
TotalProf: A Fast and Accurate Retargetable
Source Code Profiler

Lei Gao, Jia Huang, Jianjiang Ceng,
Rainer Leupers, Gerd Ascheid, and Heinrich Meyr

Institute for Integrated Signal Processing Systems
RWTH Aachen University, Germany

{gao,leupers}@iss.rwth-aachen.de

ABSTRACT

Profilers play an important role in software/hardware de-
sign, optimization, and verification. Various approaches
have been proposed to implement profilers. The most
widespread approach adopted in the embedded domain is
Instruction Set Simulation (ISS) based profiling, which pro-
vides uncompromised accuracy but limited execution speed.
Source code profilers, on the contrary, are fast but less accu-
rate. This paper introduces TotalProf, a fast and accurate
source code cross profiler that estimates the performance
of an application from three aspects: First, code optimiza-
tion and a novel virtual compiler backend are employed to
resemble the course of target compilation. Second, an opti-
mistic static scheduler is introduced to estimate the behav-
ior of the target processor’s datapath. Last but not least,
dynamic events, such as cache misses, bus contention and
branch prediction failures, are simulated at runtime. With
an abstract architecture description, the tool can be easily
retargeted in a performance characteristics oriented way to
estimate different processor architectures, including DSPs
and VLIW machines. Multiple instances of TotalProf can
be integrated with SystemC to support heterogeneous Multi-

Processor System-on-Chip (MPSoC) profiling. With only
about a 5 to 15% error rate introduced to the major per-
formance metrics, such as cycle count, memory accesses and
cache misses, a more than one Giga-Instruction-Per-Second

(GIPS) execution speed is achieved.

Categories and Subject Descriptors

B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms

Design, Measurement, Performance

Keywords

Source Code Profiling, Performance Estimation, Instruction
Set Simulation, Architecture Description Language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$10.00.

1. INTRODUCTION
Profiling is deemed of pivotal importance for embedded

system design. On the one hand, profiles obtained from re-
alistic workloads are indispensable in application, processor,
and compiler design. On the other hand, profile-based pro-
gram optimization (e.g., [5]) and parallelization (e.g., [7])
play an increasingly important role in harnessing the pro-
cessing power of embedded processors. However, current
profiling techniques face two major challenges: First, the
stringent time-to-market pressure and the increasing com-
plexity of applications and systems require profiling tools to
be fast and quickly available, so that they can be employed
as early as possible in the evaluation of design variants. Sec-
ond, the accuracy of profiles is imperative to capture the
characteristics of today’s highly diverse embedded applica-
tions and systems. Unfortunately, no existing profiling tech-
nique can meet all these requirements, as briefly outlined in
the following:

• Instruction Set Simulation (ISS) based profiling is the
most widespread approach in the embedded domain.
Profiling is performed during simulation, therefore un-
compromised accuracy is achievable. However, the ex-
ecution speed is inadequate in many scenarios. Addi-
tionally, modeling and modifying simulators are non-
trivial, which limit the early availability of the ISS-
based profilers.

• Conversely, classic source code profilers encompass-
ing Source-Level Performance Estimation (SLPE) [16,
13, 18] utilize machine-independent optimizations pro-
vided by the host compilers to resemble the optimiz-
ing target compilation process for the sake of accuracy.
However, the accuracy is still prohibitively limited, es-
pecially for VLIW architectures and Application Spe-

cific Instruction-set Processors (ASIPs), which are re-
grettably the main areas where accurate profiling is
needed.

Figure 1 compares the workflow of source code profilers
with SLPE, ISS-based profilers, and TotalProf – the source
code profiling infrastructure proposed in this paper. To-

talProf features a novel Intermediate Representation (IR)-
to-IR transformation process called virtual compiler backend

(or virtual backend) to resemble the behavior of a real target
compiler backend. It also estimates the behavior of the tar-
get processor’s datapath and simulates the dynamic events,
such as cache misses, bus contention and branch prediction

305

IR-Level

Source-Level

ISA-Level

Source Code

Compiler Frontend

IR

Optimizer

Host Compiler Backend

Host Computer

Source Code

Compiler Frontend

IR

Optimizer

Virtual Compiler Backend

Host Computer

Source Code

Compiler Frontend

IR

Optimizer

Target Compiler Backend

Executable

Instruction Set SimulatorHost Compiler Backend

IR

profiled

profiled profiled

Source Code Profilers

with SLPE
ISS-Based ProfilersTotalProf

Accuracy

Speed (Availability)

Host Computer

High (Early)

Low High

Low (Late)

