
Driving Vision Systems by Communication

Thorsten Graf and Alois Knoll

University of Bielefeld, Faculty of Technology
P.O.Box 10 01 31, D-33501 Bielefeld, Germany

E-mail: �graf,knoll�@techfak.uni-bielefeld.de

Abstract

In this paper we propose our new multi-agent system
architecture dedicated to build distributed computer vi-
sion systems. This architecture incorporates a communi-
cation language which provides a great degree of flexibil-
ity: firstly, the language permits the construction of flexi-
ble and self-organizing vision systems; secondly, it is ca-
pable of expressing complex facts and tasks; thirdly, it is
simple, i.e. human readable and writable; and lastly, the
messages provided by the communication language can be
interpreted efficiently. We describe in detail the basic con-
cepts of the multi-agent system architecture including the
communication language as well as the agent architecture
and the interaction strategy. As a testbed for the proposed
architecture we have modelled an object recognition system
as a society of autonomous agents which organize them-
selves according to a given recognition task by employing
communication.

1. Introduction

The development of architectures for integrating image
processing methods dedicated to solving particular vision
tasks have received increasing research interest because the
architecture of a vision system has a great impact on its ap-
plicability.

Conventional vision systems generally follow system ar-
chitectures which make it difficult to comply with the flex-
ibility requirements of modern complex applications, like
real-world robotic tasks [1]. To incorporate a vision system
into such applications its architecture must meet certain re-
quirements: Firstly, it must be simple to use the vision sys-
tem in complex setups; secondly, the vision system must be
able to adapt dynamically to different (possibly changing)
tasks and environmental conditions; thirdly, the architec-
ture must provide the ability to handle different competi-
tive information; and lastly, the addition of new processing

modules must be possible without rebuilding the complete
system.

Recent research has indicated that modelling vision sys-
tems as societies of autonomous agents is a promising ap-
proach to tackle these objectives. In [2] Boissier and De-
mazeau have proposed a multi-agent system for visual in-
tegration, called MAVI, which is based on the ASIC [3]
multi-agent control architecture. This architecture is subdi-
vided into different processing layers. Following the purpo-
sive vision paradigms Bianchi and Rillo [4] have inspired
a multi-agent vision system employing a behaviour based
decomposition in specific tasks, while Yanai and Deguchi
[5] have developed an object recognition system for inte-
grating different vision strategies. Contrary to the MAVI
system, these approaches share a more rigid architecture
which reduces the applicability to different environmental
conditions and requirements.

Since the capability to communicate is an essential fea-
ture of autonomous agents, the structure of the communi-
cation language is significant for the flexibility and appli-
cability of the whole system. We note that the syntax of
communication languages used in the computer vision do-
main generally tends to be cryptic and too simple to express
complex facts and tasks; this is true especially for that part
of the communication language which is relevant for the ap-
plication itself.

We therefore propose a new multi-agent system architec-
ture incorporating a more sophisticated communication lan-
guage. This architecture simplifies the generation of com-
plex self-organizing vision systems. In Sect. 2 we explain in
detail the basic concepts of the architecture: the structure of
the autonomous agents (Sect. 2.1), the communication lan-
guage (Sect. 2.2), and the interaction strategy (Sect. 2.3).
In Sect. 3 we demonstrate an implementation of the archi-
tecture in a distributed object recognition system, which or-
ganizes itself according to given recognition tasks. Finally,
in Sect. 4 our conclusions and directions of possible future
research are presented.

2. Multi-agent system architecture

In the proposed multi-agent system architecture a com-
puter vision system is modelled as a society of autonomous
agents, each one responsible for a particular vision task.
Since many of the computer vision algorithms are very
time-consuming the architecture provides two different
classes of agents: master and slave agents. The former per-
form all of the planning and most of the processing tasks
while the latter are responsible for the time-consuming tasks
only. Generally, the slave agents work in teams controlled
by a corresponding master agent.

In the society the agents are connected to each other us-
ing a contract net protocol, whose topology is that of a com-
pletely connected network.

In the following we explain in detail the multi-agent sys-
tem architecture: the structure of the autonomous agents,
the communication language and the interaction strategy.

2.1. Agent architectures

Since the master and slave agents are responsible for dif-
ferent tasks within the vision system they differ in their ar-
chitecture as well.

2.1.1. Master agent. The architecture shared by all master
agents is sketched in Fig. 1. As shown, it is composed of

Communication Module

Knowledge
Individual

Inference Engine

Knowledge
General

Working
Memory

Master Agent

Figure 1. Architecture of a master agent

five different modules:

1. Communication module:
The communication module is responsible for con-
necting to other agents. It contains methods for send-
ing and receiving messages as well as functions for
wrapping different data types.

2. General knowledge:
This data base is used for storing general knowledge,
like basic planning strategies and the grammar of the

communication language. Most of the knowledge is
stored in rules that are applicable in different situations
and determines the general behaviour of master agents.

