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Fuzzy quantifiers (like many, few, � � � ) are an important research topic not only due to their abundance
in natural language (NL), but also because an adequate account of these quantifiers would provide a
class of powerful yet human-understandable operators for information aggregation and data fusion.
We introduce the DFS theory of fuzzy quantification, present a model of the theory, and describe an
algorithm for the evaluation of the resulting fuzzy quantifiers. We discuss their use for data fusion and
outline some areas of application.

1 Introduction

Fuzzy quantifiers (like many, few� � �) are an im-
portant research topic not only due to their
abundance in natural language, but also be-
cause an adequate account of these quantifiers
would provide a class of powerful yet human-
understandable operators for information aggre-
gation and data fusion. Recognising their value
as genuine operators for the aggregation over sets
of gradual evaluations (i.e. irreducible to pair-
wise combination of results), the use of fuzzy
quantifiers has been suggested in the literature
for various purposes of aggregation and data fu-
sion and in a variety of applications including
multi-criteria decision making, fuzzy databases
and information retrieval, fuzzy expert systems,
and others. These attempts are limited in use due
to their lack of theoretical foundation, which can
result in counter-intuitive behaviour as reported
e.g. by Ralescu [9].

In the paper, we present an axiomatic theory of
fuzzy quantification, based on the novel concept
of a determiner fuzzification scheme (DFS). Un-
like existing approaches to fuzzy quantification,
DFS is

� a compatible extension of the theory of
generalized quantifiers (TGQ [1]);

� a genuine theory of fuzzy multi-place
quantification;

� not limited to absolute and proportional
quantifiers;

� able to handle both quantitative and non-
quantitative (i.e. qualitative) quantifiers;

� not limited to finite universes of discourse;

� based on a rigid axiomatic foundation;

� fully compatible to negation, antonyms,
duals, and other important constructions
on quantifiers.

We then present a model M of the theory and
show how the resulting aggregation operators can
be efficiently evaluated based on histogram com-
putations. Finally, we discuss their application to
data fusion and sketch some areas of application.

2 DFS theory

The basic idea behind DFS can be sketched
as follows. By an n-ary fuzzy quantifier on a
universe E �� � we denote a mapping eQ �eP�E�

n
�� I � ��� �� which to each n-tuple of

fuzzy subsets Xi � eP�E� of E assigns a gradual
result eQ�X�� � � � � Xn� � I. This definition is the
obvious extension of generalised quantifiers (de-
terminers) in the sense of TGQ to the fuzzy case.
But which fuzzy quantifier can be arguably said
to correspond to a given natural language quanti-
fier, say “all”? In order to alleviate this problem,
and to provide a representation of fuzzy quanti-
fiers which lends itself better to understanding,
DFS theory introduces the notion of a semi-fuzzy
quantifier, i.e. a mapping Q � P�E�n �� I



which to each n-tuple of crisp subsets of E as-
signs a gradual result Q�X�� � � � �Xn� � I. Ex-
amples of semi-fuzzy quantifiers are

�E�X� � �� X � E

�E�X� � �� X �� �

allE�X�� X�� � �� X� � X�

someE�X�� X�� � �� X� �X� �� �

atleast nE�X�� X�� � �� j�X� �X��j � n

propE�X�� X�� �

���
jX� �X�j

jX�j
� jX�j �� �

�
� � else

where E �� � is a base set, X� X�� X� � P�E�,
and j�j denotes cardinality. prop, the proportion
of X �

�s that are X�, is defined for finite E only;
�
� represents indeterminacy. We will usually drop
the subscript E.

Semi-fuzzy quantifiers are systematically gener-
alised to corresponding fuzzy quantifiers F�Q� �eP�E�

n
�� I by applying a determiner fuzzifi-

cation scheme.

Definition 1 (Determiner fuzzification schemes)
Suppose F assigns to each semi-fuzzy quantifier
Q � P�E�n �� I a fuzzy quantifier F�Q� �eP�E�

n
�� I. F is called a determiner fuzzi-

fication scheme (DFS) iff the following axioms
are satisfied for all semi-fuzzy quantifiers Q �
P�E�n �� I.