Figure 1: Concept of TotalProf. Like source code pro-

filers utilizing SLPE, TotalProf uses host compilation to

benefit from native execution. The profiling is performed

at the same level of ISS-based profilers, therefore accu-

racy can be preserved.

failures. TotalProf can be easily retargeted with architec-

ture descriptions. It can provide highly precise profiling in-
formation, which is normally only about 5 to 15% worse
than the ISS-based profilers. At the same time, TotalProf

executes at a more than one GIPS speed, which is 1 to 3
orders of magnitude higher than the speed of most ISSs.
Furthermore, heterogeneous MPSoCs can be accurately es-
timated using multiple TotalProf s connected with SystemC

bus/peripheral models.
The remainder of this paper is organized as follows. After

reviewing the related work in section 2, section 3 elaborates
the TotalProf infrastructure. Section 4 presents experimen-
tal results and two case studies on profile-aided VLIW archi-
tecture and MPSoC Design Space Exploration (DSE). After
TotalProf is introduced, some in-depth discussions are given
in section 5. Finally, section 6 concludes this paper.

2. RELATED WORK

2.1 Profiling Techniques
In general, profiling can be implemented using two means:

instrumentation or supervision. Source code profilers are
usually implemented using the former. They inject extra
code to the applications’ source code before or during com-
pilation, so that profiles can be collected during the course
of execution. As an example, GCC can inject extra profiling
code to an application. After execution, a profile is gener-
ated, which can be analyzed and displayed using the GNU

gprof [11]. This approach is intrusive in two aspects: First,
some compiler optimizations (e.g., function inlining) might
be suppressed due to the introduction of profiling code. Sec-
ond, the timing information observed from the environment
is also affected by the execution of profiling code. Moreover,
it only generates profiles for the native environment and can-
not provide the convenience of profiling an application for a
target architecture on a host computer.

Source-level performance estimation that performs cross

profiling can be utilized to address these issues. For example,
the micro-profiler, proposed by Karuri et al. [16], utilizes

SLPE for fine-grained source code profiling. It estimates
the performance of an application by lowering the C source
code to a so-called 3 Address Code (3-AC) IR, which is exe-
cutable C code that only consists of statements in a similar
abstraction level to a RISC. After machine-independent op-
timizations are performed, the performance of each basic
block in the 3-AC IR can be estimated. Together with the
frequencies of basic blocks obtained from the execution, the
performance of the entire application can be calculated.

Source code profilers only support a limited number of
High-Level Languages (HLLs). The approach of instrument-
ing the applications’ binaries [34, 24, 25, 21] overcomes
this limitation. Recently, Dynamic Binary Instrumenta-

tion (DBI) tools, such as Valgrind [25] and PIN [21], be-
come especially widespread in the general purpose domain.
With these tools, application binaries are transformed and
instrumented at runtime. However, developing a DBI tool
for a new architecture is difficult and even not always pos-
sible. Because in the embedded domain the diversity of
Instruction-Set Architectures (ISAs) is much higher than
that of the HLLs, binary instrumentation based profiling
is not widely used.

Supervision-based profiling can be implemented in various
ways as well. The most straightforward example is hardware
performance counters [1] that widely exist in modern pro-
cessors. Advanced hardware profilers (e.g., [36]) can be used
for complex cases, but the storage of the generated profiles
is usually a bottleneck. Hardware profilers cannot be used
in early design phases, when the prototypes are not available
yet. A supervision-based profiler can also be implemented
by modifying the software stack the applications run upon
[17].

In the embedded domain, the most straightforward and
widespread approach is ISS-based profiling, which performs
profiling during simulation. For example, [6] employs Sys-

temC -based co-simulation for profiling. Static information
is collected using an ISS, and the result can be reused in
dynamic event simulation.

Furthermore, both instrumentation and supervision based
profiling approaches can benefit from sampling profiling [24,
14] that reduces the runtime overhead.

2.2 Instruction Set Simulation
Instruction set simulators are widely used in the embed-

ded domain for profiling purposes.
SimpleScalar [4] is an interpretive simulator that can

model a wide range of architecture/micro-architecture fea-
tures. However, the execution speed is low since the entire
process including instruction fetching, decoding and execu-
tion has to be simulated at runtime.

Compiled simulation is proposed to alleviate the execu-
tion effort by pre-decoding instructions. The decoding can
be performed statically [38] or dynamically [26, 30, 29].
The latter, also known as Just-In-Time Cached Compiled

(JIT-CC) [26] or IS-CS [30] simulation, can support self-
referential and self-modifying code. Compiled simulators
normally execute at several to tens of MIPS, which is much
higher than the speed of interpretive simulators.

