, Cristina Gacek, and Alexander B. Romanovsky,

78

http://www.omg.org/cgi-bin/doc?formal/08-11-02.pdf
http://www.omg.org/cgi-bin/doc?formal/08-11-02.pdf
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.cs.sjsu.edu/faculty/pearce/ooa/front.htm
http://www.cs.sjsu.edu/faculty/pearce/ooa/front.htm

editors, Architecting Dependable Systems III, volume 3549 of Lecture Notes in
Computer Science, pages 148–172. Springer, 2005.

[Pra95] K. V. S. Prasad. A Calculus of Broadcasting Systems. Science of Computer
Programming, 25(2-3):285–327, 1995.

[RG01] Mark Richters and Martin Gogolla. OCL – Syntax, Semantics and Tools. In
Tony Clark and Jos Warmer, editors, Advances in Object Modelling with the
OCL, volume 2263 of Lecture Notes in Computer Science, pages 43–69, Berlin,
2001. Springer.

[RH88] A. W. Roscoe and C. A. R. Hoare. The Laws of Occam Programming. Theoretical
Computer Science, 60(2):177–229, 1988.

[Rid04] J. W. Rider. System diagram essentials. Technical report, J. W. Rider Consulting,
October 2004. http://www.jwrider.com/lib/DiagramEssentials.htm27/04/2010.

[Rog06] Markus Roggenbach. CSP-CASL: A new integration of process algebra and al-
gebraic specification. Theoretical Computer Science, 354(1):42–71, 2006.

[RS99] Doug Rosenberg and Kendall Scott. Use Case driven object modeling with UML:
a practical approach. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[RST09] Daniel Ratiu, Wolfgang Schwitzer, and Judith Thyssen. A System of Abstraction
Layers for the Seamless Development of Embedded Software Systems. Technical
Report TUM-I0928, Technische Universität München, 2009.

[RTC82] DO-178B: Software Considerations in Airborne Systems and Equipment Certifi-
cation. Radio Technical Commission for Aeronautics (RTCA), 1982.

[SDJ+92] Steve Schneider, Jim Davies, D. M. Jackson, George M. Reed, Joy N. Reed,
and A. W. Roscoe. Timed CSP: Theory and Practice. In J. W. de Bakker,
Cornelis Huizing, Willem P. de Roever, and Grzegorz Rozenberg, editors, Real-
Time: Theory in Practice (REX Workshop, Proceedings), volume 600 of Lecture
Notes in Computer Science, pages 640–675. Springer, 1992.

[SPHP02] Bernhard Schätz, Alexander Pretschner, Franz Huber, and Jan Philipps. Model-
Based Development of Embedded Systems. In Jean-Michel Bruel and Zohra Bel-
lahsene, editors, Advances in Object-Oriented Information Systems (OOIS 2002
Workshops, Proceedings), volume 2426 of Lecture Notes in Computer Science,
pages 298–312. Springer, 2002.

[SST92] Donald Sannella, Stefan Sokolowski, and Andrzej Tarlecki. Toward Formal Devel-
opment of Programs from Algebraic Specifications: Parameterisation Revisited.
Acta Informatica, 29(8):689–736, 1992.

[Ste03] Alan B. Sterneckert. Critical Incident Management: A Methodology for Imple-
menting and Maintaining Information Security. Auerbach Publications, 2003.

[STMW04] Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd Westphal. The Rhap-
sody UML Verification Environment. In 2nd International Conference on Soft-
ware Engineering and Formal Methods (SEFM’04, Proceedings), pages 174–183.
IEEE Computer Society, 2004.

79

http://www.jwrider.com/lib/DiagramEssentials.htm

[SW83] Donald Sannella and Martin Wirsing. A Kernel Language for Algebraic Specifica-
tion and Implementation. In Foundations of Computation Theory (Proceedings
of the International FCT-Conference, 1983), volume 158 of Lecture Notes in
Computer Science, pages 413–427. Springer, 1983.

[SZS08] Igor Siveroni, Andrea Zisman, and George Spanoudakis. Property Specification
and Static Verification of UML Models. In 3rd International Conference on
Availability, Reliability and Security (ARES 2008, Proceedings), pages 96–103.
IEEE Computer Society, 2008.