F�Q� � Q if n � � (DFS 1)eF�id�� � idI (DFS 2)

F�e�Q� � e�F�Q� (DFS 3)

F�Q�i� � F�Q��i if i 	 f�� � � � � ng (DFS 4)

F�Q�� � F�Q�e� if n � � (DFS 5)

F�Q�� � F�Q�e� if n � � (DFS 6)

F�Q�A� � F�Q��A if n � �, A crisp (DFS 7)

Q nonincreasing in n-th arg


 F�Q� nonincr. in n-th arg, n � � (DFS 8)

F�Q �
n
�
i��

bfi� � F�Q� �
n
�
i��

bF�fi� (DFS 9)

where f�� � � � � fn � E� 
� E, E� �� �.

In the following, we will denote by FE�n the
set of all fuzzy quantifiers Q � eP�E�

n
�� I

and by SE�n the set of all semi-fuzzy quantifiers
Q � P�E�n �� I.

We will now briefly explain the DFS axioms and
the operators used in the above definition.1 A

more thorough treatment, including all proofs of
properties claimed, can be found in [5].

Preservation of constants The set of constant
semi-fuzzy quantifiers coincides with the set of
constant fuzzy quantifiers. It is natural to re-
quire that the fuzzification scheme maps every
constant semi-fuzzy quantifier to itself (viewed
as a fuzzy quantifier). An important consequence
of (DFS 1) is that for every Q � P�E�n �� I,

F�Q�jP�E�n � Q (1)

F�Q� hence corresponds to the original quanti-
fier when all argument sets are crisp.

Identity axiom By a canonical construction
which we describe now, F induces a unique
fuzzy operator for each of the propositional con-
nectives. Let f�g be a given singleton set, and
define �� � P�f�g� �� � by ���Y � � �Y ���,
where �Y is the characteristic function of Y �
P�f�g�. Furthermore, let e�� � eP�f�g� �� I

the bijection e���X� � �X���, where �X is the
membership function of X � eP�f�g�.
Definition 2 (Induced truth functions)
Suppose f � �n �� � is a propositional func-
tion (e.g., f � �). We can view f as a semi-fuzzy
quantifier f� � P�f�g�n �� � � I by defining

f��X�� � � � � Xn� � f����X��� � � � � ���Xn�� �

By applying F , f� is generalized to a fuzzy quan-
tifier F�f�� � eP�f�g�n �� I, from which we
obtain a fuzzy truth function eF�f� � In �� I,eF�f��x�� � � � xn� � F�f���e���� �x��� � � � � e���� �xn��

for all x�� � � � � xn � I.

By pointwise application of the induced negatione	 � eF�	�, conjunction e� � eF���, and disjunc-
tion e
 � eF�
�, F also induces a unique choice
of fuzzy complement e	, fuzzy intersectione�, and
fuzzy union e�.

(DFS 2) requires that eF�id�� � idI, i.e. the
identity truth function is mapped to its intended
fuzzy analogon. This is sufficient to ensure that
all truth-functions are mapped to their intended
fuzzy counterparts: in every DFS, e	 is a strong
negation operator, e� is a t-norm, and e
 the dual
s-norm of e�.

1We will define these operators for Q � SE�n only. The definitions for eQ � FE�n are entirely analogous.



External negation Let Q � SE�n a semi-fuzzy
quantifier. By e	Q � SE�n we denote the semi-
fuzzy quantifier defined by

�e�Q��X�� � � � � Xn� � e� �Q�X�� � � � � Xn��

for all �X�� � � � � Xn� � P�E�n.

(DFS 3) states that every DFS F commutes with
the formation of (external) negations of arbitrary
semi-fuzzy quantifiers. For example, from no �e	 some we obtain F�no� � e	F�some�.

Argument transposition LetQ � SE�n, n � �
and i � f�� � � � � ng. By Q�i � SE�n we denote
the semi-fuzzy quantifier defined by

Q�i�X�� � � � � Xn� � Q�X�� � � � � Xi��� Xn�

Xi��� � � � � Xn��� Xi� �

for all �X�� � � � � Xn� � P�E�n.

Because every permutation can be expressed as a
sequence of transpositions, (DFS 4) ensures that
F commutes with arbitrary permutations of the
arguments of a quantifier.

Antonyms Let Q � SE�n, n � �. The antonym
Q	 � SE�n is defined by

Q��X�� � � � � Xn� � Q�X�� � � � � Xn��� �Xn�

for all �X�� � � � � Xn� � P�E�n.