Binary translation is also used for simulation purposes
[37, 2, 15]. Target binaries are directly translated to host
executable code, and even inter-basic-block optimizations
can be performed to further improve the execution speed
[15]. Up to several hundred MIPS can be achieved in such

306

C Source Code

LLVM Compiler Frontend

LLVM IR

Linker & Optimizer

Virtual Backend

Host Executable

Host Computer

LLVM Host Backend

LLVM IR (Virtual Assembly)

Instrumenter

Performance Estimator

Behavior Library

Emulation Libraries

Profiling Libraries

Architecture Description

Code Selector

Register Allocator

Pre-RA Scheduler

Post-RA Scheduler

Code Emitter

Code Patcher

%t1 = add i32 %t1, %t2

;; addi r2, sp, -8 | addi r1, sp, -12

%R2 = call i32 @VISA_ADD_I(%SP, -8)

%R1 = call i32 @VISA_ADD_I(%SP, -12)

call void @VISA_BUNDLE_END()

;; ld r2, r1 | ld r1, r2

%R2 = call i32 @VISA_LD(%R1)

%R1 = call i32 @VISA_LD(%R2)

call void @VISA_BUNDLE_END()

;; addr r1, r1, r2

%R1 = call i32 @VISA_ADD_R(%R1, %R2)

call void @VISA_BUNDLE_END()

%R2 = call i32 @VISA_ADD_I(%SP, -8)

%R1 = call i32 @VISA_ADD_I(%SP, -12)

call void @VISA_BUNDLE_END()

%T1 = call i32 @VISA_LD(%R1)

%R1 = call i32 @VISA_LD(%R2)

%R2 = %T1

call void @VISA_BUNDLE_END()

%R1 = call i32 @VISA_ADD_R(%R1, %R2)

call void @VISA_BUNDLE_END()

Linker & Optimizer
Simulation Libraries

Assembly Code

Assembly Translator

Visualization

Execution

Design Space Exploration

Application Development

Figure 2: TotalProf infrastructure with an example of a virtual backend

simulators. However, they are not widely used for profiling
purposes, since the accuracy is often sacrificed to achieve
high execution speed.

An orthogonal direction of research is sampling/statistical
simulation [33, 9], which relies on cycle-accurate simulators
but aims at reducing the simulation workloads. These ap-
proaches are mainly used in micro-architecture design space
exploration.

2.3 Timing-Annotated Native Execution
Instead of simulation, the source code of applications can

be directly compiled and executed on the native host com-
puters, in order to reach a higher execution speed. Timing
information can be annotated to the source code to facilitate
profiling.

One way of obtaining the timing information is to analyze
the applications’ source code. This approach is also known
as source-level performance estimation. The aforementioned
micro-profiler is an example. Similarly, [13] applies SLPE
with optimistic static scheduling to better resemble the char-
acteristics of target processors. Nevertheless, SLPE only
provides limited accuracy to a narrow range of target pro-
cessors, albeit early availability is granted since there is no
dependency on the target simulators or compilers.

Instead of analyzing the timing information from the
source code, [18, 8, 31] perform the entire code generation
using modified versions of the target compilers. The modi-
fied target compilers emit C code instead of target machine
assembly to enable native compilation. However, the effort
of applying this approach is not less than retargeting a real
compiler. As a comparison, TotalProf can be conceptually
regarded as a similar work that is devoted to alleviate the
effort of retargeting.

Decompiling target binaries to HLLs is also researched
[20], however this approach is more like binary translation
and the dependency to target compilers still occurs. There
are also endeavors on analyzing the target binaries or tar-
get compilation processes and annotating the information

back to the (original or transformed) C source code [22, 32,
3]. However, these approaches lack evaluation with complex
target code generation scenarios (as they make the annota-
tion significantly difficult) and depend on the completion of
the target compilers as well.

It is also important to mention that profiling is usually
more than performance estimation. For example, most per-
formance estimation tools cannot generate a call graph,
memory access histogram, or a data dependence graph.
Note, that further discussion will be given in section 5 once
TotalProf has been introduced.

3. TOTALPROF INFRASTRUCTURE
Different to the aforementioned prior works, TotalProf

aims at three goals at once: (1) An ultra fast execution speed
that is on a par with SLPE. (2) A performance estimation
close to ISS for a wide spectrum of processor architectures.
(3) Ease to retarget. To accomplish these goals, TotalProf

employs changes to the classic structure of SLPE.
As shown in Figure 2, TotalProf performs source-level

performance estimation that is implemented by embedding
several IR-to-IR transformations into the host compilation
workflow of an open-source retargetable compiler – LLVM
[19]. LLVM does not emit machine assembly for each com-
pilation unit (i.e., source file), but generates a bitcode IR.
The IR files of all the computation units can be linked to
an archived IR, on which interprocedural optimizations can
be performed. Originally, the LLVM host backend produces
machine assembly from the archived IR. Instead, in Total-

Prof, some IR-to-IR transformations are performed before
the host backend takes place. These transformations consist
of a virtual backend, a performance estimator and an instru-
menter, which can be retargeted using architecture descrip-

tions. Profiling is performed at runtime, and the results can
be visualized to guide application development and archi-
tecture design space exploration. The following subsections
describe the virtual backend, performance estimation tech-
nique, and how to practically retarget TotalProf.