3. Individual knowledge:
The individual knowledge base contains all knowledge
concerning the particular agent, like specific planning
strategies, processing functions and the provided vo-
cabulary. Note that it is not required that all agents
share the same vocabulary. Similar to the general
knowledge base the individual knowledge is stored in
rules and determines the individual behaviour of each
agent.

4. Inference engine:
Based on general and individual knowledge the infer-
ence engine accomplishes all planning and interpreta-
tion tasks of the agent. The most extensive work that
must be performed by the inference engine is to gen-
erate programs appropriate to solve requested tasks of
other agents.

5. Working memory:
The working memory is used by the inference engine
for storing various information, like sub-results and
knowledge about the dynamic environment.

In order to perform a particular vision task, the responsible
agent proceeds as follows: Firstly, the agent analyses the
given task including the instruction, the destination specifi-
cations and additional constraints. Note that it is generally
not required that the agent understand all of the source spec-
ifications. According to the task specifications the agent
automatically generates a complex Clips[6]-style program
script, that is composed of all required processing functions
as well as further requests to other agents. Lastly, the agent
executes the program script.

2.1.2. Slave agent. Since the purpose of slave agents is sim-
ply to assist a master agent in performing time-consuming
tasks, the slave agents can communicate with their corre-
sponding masters only. Slave agents are completely con-
trolled by master agents, i.e. the master decides how many
slave agents he wants to use as well as which particular pro-
cessing function must be performed. The communication
between the master and its slaves is reduced to the abso-
lute minimum. Generally, the master determines only the
processing functions and additional parameters. Therefore
slave agents need only a simple architecture containing the
communication module, processing functions and rudimen-
tary mechanisms for interpreting messages.

2.2. Communication language

The basic requirements for the communication language
are as follows:

� It must permit the construction of flexible and self-
organizing vision systems.

� It must be able to express complex facts and tasks.

� It must be simple to understand, i.e. human readable
and writable.

� Efficient mechanisms for interpreting messages must
be provided.

In order to meet these requirements we have developed a
new communication language. We provide the use of mes-
sage types making the intention of a message explicit:

<message> ::= <type> <content>

The allowed message types are similar to the ones used
in other communication languages [2, 4] in that they imple-
ment speech acts but differ in some important respects:

1. request:
The message type request is used to request the assis-
tance of other agents. Generally, this message type in-
dicates that the agent can not perform a particular task
on its own.

2. answer:
An answer message is a reply to a request or script
message, which can be both a result or an error mes-
sage.

3. inform:
The message type inform is used for passing additional
information to other agents which is not necessarily
needed for performing particular tasks. This type is
also used for indicating the presence or absence of
agents.

4. script:
The message type script can be used for getting direct
access to the capabilities of an agent avoiding the in-
terpretation mechanisms. Since the agents generally
generate programs in order to perform requested tasks
dynamically, programs can be passed directly.

Furthermore the message content is subdivided into a
message text and additional message data:

<content> ::= <text> <data>

<message-text> ::= (<goal> <variable>*)
<goal-condition>*

<goal> ::= convert | extract |
introduce | ...

<goal-condition> ::= <attr-condition> |
<not-condition> |
<and-condition> |
<or-condition>

<attr-condition> ::= <is-a-attr> |
<has-type-attr> | ...

<not-condition> ::= (not <goal-condition>)

<and-condition> ::= (and <goal-condition>+)

<or-condition> ::= (or <goal-condition>+)

<is-a-attr> ::= (is-a <variable>
<object-class>)

<object-class> ::= feature | image | ...

Table 1. Formal grammar of messages

where the <text>-slot contains a text string and the
<data>-slot a list capable for storing different data types
like images and edges. The text string itself can be both a
message text or a Clips-style program script.

An excerpt of the formal grammar used for specifying
a message text is shown in Tab. 1. For reasons of effi-
ciency this grammar allows only one goal for each message,
where a goal is not a specific entity but rather some kind of
global plan, which can be restricted by additional condi-
tions. These conditions can be complex logical expressions
containing variables as well.

Suppose, we want our object recognition system to ex-
tract all ledges as well as all known red objects shown in an
image taken from a camera, whose server is called ’pene-
lope’, we can simply write the following message text:

(extract ?dest ?src)

(is-a ?dest object)
(or (has-name ?dest ledge)

(has-color ?dest red))

(is-a ?src image)
(has-source ?src camera)
(has-server ?src penelope)

There are two important points to note here: Firstly, the
interpretation of such messages can be realized in a very
efficient manner using the pattern-matching facilities of ex-
pert system tools; and secondly, entities can be identified
not only by their unambiguous names but also by their fea-

tures and attributes. Although such querying requests are
very useful and important to vision applications, they are
generally not supported by other agent-based vision sys-
tems.