(DFS 5) requires that F be compatible to the for-
mation of antonyms. For example, from no �
all	 we obtain F�no� � F�all�e	.

By the dual of a semi-fuzzy quantifier Q we
mean e	Q	 (analogously for fuzzy quantifiers).
Combining (DFS 3) and (DFS 5), we obtain
that every DFS is also compatible to dualisa-
tion. Hence from some � e	 all	, we also have
F�some� � e	F�all�e	.

Internal meets Suppose Q � SE�n, n � �.
The semi-fuzzy quantifier Q� � SE�n�� is de-
fined by

Q��X�� � � � � Xn��� �

Q�X�� � � � � Xn��� Xn �Xn��� �

for all �X�� � � � � Xn��� � P�E�n��.

(DFS 6) states that F is compatible to intersec-
tions in the last argument of a semi-fuzzy quan-
tifier. For example, F�some� � F�
�e�, because

the two-place quantifier some can be expressed as
some � 
�. By (DFS 4), (DFS 6) generalises to
intersections in arbitrary argument positions.

Argument insertion Suppose Q � SE�n, n �
�, and A � P�E�. By Q�A � SE�n�� we denote
the semi-fuzzy quantifier defined by

Q�A�X�� � � � � Xn��� � Q�X�� � � � � Xn��� A�

for all �X�� � � � � Xn��� � P�E�n��.

(DFS 7) expresses that every DFS commutes
with the insertion of arguments. The axiom is
of particular importance because it generally en-
sures that boundary conditions (with respect to
the crisp case) are valid. For example, the axiom
ensures that x� e� � � x� for all x� � I, which is
one of the defining conditions of t-norms.

Preservation of monotonicity A semi-fuzzy
quantifier Q � SE�n is said to be nonincreas-
ing in its i-th argument (i � f�� � � � � ng,
n � �) iff for all X�� � � � � Xn� X

�
i �

P�E� such that Xi � X �
i, Q�X�� � � � � Xn� �

Q�X�� � � � � Xi��� X
�
i � Xi��� � � � � Xn�. On fuzzy

quantifiers eQ � FE�n , we use an analog defini-
tion, where X�� � � � � Xn� X

�
i �

eP�E�, and “�”
is the fuzzy inclusion relation.

(DFS 8) expresses that F preserves decreasing
monotonicity of a quantifier in its last argument.
By (DFS 4), (DFS 8) generalises to the preserva-
tion of decreasing monotonicity in arbitrary argu-
ment positions. It also follows that F preserves
increasing monotonicity, and even monotonicity
properties of quantifiers which hold only locally.

Induced extension principle Every mapping
f � E� �� E uniquely determines a powerset
function bf � P�E�� �� P�E�, which is defined
by bf�X� � ff�e� � e � Xg, for all X � P�E��.
The underlying mechanism which transports f tobf can be generalized to the case of fuzzy sets.

Definition 3 (Induced extension principle)
F induces an extension principle bF which to
each f � E� �� E (where E� E� �� �) assigns
the mapping bF�f� � eP�E�� �� eP�E� defined
by

�
bF�f��X��e� � F�	

bf� ��e���X� �



for all X � eP�E��, e � E.

(DFS 9) establishes a relation between powerset
functions and bF by requiring that F be compati-
ble with its induced extension principle. Suppose
Q � P�E�n �� I and f�� � � � � fn � E� �� E are
given (E� �� �). Then

Q� � Q �
n
�
i��

bfi � P�E��
n

� I

is defined by

Q��Y�� � � � � Yn� � Q� bf��Y��� � � � � bfn�Yn���
for all Y�� � � � � Yn � P�E��. (DFS 9) requires

that F�Q�� � F�Q� �
n
�
i��

bF�fi�, i.e.

F�Q���X�� � � � � Xn� �

F�Q�� bF�f���X��� � � � � bF�fn��Xn��

for all X�� � � � �Xn � eP�E��.

(DFS 9) is of particular importance because it is
the only axiom which relates the behaviour of F
on different domains E� E�.

Definition 4 (Standard DFS) A DFS F is called a
standard DFS if it induces the standard negation
�� x and the standard extension principle,

�
bF�f��X��e� � supf�X�v� � v 	 f���e�g�

for all f � E� �� E, e � E, X � eP�E��.

Every standard DFS induces the standard con-
nectives, i.e. eF��� � min, eF�
� � max etc.