307

3.1 Virtual Backend
Unlike a real compiler backend, a virtual backend emits

special LLVM IR called virtual assembly. The virtual as-
sembly represents target-ISA-level information. Therefore,
the course of target code generation can be simulated by
retargeting the virtual backend using architecture descrip-
tions. As shown in the right-hand side of Figure 2, the ex-
ample VLIW virtual backend performs code selection, pre-

Register-Allocation (pre-RA) scheduling, register allocation,
post-Register-Allocation (post-RA) scheduling, etc., which
can be found in most of the modern retargetable compil-
ers. By describing each instruction’s syntax, virtual assem-
bly can be generated from a code emitter. As shown in
the example output, global variables are used to represent
registers, and function calls (to the implemented behaviors
of corresponding instructions) are used to represent instruc-
tions. They are called virtual registers and virtual instruc-

tions respectively. Finally, the end of each VLIW bundle is
also explicitly given.

Nevertheless, even with the behavior of each instruction
provided, the directly generated virtual assembly may still
execute incorrectly. The reason is twofold. First, each vir-
tual instruction must be sequentially executed as an LLVM
IR, while a processor may issue instructions in parallel. Sec-
ond, the execution result of each virtual instruction is imme-
diately written back to the virtual registers or the memory,
but a pipelined processor architecture without interlocking
(e.g., the MIPS-4K) can issue instructions before the re-
sults of previous instructions are written back, in which case
original values are still accessible. A code patcher is intro-
duced to address this issue. It creates temporary variables
to buffer the execution results that cannot be immediately
written back, so that the generated virtual assembly can be
executed correctly. As shown in the example, a temporary
variable T1 is employed to buffer the value that cannot be
immediately written back to R2.

Last but not least, practically, not all custom instructions
in an ASIP can be automatically utilized during compiler
code generation. In this case, a retargetable assembly trans-
lator is provided so that the user can write “normal” assem-
bly instead of having to program in virtual assembly.

3.2 Performance Estimation and
Instrumentation

The performance of an application can be approximated
using the following formula, in which SCyclen is the esti-
mated static cycle cost of basic block n and DCyclem is the
dynamic cycle cost when event m happens.

Cycletotal =

BBi∑

n=BB0

SCyclen×Countn +

Eventj∑

m=Event0

DCyclem

To estimate the static cost of each basic block, optimistic
static scheduling is performed during the performance es-

timation phase. Based on the architecture description, it
identifies data hazards that can happen if a basic block is
executed with no dynamic event (e.g., cache miss) taken
into consideration. The analyzed static costs are annotated
to the virtual assembly on a per-instruction basis, as shown
in Figure 3, where the virtual assembly generated from Fig-
ure 2 undergoes further processing. In this example, two
pipeline hazards (shown in 1© of the figure) are detected in

Linker & Optimizer

%R2 = call i32 @VISA_ADD_I(%SP, -8)
%R1 = call i32 @VISA_ADD_I(%SP, -12)

call void @VISA_BUNDLE_END()
%T2 = call i32 @VISA_LD(%R1)

%R1 = call i32 @VISA_LD(%R2)
%R2 = %T2

call void @VISA_BUNDLE_END()
%R1 = call i32 @VISA_ADD_R(%R1, %R2)

call void @VISA_BUNDLE_END()

Performance Estimator

%R2 = call i32 @VISA_ADD_I(%SP, -8)

call void @_anno_operation(%VISA_ADD_I)
%R1 = call i32 @VISA_ADD_I(%SP, -12)

call void @_anno_advance_cycle(1)
call void @_anno_advance_pc(8)

%T2 = call i32 @VISA_LD(%R1)

call void @_anno_mem_read(%R1)
%R1 = call i32 @VISA_LD(%R2)

call void @_anno_mem_read(%R2)
%R2 = %T2

call void @_anno_advance_cycle(1)
call void @_anno_advance_pc(8)

call void @_anno_advance_cycle(1)
%R1 = call i32 @VISA_ADD_R(%R1, %R2)

call void @_anno_advance_cycle(1)
call void @_anno_advance_pc(8)