[TYC95] Jeffrey J. P. Tsai, Steve Jennhwa Yang, and Yao-Hsiung Chang. Timing Con-
straint Petri Nets and Their Application to Schedulability Analysis of Real-Time
System Specifications. IEEE Transactions on Software Engineering, 21(1):32–49,
1995.

[VHD09] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Re-
vision of IEEE Std 1076-2002), pages c1–626, February 2009.

[Wan07] Jiacun Wang. Charging information collection modeling and analysis of GPRS
networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
37(4):473–481, 2007.

[WC02] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, editors, Formal Specification and
Development in Z and B (ZB 2002, Proceedings), volume 2272 of Lecture Notes
in Computer Science, pages 184–203. Springer, 2002.

[Wir90] Martin Wirsing. Algebraic Specification. In Jan Van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics, pages
675–788. Elsevier Science Publishers B. V., 1990.

[WM86] Paul T. Ward and Stephen J. Mellor. Structured Development for Real-Time
Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[WPN08] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle Frame-
work. In Otmane Aı̈t Mohamed, César Muñoz, and Sofiène Tahar, editors, 21st
International Conference on Theorem Proving in Higher-Order Logics (TPHOLs
2008, Proceedings), volume 5170 of Lecture Notes in Computer Science, pages
33–38. Springer, 2008.

[You89] Edward Yourdon. Modern structured analysis. Yourdon Press, Upper Saddle
River, NJ, USA, 1989.

[You09] Edward Yourdon. Yourdon structured analysis wiki, December 2009. http://
yourdon.com/strucanalysis/wiki/index.php?title=Introduction.

[YzYzYf04] Liang Yi-zhi, Wang Yan-zhang, and Liu Yun-fei. The formal semantics of an UML
activity diagram. Journal of Shanghai University (English Edition), 8(3):322–
327, 2004.

[ZD89] MengChu Zhou and Frank DiCesare. Adaptive Design of Petri Net Controllers
for Error Recovery in Automated Manufacturing Systems. IEEE Transactions
on Systems, Man and Cybernetics, 19(5):963–973, September 1989.

[ZLL07] Yang Zhao, Jie Liu, and Edward A. Lee. A Programming Model for Time-
Synchronized Distributed Real-Time Systems. In 13th IEEE Real-Time and

80

http://yourdon.com/strucanalysis/wiki/index.php?title=Introduction
http://yourdon.com/strucanalysis/wiki/index.php?title=Introduction

Embedded Technology and Applications Symposium (RTAS 2007, Proceedings),
pages 259–268. IEEE Computer Society, 2007.

81

A Analysis Tool Support

A.1 Inspections, Reviews and Walkthroughs

Rational Rose In [KSW01] is described a UML based tool implemented in Rational Rose12,
comprising modelling, validation, and verification. The analysis is performed on UML class,
use case and activity diagrams. The validation is focused on inspections and walkthroughs by
a two level inspection process:

1. In the first phase analysts and testers pre-inspect the use case diagram and the do-
main class model to detect violations of the UML syntax and modelling rules defined
in [KSW01]. For each use case, we determine the set of domain classes with instances
involved in the execution of the work unit (i. e., which are created, retrieved, modified,
or deleted). The set of classes is called the class scope of the use case. Analogously, we
derive the class scope for each action of the according activity graph.

2. On the second phase, a series of walkthroughs business scenarios is jointly conducted by
all parties involved in the development [KPDRW97]. In the course of the walkthroughs,
domain experts and users focus on the textual descriptions of the actions, check their
correctness.

In the verification phase the class model is verified against the use cases and activity graphs
diagrams. The operations are performed in two steps:

1. On the first step, the verification starts with detailed inspections of the formal parts
of the use case model (e.g. pre- and post-conditions and edge-guards of the activity
graphs). Then the (refined) class model is checked to detect incomplete, inconsistent,
and/or ambiguous specifications and/or missing items.

2. On the second step, analysts and testers walkthrough the scenarios (re-used from the
validation phase) and investigate the thread of executions of operations in the class model.

A.2 Testing and Simulation

ASCET. ASCET13 is a tool family for developing embedded system software by a model
based ECU software development process, in the framework of the automotive industry. In
ASCET model components can be specified with block diagrams and state machines. In the
tools there are instruments for performing testing and simulation.