3 DFS models

By stating the DFS axioms, we have made ex-
plicit our intuitions about “reasonable” mecha-
nisms of fuzzy quantification. In order to show
that these axioms are consistent (but also to make
the theory useful for purposes of data fusion), we
now present an actual model. The model uses
the fuzzy median as an aggregation operator over
sets of gradual evaluations.

Definition 5 (Fuzzy median)
The fuzzy median m�

�

� I� I �� I is defined by

m �

�

�u�� u�� �

�����
min�u�� u�� � min�u�� u�� �

�
�

max�u�� u�� � max�u�� u�� 

�
�

�
� � else

The fuzzy median can be extended to an opera-
tor (again denoted m�

�

) which accepts arbitrary
subsets of I as its arguments.

Definition 6 (Extended fuzzy median)
The (extended) fuzzy median m�

�

� P�I� �� I is
defined by

m �

�

X � m �

�

�inf X� supX� �

for all X � P�I�.

Definition 7
Suppose Q � P�E�n �� I is a semi-fuzzy quan-
tifier and 	 � I. Q� � FE�n is defined by

Q��X�� � � � � Xn� � m �

�

fQ�Y�� � � � � Yn� � Yi 	 Y
�
i g �

where (for i � �� � � � � n),

Y�i � fY � E � �Xi�
min
� � Y � �Xi�

max
� g

�Xi�
min
� �

�
�Xi�� �

�
� �

�
� � � 	 ��� ��

�Xi�� �

�

� � � �

�Xi�
max
� �

�
�Xi�� �

�
� �

�
� � � 	 ��� ��

�Xi�� �

�

� � � �

�Xi��� 
-cut, �Xi��� strict 
-cut.

	 can be thought of as a parameter of “cautious-
ness”. If 	 � �, the set of indeterminates2 con-
tains only those e � E with �Xi

�e� � �
� ; all other

elements of E are mapped to the closest truth
value in f�� �g. As 	 increases, the set of indeter-
minates is increasing. For 	 � �, then, the level
of maximal cautiousness is reached where all el-
ements of E except those with �Xi

�e� � f�� �g
are interpreted as indeterminates.

The assignment Q �� Q� is not a DFS yet; the
fuzzy median suppresses too much structure. We
must hence take into account the results obtained
at each level of cautiousness.

Definition 8
For every semi-fuzzy quantifier Q � P�E�n ��
I, M�Q� � FE�n is defined by

M�Q��X�� � � � � Xn� �

Z �

�

Q��X�� � � � � Xn� d� �

It can be shown that the integral exists, regardless
of Q and the choice of argument sets.

Theorem 1 M is a standard DFS.
2i.e. of those e � E such that e � �Xi�

max
� n �Xi�

min
�



Note. In [5], it was shown that M is a con-
sistent generalisation of the fuzzification scheme
proposed by Gaines [4].

4 Computation of DFS quantifiers

Our theory has been designed to establish a prin-
cipled account of fuzzy quantifiers in data fusion,
and we have ensured this by stating it in the form
of axioms. We have also provided a model M of
the theory. In the following, we will show how to
implement the resulting quantifiers M�Q�.

4.1 Evaluation of “simple” quantifiers

Let us firstly consider the standard quantifiers.
Because M is a standard DFS, we obtain that

M����X� � supf�X�e� � e 	 Eg

M����X� � inff�X�e� � e 	 Eg

M�all��X�� X�� � inffmax��
 �X�
�e��

�X�
�e�� � e 	 Eg

M�some��X�� X�� � supfmin��X�
�e��

�X�
�e�� � e 	 Eg

for all base sets E �� � and X� X�� X� � eP�E�.

In addition, if E �� � is finite, we have

M�atleast n��X�� X�� � ��n�

for all X�� X� � eP�E�, where ��i� is the i-th
largest element in the ordered sequence of mem-
bership values of X� e�X�, including duplicates.

4.2 Histogram-based evaluation

In the general case, M�Q� cannot be described
by closed-form expressions (as in 4.1). However,
the resulting fuzzy quantifiers can often be ef-
ficiently implemented on the basis of histogram
computations if Q is quantitative.3

In the following, we shall assume that the base
set E be finite. For simplicity of presentation, we
will describe a procedure for computing DFS-
quantifiers suited to integer-arithmetics. We
hence assume that, for a fixed m� � N n f�g,
all membership values of fuzzy argument sets
X�� � � � �Xn satisfy

�Xi
�e� 	

�
��

�

m�
� � � � �

m� 
 �

m�
� �

�
(2)

for all e � E.