1

1

Instrumenter

%Cycle = add i32 %Cycle, @IFetch(0x1000)

%R2 = call i32 @VISA_ADD_I(%SP, -8)

call void @LogOperation(%VISA_ADD_I)
%R1 = call i32 @VISA_ADD_I(%SP, -12)

%Cycle = add i32 %Cycle, 1
%Cycle = add i32 %Cycle, @IFetch(0x1008)

%T2 = call i32 @VISA_LD(%R1)
%Cycle = add i32 %Cycle, @DataRead(%R1)

%R1 = call i32 @VISA_LD(%R2)
%Cycle = add i32 %Cycle, @DataRead(%R2)

%R2 = %T2
%Cycle = add i32 %Cycle, 1

%Cycle = add i32 %Cycle, @IFetch(0x1010)
%Cycle = add i32 %Cycle, 1

%R1 = call i32 @VISA_ADD_R(%R1, %R2)

%Cycle = add i32 %Cycle, 1

Behavior Library

int VISA_ADD_I(int a, int b) {
return a + b;

}

...

Simulation Libraries

int DataRead(int addr) {
LogMemoryTrace(addr);

if (CacheRead(addr) == MISS)
return BusRead(addr);

return 0;
}

...

Profiling Library

void LogOperation(void *op){
// Empty function

// can be inlined
}

...

Emulation Library

void EMU_fprintf() {

...
}

...

2

2

2

1

3

3

3

Figure 3: Example of performance estimation and

instrumentation

the virtual assembly, and one extra cycle has to be spent on
solving these hazards. This extra cycle consumption is an-
notated to the virtual assembly. In turn, the annotation can
be processed by a machine-independent instrumenter, which
produces extra code to accumulate a global cycle counter
(Cycle).

2© of the figure shows an example of using annotation and
instrumentation to support profiling. The type of each op-
eration can be annotated, and then profiling code can be in-
jected to log the execution count of each type. The profiling
code is represented as function calls, which invokes profil-
ing libraries developed in C and C++. Multiple choices of
implementation can be selected by the user via linking with
different libraries to meet various execution speed/profiling
requirements. In general, the more complex the implemen-
tation, the slower the execution. The profiling functions can
also be completely empty, so that the corresponding func-
tion calls can be eliminated thanks to the powerful LLVM
interprocedural optimizations.

Dynamic events, another source of cycle consumption, can
be simulated at runtime with the help of annotation. For
example, the memory accesses are annotated (3©), based on
which extra code (DataRead(%R1)) is instrumented so that

308

simulation libraries can be invoked. In this case, DataRead
first logs a memory access to the profile, then calls another
simulation library to perform cache simulation. If cache miss
happens, a transaction is simulated using a bus simulator.
Naturally, different implementations are also available for
each of these functions. Moreover, through the bus simu-
lation interface, multiple TotalProf instances (even mixed
with ISSs) can be connected together.

Furthermore, API emulation libraries are also provided so
that the system operations, e.g., file writing, can be sup-
ported.

3.3 Retargeting TotalProf
TotalProf can be retargeted using several different ap-

proaches. For profiling purposes, the Application Binary

Interface (ABI) level compatibility does not have to be rigor-
ously met. Consequently, retargeting TotalProf is extremely
easy, compared to the traditional retargetable compilers.

3.3.1 Architecture Description

As shown in Figure 4, the architecture description in To-

talProf consists of two parts: a compiler machine descrip-

tion that includes a datapath description, and an instruction

behavior description.
In TotalProf, a virtual backend is implemented using the

LLVM backend subsystem. The code selection, pre-RA
scheduling and register allocation are implemented in the
same way like most of the existing LLVM backends. A com-
pletely redesigned post-RA scheduler is developed in order
to generate VLIW virtual assembly. The post-RA scheduler
is driven by a datapath description, including inputs and
outputs of each instruction, instruction latency tables and a
reservation table. The datapath description is also used for
the static performance estimation. Since the virtual assem-
bly must be executed, the behavior of each instruction has
to be provided, which can be described in C and C++. To-

talProf can be fully-retargeted or semi-retargeted, as elabo-
rated in the following.

3.3.2 Semi-Retargeting TotalProf

Although the architecture description contains more in-
formation than a compiler machine description, TotalProf

can be easily retargeted through modifying some abstracted
features, because no ABI-level compatibility has to be rigor-
ously promised. This approach is also called semi-retargeting

in this work.
A VLIW architecture description template constituting

a large variety of instructions is the starting point of semi-
retargeting. New custom instructions can be introduced and
the existing instructions can be disabled. Calling conven-
tions and the number of general purpose registers can also
be easily changed. By modifying the instruction latency ta-
bles and the reservation table, the model of the processor’s
datapath can be easily configured. The tables can be directly
modified or configured via adjusting the number of execution
units for the sake of simplicity. As will be shown later, semi-
retargeting is powerful enough to capture the performance
characteristics of a large variety of target architectures, in-
cluding ASIPs, DSPs and VLIW machines.