Rational Rhapsody. Rational Rhapsody14 is a tool used to develop real-time or embedded
systems based on UML and SysML. In Rational Rhapsody development environment it is
possible to apply model driven testing with visualisation of test cases and automatic test
execution, monitoring, and generation. Rational Rhapsody enables the visualisation of the
model through simulation. Simulation is the execution of behaviours and associated definitions

12http://www-01.ibm.com/software/awdtools/developer/rose/
13http://www.etas.com/en/products/ascet software products.php
14http://www-01.ibm.com/software/awdtools/rhapsody/

82

in the model. Rational Rhapsody simulates the behaviour of your model by executing its
behaviours captured in statecharts, activity diagrams, and textual behaviour specifications.

SCADE. SCADE (Safety Critical Application Development Environment)15 is both a lan-
guage and a toolset for the development of critical embedded software. The SCADE language
is a graphical synchronous data flow specification language. The data flow structure fits the
block diagram approach. Besides constructs based on data flow it´s also possible to define
state machine. The code automatic generated is qualified to the strictest level of the Civilian
Avionics Standard DO-178B, Level A. SCADE contains a fully functional Simulator module
enabling simulation for all language constructs and state machines.

MATLAB/Simulink. Simulink16 is an extension of Mathworks Matlab, for designing and sim-
ulating embedded systems, which are modelled as block diagrams consisting of blocks from the
Simulink block library. There are Simulink extensions which implements testing and simula-
tion:

Simulink Verification and Validation aids model verification by creating designs and com-
ponent test cases. It provides six model coverage analysis metrics 2.7.2. Modelling stan-
dards checks provided are based on The MathWorks Automotive Advisory Board (MAAB)
Style Guidelines.

Simulink Design Verifier generates test cases and property-proving analysis reports. It
proves model properties and generates examples of violations. Model coverage test ob-
jectives include MC/DC coverage, which is required by safety critical standards, such as
DO-178B.

TURTLE Tool. TURTLE Tool17 is an open source toolkit (based on TURTLE [ACLSS04])
which provides simulation techniques. The simulation is performed translating a UML analysis
diagrams (interaction overview and sequence diagrams) or UML design diagrams (class and
activity diagrams), into an RT-LOTOS specification [BK85] and executing it in the RT-LOTOS
verification tool.

WinA&D WinA&D18 is a design tool which supports UML use case diagrams and descrip-
tions, class and package diagrams, state diagrams, collaboration and sequence style interaction
diagrams, activity diagrams, and deployment diagrams. WinA&D performs tests for checking
reveal errors, inconsistencies, or incomplete data, and the flow of information between diagram
levels.

15http://www.esterel-technologies.com/products/scade-suite/
16http://www.mathworks.com/products/simulink/
17http://labsoc.comelec.enst.fr/turtle/
18http://www.excelsoftware.com/wina&dproducts.html

83

mCRL2 The mCRL219 language is a specification language for describing communication
behaviour among systems. The behavioural part of the language is based on the Algebra of
Communicating Processes (ACP) [BK84] which is extended to include data and time. The
language is supported by a toolset enabling simulation, visualisation, behavioural reduction
and verification of software requirements. Validation of specification is supported by simulation
which can be used for an insight into the behaviour of a system.

A.3 Formal Verification

Simulink Design Verifier Simulink Design Verifier20 is an extension for Simulink which uses
formal analysis techniques provided by Prover Plug-In. It is developed and maintained by
Prover Technology. It performs exhaustive formal analysis of Simulink models to confirm the
correctness with respect to given properties. The user can specify these as assertions. To
prove these assertion, Simulink Design Verifier searches for all possible values for a Simulink
function in order to find a simulation that satisfies it. It will compute all possible input
signals automatically. Simulink Design Verifier can only check assertions and not temporal
logic properties as made for instance from model checkers.

SCADE Design Verifier SCADE Design Verifier21 is a formal proof engine within the SCADE
tool. It uses formal methods for all the language constructs and state machines models. This
component allows the formal verification of certain properties of models by Prover Plug-In as
already explained for Simulink Design Verifier.

A.4 Model Checking

Assessment Studio The Assessment Studio22 for ASCET, can check ASCET-MD models
against company-specific modelling and implementation guidelines and also style conventions
such as AUTOSAR Styleguide for ASCET or check models for MISRA compliance.