If X � eP�E� satisfies (2), we can conve-
niently represent the required histogram of X
as an �m� 	 ��-dimensional array HistX �
f�� � � � �m�g �� N, defined by

HistX �j� �
��fe 	 E � �X�e� �

j

m�
g
��

for all j � �� � � � �m�. We further assume that m�

is even, (i.e. m� � 
m for a given m � N n f�g).

4.3 Evaluation of one-place quantifiers

Suppose Q � SE�� is quantitative. There exists
q � f�� � � � � jEjg �� I such that Q�X� � q�jXj�

for all X � P�E�. Abbreviating L � jXjmin
� �

j�X�min
� j, U � jXjmax

� � j�X�max
� j, we define

qmax�L�U� � maxfq�K� � L � K � Ug

qmin�L�U� � minfq�K� � L � K � Ug

Then Q��X� � m �

�

�qmin�L�U�� qmax�L�U��,
and M�Q��X� can be computed as follows.

ALGORITHM DFS-UNARY
INPUT: X

// initialise H, L, U
H = HistX;

L =
mP
j��

H[m+j];

U = L + H[m];
cq= m �

�

(qmin(L,U), qmax(L,U));

if( cq== �
� ) return �

�;
sum = cq;
if( cq � �

� )
for( j=1; j
m; j++ ) f

nc= true; // "no change"
// update clauses for L and U
if( H[m+j] �� 0 )
f L -= H[m+j]; nc= false; g

if( H[m-j] �� 0 )
f U += H[m-j]; nc= false; g

if( nc) f sum += cq; continue; g
// one of L or U has changed
cq= qmin(L,U);
if( cq � �

� ) break;
sum += cq;
g

else
for( j=1; j
m; j++ ) f

3i.e. Q���X��� � � � � ��Xn�� � Q�X�� � � � � Xn� for all automorphisms � � E �� E.



nc= true;
... // update clauses etc. as above
cq= qmax(L,U);
if( cq � �

� ) break;
sum += cq;
g

return (sum + �
�*(m-j)) / m;

END

If Q fulfills some additional requirements, com-
putation of qmin and qmax can be simplified.
Firstly, if Q is unimodal (i.e. there is an jpk �
f�� � � � � jEjg such that q is nondecreasing for all
i � jpk and nonincreasing for all i � jpk), then

qmin�L�U� � min�q�L�� q�U��

qmax�L�U� �

���
q�jpk� � L � jpk � U

q�U� � U 
 jpk
q�L� � L � jpk

Examples for unimodal quantifiers are exactly n,
about n, between n and m (one-place use).

A further simplification is possible if Q is non-
decreasing. Then qmin�L�U� � q�L� and
qmax�L�U� � q�U�, i.e. we can omit the updat-
ing of U in the first for-loop and likewise omit L
in the second for-loop. Nonincreasing quantifiers
permit similar simplifications.

4.4 Evaluation of two-place quantifiers

Absolute quantifiers Suppose Q � SE��

and there is a quantitative Q� � SE�� such
that Q�X��X�� � Q��X� � X�� for all
X�� X� � P�E�. The DFS axioms ensure
that M�Q��X��X�� � M�Q���X� e� X�� for
all X�� X� � eP�E�, i.e. in order to compute
M�Q��X��X��, we can use the above algorithm
DFS-UNARY for computing M�Q��.

Quantifiers of exception In addition to abso-
lute quantifiers, one often encounters semi-fuzzy
quantifiers Q � SE�� such that the antonym Q	
of Q is an absolute quantifier.

Quantifier Antonym (absolute)
all no
all except exactly n exactly n
all except about n about n
all except at most n at most n

By the DFS axioms, M�Q��X�� X�� �
M�Q	��X�� e	X�� for all X�� X� � eP�E�. We
can use the above algorithm for evaluating the ab-
solute quantifier Q	 in order to compute M�Q�.