3.3.3 Fully-Retargeting TotalProf

Although good accuracy of semi-retargeting has been
demonstrated, fully-retargeting TotalProf is also possible in

Semi-retargeting Fully-retargeting

Abstracted Features Architecture Description

Instruction Behavior Description

number of registers

calling conventions

instruction-per-bundle

custom instructions

Compiler Machine Description:
Instruction Pattern, Registers, etc.

Datapath Description:
Input/output Resources

Latency Tables

Reservation Table
Performance Estimator

Virtual Backend

Behavior Library

Figure 4: Retargeting TotalProf

favor of higher fidelity. In case that a LLVM backend for
the target architecture already exists, one easy way to fully-
retarget TotalProf is to reuse the majority of the machine
description of the LLVM backend and to only change the
syntax of each instruction so that virtual assembly instead
of machine assembly is emitted. Afterwards, the instruc-
tion behavior and datapath descriptions can be provided to
complete the retargeting.

4. RESULT AND CASE STUDY
This section first presents the experimental results of To-

talProf to evaluate the execution speed, performance esti-
mation accuracy, and retargetability. Then, two case studies
on VLIW processor and MPSoC design space exploration are
discussed. All the experiments are undertaken on a Fedora

Core 4 Linux computer with Athlon 5200+ processor and
4 GB of memory. A number of embedded applications are
used in the experiments.

4.1 Evaluation 1: Speed and Accuracy
The speed and accuracy of TotalProf is evaluated for the

MIPS-4K architecture, because this architecture is also sup-
ported by the SLPE-based micro-profiler, so that a fair com-
parison can be made. A cycle-accurate MIPS ISS with built-
in profiling functionality is used as a reference. This ISS
is modeled with the CoWare ProcessorDesigner (based on
[27]) and uses the Just-In-Time Cache Compiled (JIT-CC)
simulation technique [26]. To use the ISS, the applications
must be compiled. The MIPS-GCC (2.95.3) compiler is em-
ployed with O3 optimization threshold selected.

TotalProf is semi-retargeted to the MIPS architecture.
The LLVM interprocedural optimizations are disabled so
that the estimated result is closer to that of the MIPS-GCC.
One important remark is that this evaluation does not in-
tend to pretend that one compiler can be used to estimate
a different one. Instead, the only purpose is to show that
SLPE with a virtual backend is much better than without.
Indeed, as a source code profiler, there is no generic approach
to link with the compiler used in a product, but nevertheless,
employing fast profiling as early as possible is still helpful in
many scenarios, even if it is not exactly accurate.

4.1.1 Speed Comparison

To give an impression of the execution speed of TotalProf,
the execution time of different approaches are measured.
These results are represented in Million Instructions Per

Second (MIPS) that is computed via dividing the number
of instructions obtained from the CA ISS by the execution
time of each approach. Note, that due to this calculation,
sometimes the result may appear to extraordinarily large.

As shown in Figure 5, GNU gprof [11] is only slightly
slower than the native execution on the host. Valgrind [25]

309

1

10

100

1000

10000

m
i
l
l
i
o
n

i
n
s
t
r
u
c
t
i
o
n

p
e
r

s
e
c
o
n
d ISS micro-profiler TotalProf(app) TotalProf(func) TotalProf(insn)

100000

des aes crc32 md5 blowfish g721 adpcm jpeg mpeg2

Native Gprof Valgrind

Figure 5: Speed Comparison

(with call graph generation but no cache simulation) slows
the execution speed down significantly. All these three ap-
proaches do not provide target architecture specific perfor-
mance information since they are not for cross profiling.
However, the results are listed here as an additional infor-
mation.

The execution speed of TotalProf heavily depends on the
threshold of profiling, which can be controlled with many
options. Three typical profiling levels are defined to enable
the evaluation. They are (1) application-level SLPE, ab-
breviated as app, (2) function-level profiling (func), which
records performance and memory access number for the in-
vocation of each function, and (3) instruction-level profil-
ing (insn), which not only performs all the profiling of the
function-level one but also generates statistics such as exe-
cution count for each type of instruction. Cache simulation
is performed in none of them. The execution speed of these
three levels is compared with that of the JIT-CC ISS and
the micro-profiler in Figure 5. At the app-level, TotalProf is
only 1.67 times slower than the micro-profiler doing a simi-
lar profiling job. Meanwhile, TotalProf (app) is 456.6 times
faster than the ISS. Note, that the accuracy of all these three
levels are exactly the same, and the slowdown of the func

and insn-levels is only caused by the profiling information
generation. Nevertheless, the experiment shows at least the
speed of func-level profiling can be improved in our future
work, because of the observation that GNU gprof, which
generates similar profiling information, is only marginally
slower than the native execution.