2.3. Interaction strategy

In the proposed multi-agent system architecture the con-
trol mechanisms of computer vision systems are completely
decentralised, i.e. each agent corresponds to particular vi-
sion tasks and accomplishes requests on its own knowledge
and goals. No further control mechanisms among master
agents, like hierarchical structuring, are imposed.

Therefore, the agents have to interact with each other in
order to solve a requested vision task. The interaction is
performed by a communication process that leads to a self-
organization of the agent society. This self-organization
process is goal-driven and proceeds as follows:

� If an agent requests a vision task, all master agents de-
cide if they can accomplish the given task. As men-
tioned before, this is done by analysing the instruction,
the destination specifications and the additional con-
straints. Generally, the source specifications of the task
are neglected.

� All master agents that are responsible for the particular
task make a bid. According to these bids the agent, that
has requested the task, selects the masters that should
award the contract.

� The selected masters generate appropriate program
scripts according to the task specifications. If the
source of the task is unknown the agents request
a required sub-result determined from the unknown
source.

There are some important points to note here: A drawback
of this interaction strategy is that it can be established just
at run-time if the vision system can accomplish a particu-
lar vision task. Furthermore, the interaction strategy pro-
duces some overhead because all master agents try to react
to a request. Nevertheless, this overhead can be neglected
since most of the vision algorithms are generally very time-
consuming compared with the overhead.

The advantage of this approach is the flexibility of the
resulting vision system: agents can be added and deleted at
run-time without causing any problems. Furthermore, new
functionality can be provided by simply adding appropri-
ate agents without having precise knowledge of the internal
structure of existing agents.

3. Experimental results

As a testbed for the proposed agent architectures and
communication language we have transformed our object
recognition system described in [7, 8] into a society of au-
tonomous agents. The agents have been implemented in
C++ using the multi-agent generation tool MagiC [9]. This
tool provides classes for building different types of agents
and mechanisms for encapsulating all of the negotiation
protocols and communications. The knowledge as well as
planning strategies of the agents have been modelled using
the expert system tool Clips 6.10 [6].

The society of autonomous agents consists of five differ-
ent agent types, three master agents and two slave agents,
each one corresponding to a particular vision task:

1. Master/slave image processing agents:
Since most of the image processing algorithms, like
convolution and edge detection, are very time consum-
ing, we build both classes of agents, a master image
processing agent as well as a slave image processing
agent. The master agent performs all of the high-
level communication with the society and incorporates
strategies for splitting up particular image processing
tasks in order to be accomplished by a dynamic team
of slave agents.

2. Feature extraction agent:
The feature extraction agent is responsible for feature
specific tasks, including extraction of edge points from
images and fitting of geometric primitives like lines
and ellipses.

3. Master/slave object recognition agents:
The object recognition agents perform a recognition
process based on the fuzzy invariant indexing tech-
nique [7]. This process consists of: grouping of ge-
ometric primitives, invariant calculation, hypothesis
generation and verification.

Similar to the image processing agents the master
agent establishes all of the communication and plan-
ning strategies while the slaves are responsible for the
execution of particular recognition tasks.

We have run a number of agents of each type on dif-
ferent platforms including Linux-PCs and Sun-Solaris-
Workstations. Although we have not imposed any hierar-
chical structure on the system, the agent society is capable
of solving complex vision tasks.

For example, if we request the task given in Sect. 2.2,
the system takes on a transient system structure as sketched
in Fig. 2. The corresponding trace of message passing is
shown in Tab. 2. As indicated, the master object recogni-
tion agent is the only agent capable of recognizing objects

Slave Slave

Slave Slave

121

3

4

6

5
4 5

2
7 8,10

9,119,11
8,10

Master

Object
Recognition

Master

Image
Processing

Image
Processing

Master

Feature
Extraction

Image
Processing

Object
Recognition

Object
Recognition

Figure 2. Self-organized system structure

in images. Although the object recognition agent has no
knowledge about accessing cameras, the agent is awarded
the contract. In order to solve the recognition task the agent
needs geometric primitives (especially lines and ellipses)
extracted in an image. Since the source specification does
not match this requirement, the agent requests to extract the
geometric primitives from the unknown source specifica-
tions (2). Next, a feature extraction agent is awarded the
contract. Again, this agent needs the assistance of the agent
society to detect the required edge points from the unknown
source (3). This sub-task is solved by the master image pro-
cessing agent. The agent grabs an image from the specified
camera (see Fig. 3a) and asks its slaves to apply an edge op-

Table 2. Trace of message passing

1: REQUEST:
(extract ?dest ?src)
(is-a ?dest object)
(or (has-name ?dest ledge)

(has-color ?dest red))
(is-a ?src image)
(has-source ?src camera)
(has-server ?src penelope)