Proportional quantifiers Let us now turn to
genuine two-place quantifiers, i.e. semi-fuzzy
quantifiers which are irreducible to one-place
quantifiers. The most important examples are
the so-called proportional quantifiers. These are
defined by Q�X��X�� � q�jX�j� jX� �X�j�,
where q � f�� � � � � jEjg� �� I has the form

q�a� b� �

�
v� � a � �
f�b�a� � a �� �

(3)

An example is prop where v� � �
� and f � idI.

We shall restrict attention here to those propor-
tional quantifiers where f � I �� I is nonde-
creasing.4 Suppose Q is such a quantifier and
X��X� � eP�E�. We are using abbreviations
Z� � X�, Z� � X� e�X� and Z� � X� e� e	X�;
let Lk � jZkj

min
� and Uk � jZkj

max
� , k �

f�� 
� �g. Then

Q��X�� X�� � m �

�

�qmin�L�� L�� U�� U���

qmax�L�� L�� U�� U��� �

Abbreviating fmin � f�L���L� 	 U���,
qminf�� � � � � jEjg	 �� I is defined as follows.

1. L� � �. Then qmin � fmin.

2. L� � �.

a. L� 	 U� � �. Then qmin �
min�v�� f

min�.
b. L� 	 U� � �.

i. U� � �. Then qmin �
min�v�� f����.

ii. U� � �. Then qmin � v�.

Note. If v� � f���, then min�v�� f���� � v�, i.e.
we need not distinguish 2.b.i and 2.b.ii.

For qmax�L�� L�� U�� U��, we have

1. L� � �. Then qmax � fmax.

2. L� � �.

a. U� 	 L� � �. Then qmax �
max�v�� f

max�.
4If f is nonincreasing, we can computeM�Q� � e�M�e�Q�, noting that e�Q of Q is proportional and nondecreasing.



b. U� 	 L� � �.

i. U� � �. Then qmax �
max�v�� f����.

ii. U� � �. Then qmax � v�.

where fmax � f�U���U� 	 L���.

Note. If f��� � v�, then 2.b.i and 2.b.ii need not
be distinguished.

A slight modification of DFS-UNARY will suf-
fice to evaluate proportional quantifiers:

1. In the initialisation part, compute Hk, Lk
and Uk for k � f�� 
� �g.

2. Replace both occurrences of qmin�� � � � by
qmin�L�� L�� U�� U�� and both occurrences
of qmax�� � � � by qmax�L�� L�� U�� U��.

3. In the first for-loop, use update clauses for
L�� L�� U�� U�.

4. In the second for-loop, use update state-
ments for L�� L�� U�� U�.

5 Application of DFS to data fusion

In the following, we will establish the relation-
ship between fuzzy quantifiers and data fusion.
Suppose E denotes a set of experts (sensors,
algorithms� � � ) and p a proposition to be evalu-
ated, e.g. p � “Feature xl corresponds to feature
yr”. Each expert e � E has an associated degree
of “competence” �C�e� � I with respect to eval-
uating p, and each expert provides a gradual eval-
uation �T �e� � I of the truth of p. We can view
�C � �T � E �� I as membership functions of
corresponding fuzzy subsets C� T � eP�E�. The
problem is to determine an improved global eval-
uation G � eQ�C� T � � I of the degree of truth
of p which provides increased robustness against
noise, failure, and other sources of erroneous in-
formation. Obviously, the problem of data fusion
becomes that of finding a suitable fuzzy quanti-
fier eQ � FE�� .

DFS simplifies this task in that it only requires a
description of the desired behaviour of eQ on crisp
arguments, i.e. in terms of a semi-fuzzy quanti-
fier Q � SE��. For example, if all competent
experts must confirm p in order to regard p as
true, the proper choice of Q is Q � all. If we

only require that m competent experts confirm
the truth of p, the proper choice is Q � atleast m.
If the evaluation of p corresponds to the propor-
tion of competent experts which assert p, we can
choose Q � prop. From Q we obtain the desiredeQ � M�Q�, which generalises the behaviour of
the fusion operator from crisp sets to the case of
degrees of competence and truth.

In the general case where we have several di-
mensions of relevance, data fusion can be ac-
complished by an n-ary fuzzy quantifier eQ �
FE�n . DFS can also handle the required multi-
place quantification. Furthermore, DFS is able
to model non-quantitative quantifiers. The need
for such quantifiers arises when the experts can-
not be viewed as indistinguishable (modulo com-
petence) or when there are interactions among
the expert’s judgements.5 If Q � FE�n is
non-quantitative, we can still apply M to ob-
tain M�Q�. The histogram-based algorithm
is not applicable in this case. However, if
X�� � � � �Xn � eP�E� satisfy (2), we can compute

M�Q��X�� � � � � Xn� �
�

m

m��X
j��

Q�j
�X�� � � � � Xn�

where 	j �

j 	 �


m
.