Toolkit for Conceptual Modelling In [EW04] is described a tool, an extension of Toolkit for
Conceptual Modelling23 (TCM), that supports verification of models specified in UML activity
diagrams. The tool translates an activity diagram into a format for NuSMV [CCG+02] model
checker. Safety requirements are checked translating them in an extension of LTL temporal
logic. If a requirement fails an error trace is returned by NuSMV, which is presented in the
TCM extended tool, by highlighting a corresponding path in the activity diagram.

PRISE PRISE [NB09] is a tool defined for Function Block Diagram specifications. It performs
model checking translating the diagrams in a Petri net representation, the properties verified
are based on CTL temporal logic.

19http://www.mcrl2.org
20http://www.mathworks.com/products/sldesignverifier/
21http://www.esterel-technologies.com/products/scade-suite/design-verifier
22http://www.match-technologies.com/
23http://wwwhome.cs.utwente.nl/˜tcm/

84

TURTLE Tool TURTLE Tool24 provides also model checking for the same specification
techniques described in subsection A.2. TURTLE Tool translates the specification for Kro-
nos [DY95] a model checker for real-time system. The properties to be verified are in Timed
CTL an extension of the temporal logic CTL.

Papyrus UML The Static Verification Tool [SZS08] performs model checking on UML models
composed of UML class diagrams which define the structure of the model and UML statechart
diagrams which specify the behaviour of each of the defined classes. It translates model to
verify in PROMELA language and so uses SPIN as model checker, with an extension of LTL
temporal logic for specifying the properties. The Static Verification Tool is implemented in
Java and is packaged as an Eclipse plug-in that runs along the Papyrus UML25 graphical
modeler.

Hugo/RT Hugo/RT26 [BBK+04] translates a UML model in the following way: UML stat-
echart diagrams are associated with UML class diagram to specify the model to verify and
communication diagrams describe how the objects of a model may interact. The tool gen-
erates input for two model checkers: SPIN and UPPAAL [BDL04]. The model checkers can
verify whether the interactions expressed by a UML communication diagram are realised by
the state machines.

PROCO In PROCO27 [JDJ+06] a system to be verified is modelled using UML class diagrams
and statecharts. These models with assert specifications are translated and verified in SPIN
model checker.

Rhapsody in C++ In [STMW04] is reported a verification environment for UML models,
that has been integrated within Rhapsody in C++28. The specifications to be verified can
be specified using temporal patterns or with a graphical specification formalism called Life
Sequence Charts [DH01]. The verification is applied to UML models composed by UML
statechart diagrams and UML class diagram. They are transformed in a format for VIS model
checker [BHSV+96]: a finite state machine description of the model and a temporal logic CTL
formula for the property to verify.

PRES+ Petri-net based Representation for Embedded Systems (PRES+) [CEP00] is an ex-
tension to the classical Petri nets model for representing embedded systems. PRES+ explicitly
captures timing information, allows systems to be represented at different levels of granularity.
In [CEP00] is presented an approach for verifying PRES+ specification using model checking.

24http://labsoc.comelec.enst.fr/turtle/
25http://www.papyrusuml.org/
26http://www.pst.ifi.lmu.de/projekte/hugo/
27http://www.tcs.hut.fi/SMUML/
28http://www-01.ibm.com/software/awdtools/rhapsody/

85

PRES+ model is translated into an hybrid automata and then is used an existing verifica-
tion tool, namely HyTech 29, to check properties expressed as CTL and Timed CTL formulas,
therefore it is possible to validate design properties and timing requirements.

There are several types of analysis that can be performed on systems represented in PRES+. A
given marking, i. e., absence or presence of tokens in places of the net, may represent the state
of the system in the dynamic behaviour of the net. Based on this, different properties can be
studied. For instance, the designer could be interested in proving that the system eventually
reaches a certain state whose marking represents the completion of a task, so a reachability
analysis. In many embedded applications, time is an essential factor. Therefore, it is needed
not only to check that a certain state will eventually be reached but also to ensure that this
will occur within some bound on time. In PRES+, time information is attached to tokens so
that we can analyze quantitative timing properties: we may prove that a given place will be
eventually marked and that its time stamp will be less than a certain time value that represents
a temporal constraint.