2: REQUEST:
(extract ?dest ?src)
(is-a ?dest feature)
(or (has-type ?dest line)

(has-type ?dest ellipse))
(is-a ?src image)
(has-source ?src camera)
(has-server ?src penelope)

3: REQUEST:
(extract ?dest ?src)
(is-a ?dest image)
(has-type ?dest edge)
(is-a ?src image)
(has-source ?src camera)
(has-server ?src penelope)

4: REQUEST:
(apply-canny)

5: ANSWER:
(apply-canny)

6: ANSWER:
(extract edge-image penelope-1)

7: ANSWER:
(extract lines UNKNOWN-2)
(extract ellipses UNKNOWN-2)

8: REQUEST:
(generate-hypotheses)

9: ANSWER:
(generate-hypotheses)

10: REQUEST:
(verify-single-hypotheses)

11: ANSWER:
(verify-single-hypotheses)

12: ANSWER:
(extract rim UNKNOWN-2)
(extract ledge-3 UNKNOWN-2)
(extract ledge-7 UNKNOWN-2)

erator (4, 5). Note, that the communication between master
and slave agents is very simple. Using the resulting edge
image (6) the feature extraction agent extracts the particular
geometric primitives and passes them to the master object
recognition agent (7). Now, the master object recognition
agent is able to recognize the specified objects. This is done
with the assistance of the slave object recognition agents,
which perform the hypotheses generation as well as the ver-
ification of the hypotheses (8-11). Finally, the recognition
task is accomplished (12). The final result of this task is
shown in Fig. 3b. As can be seen, the system recognizes all
of the objects that match the object specifications, namely
two ledges and one red rim. All other objects shown in the

image are ignored.

(a) Original image (b) Result

Figure 3. Recognition result for a test scene

The addition or deletion of agents at run-time causes no
problems of system stability (assuming that all agents nec-
essary to accomplish a task are available). These behaviours
are an important factor for both the autonomy as well as the
flexibility of the system, i.e. to improve the recognition ca-
pability of the vision system new agents can be added.

4. Conclusions and future research

We have presented a new multi-agent system architec-
ture dedicated for building self-organizing distributed com-
puter vision systems that are only controlled by a given vi-
sion task. The architecture incorporates a communication
language, which is capable of expressing complex facts and
tasks without loosing its readability. As shown, this archi-
tecture has several distinguishing features, such as flexibil-
ity, modularity, autonomy and openness.

Future research covers the integration of different com-
petitive recognition methods and the integration of the sys-
tem into a complex robotics scenario.

Acknowledgement

T. Graf’s contribution to this work was in part funded
by the Deutsche Forschungsgemeinschaft within the post-
graduate research unit ”Aufgabenorientierte Kommunika-
tion” (task-oriented communication).

References

[1] A. Knoll, B. Hildebrandt, and J. Zhand. Instructing
cooperating assembly robots through situated dialogs
in natural language. In Proc. IEEE Conference on
Robotics and Automation, Albuquerque, New Mexico,
1997.

[2] O. Boissier and Y. Demazeau. Mavi: a multi-agent sys-
tem for visual integration. In Proc. IEEE Conference on
Multisensor Fusion and Integration for Intelligent Sys-
tems, Las Vegas, Nevada, USA, pages 731–738, 1994.

[3] O. Boissier and Y. Demazeau. Asic: An architec-
ture for social and individual control and its application
to computer vision. In Proc. European Workshop on
Modelling Autonomous Agents in a Multi-Agent World,
pages 107–118, 1994.

[4] R. Bianchi and A. Rillo. A purposive computer vision
system: a multi-agent approach. In Workshop on Cyber-
netic Vision 1996, Proc. IEEE Computer Society, pages
225–230, 1997.

[5] K. Yanai and K. Deguchi. An architecture of ob-
ject recognition systems for various images based on
multi-agent. In Proc. International Conference on Pat-
tern Recognition, Brisbane, Australia, pages 278–281,
1998.

[6] Artificial Intelligence Section. CLIPS Reference Guide
Volume I Basic Programming Guide. Lyndon B. John-
son Space Center, 1998.

[7] T. Graf, A. Knoll, and A. Wolfram. Recognition of par-
tially occluded objects through fuzzy invariant index-
ing. In Proc. IEEE International Conference on Fuzzy
Systems, Anchorage, Alaska, USA, pages 1566–1571,
1998.

[8] T. Graf, A. Knoll, and A. Wolfram. Fuzzy invariant in-
dexing: a general indexing scheme for occluded object
recognition. In Proc. International Conference on Sig-
nal Processing, Beijing, China, pages 908–911, 1998.

[9] C. Scheering and A. Knoll. Framework for implement-
ing self-organized task-oriented multisensor guidance.
In Proc. International Symposium on Intelligence Sys-
tems and Advanced Manufacturing, Boston, USA, 1998.