4.1.2 Accuracy Comparison

Figure 6 compares the generated profiles on application
performance (normalized to that of the ISS), global/local
memory accesses and instruction/data cache simulation re-
sults. On average (in this paper, standard deviation com-
puted against reference values), TotalProf only introduces
5.8% error rate on the estimated performance, which is much
better than the micro-profiler (29.1%).

The global and local memory accesses per 1000 cycles of
each application are given in Figure 6.(b), indicating both
TotalProf and the micro-profiler are on a par in respect of
global memory access estimation. Note, that for blowfish,
the ISS suggests 8 global memory accesses but both Total-

Prof and micro-profiler estimate 1 access per 1000 cycles.
Although the error rate is large, the absolute error is negligi-
ble, as only 7 accesses are miscalculated in each 1000 cycles.
The average error rates of TotalProf and micro-profiler (ne-
glecting this anomaly) are 15.1% and 13.1% respectively.

de
s

ae
s

cr
c3
2

md
5

bl
ow
fi
sh

g7
21

ad
pc
m

jp
eg

mp
eg
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

c
y
c
l
e

c
o
u
n
t

(
n
o
r
m
a
l
i
z
e
d

t
o

I
S
S
)

ISS micro-profiler TotalProf

(a) Performance estimation

0

50

100

150

200

250

300

350

400

de
s

ae
s

cr
c3
2

md
5

bl
ow
fi
sh

g7
21

ad
pc
m

jp
eg

mp
eg
2

m
e
m
o
r
y

a
c
c
e
s
s
e
s

p
e
r

1
0
0
0

c
y
c
l
e
s

Local@ISS

Global@ISS

Local@micro-profiler

Global@micro-profiler

Local@TotalProf

Global@TotalProf

(b) Global and local memory accesses

0

100

200

300

400

500

600

de
s

ae
s

cr
c3
2

md
5

bl
ow
fi
sh

g7
21

ad
pc
m

jp
eg

mp
eg
2c

a
c
h
e

m
i
s
s
e
s

p
e
r

1
0
0
0

c
y
c
l
e
s I-Cache@ISS

D-Cache@ISS D-Cache@micro-profiler

I-Cache@TotalProf

D-Cache@TotalProf

(c) Instruction and data cache misses

Figure 6: Accuracy Comparison

TotalProf also gives a fairly accurate local memory access
estimation (13.1%). However, the local memory accesses es-
timated with micro-profiler are distorted (67.9%) since it is
not capable of simulating the effect of register allocation,
due to the absence of compiler backend simulation.

To further evaluate the accuracy of memory profiles, cache
simulation is applied as it is sensitive to memory access pat-

310

0

0.2

0.4

0.6

0.8

1

1.2

de
s

ae
s

cr
c3
2

md
5

bl
ow
f
is
h

g7
21

ad
pc
m

jp
eg

mp
eg
2

c
y
c
l
e

c
o
u
n
t

(
n
o
r
m
a
l
i
z
e
d

t
o

L
T
R
I
S
C
:
I
S
S
)

de
s

ae
s

cr
c3
2
md
5

bl
ow
f
is
h

g7
21

ad
pc
m

jp
eg

mp
eg
2
de
s

ae
s

cr
c3
2
md
5

bl
ow
f
is
h

g7
21

ad
pc
m

jp
eg

mp
eg
2
de
s

ae
s

cr
c3
2
md
5

bl
ow
f
is
h

g7
21

ad
pc
m

jp
eg

mp
eg
2

LTRISC LTRISCe LTVLIW LTVLIW-DSP ISS TotalProf

Figure 7: Retargetability evaluation results

terns. TotalProf shows a good accuracy on data cache sim-
ulation (9.5% error), but micro-profiler has an exacerbated
52.4% error rate due to the inaccurate local memory ac-
cess estimation. Moreover, TotalProf can perform instruc-
tion cache simulation (10.4% error) since the instrumenta-
tion happens after linking of all compilation units, when the
address of each virtual instruction can be assessed. The
same feature cannot be supported by micro-profiler as well
as many of other SLPE tools.