Failures-Divergences Refinement Hoare’s Communicating SequenStial Processes (CSP) [Hoa85]
is a well known Process algebra implementation based around the theory of concurrency. FDR
(Failures-Divergences Refinement)30 is a refinement checker for the process algebra CSP. In
common with many other model checkers, it works by “determinising” (or normalising) a speci-
fication and enumerating states in the cartesian product of this and the implementation. Unlike
most, the specification and implementation are written in the same language. Adaptations of
FDR have been, or are being made, to accommodate other input notations such as UML.
FDR has been much used in industrial work in areas such as computer security, safety-critical
systems, communications networks and telecommunications.

mCRL2 The mCRL231 language is a specification language based on process algebra as de-
scribed in subsection A.2. To apply model checking, a modal formula must be provided that
states some functional requirement on the mCRL2 specification. In mCRL2 modal formulae
are specified in a variant of the modal µ-calculus extended with regular expressions, data and
time. In combination with the specification this formula is transformed into a parameterised
boolean equation system (PBES) [GW05]. Several tools are available for solving PBESs.

A.5 Theorem Proving

Heterogeneous Tool Set Common Algebraic Specification Language (CASL) [MHST03] is
a tool for algebraic specification. Heterogeneous Tool Set32 [Mos05] is a tool used for CASL.
Heterogeneous Tool Set performs the verification in two phases: a parser checks the syntactic
correctness of a specification according to the CASL grammar and a static checker checks the
semantic correctness. It is possible to translate the CASL model to high-order logic which

29http://www-cad.eecs.berkeley.edu/ tah/HyTech/
30http://www.fsel.com/software.html
31http://www.mcrl2.org
32http://www.informatik.uni-bremen.de/agbkb/forschung/formal methods/CoFI/hets/index e.htm

86

allows to re-use existing theorem proving, for instance there is an interface from CASL to
Isabelle/HOL [WPN08] theorem prover.

mCRL2 The mCRL233 toolset (described in subsection A.2) supports theorem proving. Every
analysis of an mCRL2 specification starts by a transformation of the specification into linear
form. This is achieved by the lineariser, which transforms a restricted yet practical subset of
mCRL2 specifications to linear process specifications (LPSs). With theorem proving technology
it is possible to check invariants on an LPS. Validity of boolean data expressions can also be
checked using external SAT solvers.

A.6 Runtime Verification

Tool for Statechart Diagrams Work in [PM05] introduces a runtime verification framework
for monitoring of applications specified by UML statechart diagrams. The verification is made
in two phases:

1. Firstly, are formally defined correctness temporal requirements by a temporal logic lan-
guage for UML statecharts. A corresponding runtime verifier component verifies it.

2. During the subsequent model refinement steps the developers prepare the fully behavioural
model of the system by manual programming or automatic source code generation. The
final behavioural model can be directly used for runtime verification of deviations from
the behaviour specified by the statechart. UML statecharts are transformed to Extended
Hierarchical Automata (EHA [LMM99]), that is used as a reference model for a statechart-
level (EHA-level) runtime verifier component. This component is capable of detecting be-
havioural anomalies and operational errors throughout the entire life cycle of the observed
object: proper initialisation (entering the states belonging to the initial configuration),
event processing (selecting transitions to be fired) and the firing of transitions (leaving
source states, performing the action associated to the transition and entering the target
states) according to the UML semantics.

33http://www.mcrl2.org

87

	Introduction
	Criteria for the Classification of Specification Techniques
	Covered System Views
	Underlying Model of Computation
	Definitions
	Aspects of Models of Computation
	Specification Techniques and Aspects of MoCs

	Typical Software Development Process Stage
	Supported Abstraction Layer
	Compositionality
	Tool Support
	Analysis Techniques
	Inspections, Reviews, and Walkthroughs
	Testing and Simulation
	Formal Verification
	Runtime verification

	Typical Notations

	Classification of Specification Techniques
	Component-Based Design
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Use-Case-Based Design
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Automata
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Control Flow Specification
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Data Flow Specification
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Function Block Specification
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Petri Nets
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Sequence Diagrams
	General Description of the Paradigm
	Specification Techniques comprised in the Paradigm
	Classification of the Specification Techniques

	Contraint-based Specification
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Algebraic Specification
	General Description of the Paradigm
	Specification Techniques Comprised in the Paradigm
	Classification of the Specification Techniques

	Process Algebra
	General Description of the Paradigm
	Specification Techniques comprised in the Paradigm
	Classification of the Specification Techniques

	Conclusion
	References
	Analysis Tool Support
	Inspections, Reviews and Walkthroughs
	Testing and Simulation
	Formal Verification
	Model Checking
	Theorem Proving
	Runtime Verification