6 Comparison to existing approaches

We shall now compare DFS to other approaches
to fuzzy quantification which have been applied
in the area of data fusion. These approaches
build on Zadeh’s idea [11] of representing fuzzy
quantifiers by fuzzy subsets �Q � eP�R�� of
the non-negative reals (absolute quantifiers) or
of the unit interval (�Q � eP�I�, proportional
quantifiers). In order to make these fuzzy num-
bers applicable to fuzzy sets for the purpose of
quantification, a mechanism (which we denote by
Z) is needed which maps �Q to a fuzzy quanti-
fier Z��Q� � FE�� (unrestricted use, relative to
E), or Z��Q� � FE�� (restricted use, relative to
first argument). Zadeh defines Z in terms of �-
Counts or FG-Counts [11], while Yager [10] uses
ordered weighted averaging (OWA) operators.

Some benefits of DFS compared to these ap-
proaches have been mentioned in the introduc-
tion; notably, only DFS is based on an axiomatic

5See Grabisch [7] for a discussion of interaction in the framework of fuzzy integrals.



foundation. Another benefit of DFS in data fu-
sion applications is its broad coverage of quan-
tificational operators. All approaches to fuzzy
quantification try to facilitate the definition of
fuzzy quantifiers by introducing a more accessi-
ble level of description (semi-fuzzy quantifiers in
DFS vs. fuzzy sets �Q in other approaches). This
raises the question of whether these approaches
can represent enough quantifiers, in the sense that
for every eQ � FE�n , there exists a Q � SE�n such
thatM�Q� is sufficiently close to eQ (likewise for
Z��Q�).

A rough account of “closeness” is given as fol-
lows. Let us define the underlying semi-fuzzy
quantifier U�eQ� � SE�n of eQ � FE�n by U� eQ� �eQjP�E�n . We may define an equivalence relation
� on FE�n byeQ � eQ� � U� eQ� � U� eQ�� �

eQ� eQ� are thus considered similar if they meet the
same boundary conditions (to the crisp case).

In DFS, (1) ensures that for every eQ � FE�n ,
there exists a semi-fuzzy quantifier Q � SE�n

such that eQ �M�Q�, viz. Q � U� eQ�. The other
approaches, however, are limited to absolute and
proportional quantifiers, and have not yet been
generalised to quantifiers of arbitrary arities n. In
addition, Z��Q� is always quantitative, regard-
less of �Q. It follows that if eQ is a fuzzy quan-
tifier such that U�eQ� is not quantitative, no �Q
exists such that eQ � Z��Q�. We consider this a
serious limitation because (as stated above), the
use of non-quantitative fuzzy quantifiers can be
perfectly reasonable in data fusion.

7 Perspective

We have presented a principled account of fuzzy
quantification, which results in a novel class
of operators for data fusion. There is a wide
area of applications of these fuzzy quantifiers.
In an experimental multimedia retrieval system
(Glöckner & Knoll [6]) for meteorological doc-
uments, DFS quantifiers are utilized for various
purposes of information aggregation and data fu-
sion. For example, a user of this system might
ask for satellite images in which it is “cloudy
in southern Bavaria”. In this case, E is the set
of pixel coordinates, C is the fuzzy set of pixels
which belong to southern Bavaria, T is the fuzzy
set of pixels classified as “cloudy”. prop is used

as the default fusion operator. Furthermore, we
are currently working on the application of DFS
quantifiers in area-based stereo image matching.
Other fields of potential application have been
described in the literature. Kacprzyk et al. [8]
present a group decision-support system in which
the �-Count approach is used for the fusion of
“opinions” of a group’s individuals. In Bor-
dogna & Pasi [2], an information retrieval sys-
tem is described which uses OWA-operators to
determine an improved measure of search term-
document relevance by fusing gradual relevance
judgements obtained for the document’s sections.
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[5] I. Glöckner. DFS – an axiomatic approach to
fuzzy quantification. Technical Report TR97-
06, Techn. Fakultät, Uni Bielefeld, 1997.
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