There is an interesting observation that micro-profiler

more accurately reports the performance of the application
mpeg2. However, the facts are as follows: (1) Micro-profiler

tends to over-estimate the cost of instructions since its opti-
mizations are not as strong as those of MIPS-GCC, as can be
observed in Figure 6.(a). (2) Micro-profiler fails at estimat-
ing most of the local memory accesses for this application.
(3) The above two factors are nullified in some sense, ren-
dering an apparently “more” accurate estimation.

4.2 Evaluation 2: Retargetability
To further evaluate the retargetability, TotalProf is retar-

geted to four different embedded architectures, which are
enumerated as follows.

1. LTRISC – a fixed-point RISC processor provided by
CoWare as a template architecture for ASIP design. It
has a 5-stage pipeline with no interlocking, therefore
nops have to be introduced to solve pipeline hazards.

2. LTRISCe – an enhanced version of LTRISC. Inter-
locking is used to solve pipeline hazards, and a branch
predictor is introduced.

3. LTVLIW – a VLIW architecture with a RISC-like
instruction set – another template provided by CoW-

are for ASIP design. It has a 5-stage pipeline with
no interlocking, and 4 instructions can be issued per
cycle.

4. LTVLIW-DSP – LTVLIW enhanced with DSP in-
structions, e.g., MAC instruction.

These processors cover a large variety of embedded ar-
chitecture features, such as interlocking, branch prediction,
VLIW architecture and DSP instruction. TotalProf is semi-
retargeted to them, and Figure 7 shows the results of per-
formance estimation in comparison with the instruction set
simulation of the applications compiled with the correspond-
ing LLVM compilers.

Since both the target compilers and the performance es-
timation are based on the same LLVM infrastructure, the
results show an expected good accuracy of 6.1%, 5.9%, 3.2%
and 3.3% for these four processor architectures separately.
These results prove that the diversity of target processor
architectures can be successfully captured with the virtual
backend enhanced SLPE tool – TotalProf. At the same time,
the speed advantage of SLPE is largely preserved, as the
average execution speed of these TotalProf s is 1.35 GIPS,
which is much higher than the JIT-CC technique powered
ISSs at 5.3 MIPS averagely.

4.3 Case Study 1: VLIW Design Space
Exploration

One advantage of using TotalProf instead of ISS for DSE
is that the former can be easily constructed and modified.
The reason is twofold: First, although ISSs can be auto-
matically generated using ADLs (as will be discussed in
section 5), describing and modifying an architecture is non-
trivial. Second, most of the ADLs are not compiler-oriented,
therefore cannot be easily used to explore compiler-oriented
design variants.

This case study presents how TotalProf can facilitate a
common VLIW design problem: deciding the number of Ex-

ecution Units (EUs), which is a critical parameter of a VLIW
processor. The more EUs, the higher instruction-level par-
allelism can be supported by the hardware. However, if the
optimizing compiler cannot utilize the additional EUs by ex-
ploiting parallelism from the applications, the introduction
of the additional EUs will only increase the cost and energy
consumption of the VLIW processor. Moreover, if the VLIW
processor cannot issue varying number of instructions, the
introduction of the additional EUs can also have a negative
impact on the code size.

The starting point of this case study is the default
LTVLIW architecture provided by CoWare in their product
ProcessorDesigner. This architecture is modeled in the LISA
ADL [27]. Assembler/disassembler, linker, cycle-accurate
ISS and RTL hardware description (e.g., VHDL) can be au-
tomatically generated using the ProcessorDesigner. By de-
scribing some compiler generation rules (already provided
along with this model), a compiler can be generated. Us-
ing this tool, many important aspects, such as performance,
number of memory accesses, code size, can be directly eval-
uated. The architecture description is modified to evaluate
the performance and code size of the applications used in
subsection 4.1 and 4.2. However, the modification is non-

311

0

0.2

0.4

0.6

0.8

1

1.2

0.5

1

1.5

2

2.5

3

3.5

1-IPB 2-IPB 3-IPB 4-IPB

C
y
c
l
e

c
o
u
n
t

(
n
o
r
m
a
l
i
z
e
d

t
o

1
-
I
P
B
)

C
o
d
e

s
i
z
e

(
n
o
r
m
a
l
i
z
e
d

t
o

1
-
I
P
B
)

Cycle count observed with the ISS

Reference code size

(a) Reference performance and code size

0

0.2

0.4

0.6

0.8

1

1.2

0.5

1

1.5

2

2.5

3

3.5

1-IPB 2-IPB 3-IPB 4-IPB

C
y
c
l
e

c
o
u
n
t

(
n
o
r
m
a
l
i
z
e
d

t
o

r
e
f
e
r
e
n
c
e

1
-
I
P
B
)

C
o
d
e

s
i
z
e

(
n
o
r
m
a
l
i
z
e
d

t
o

1
-
I
P
B

r
e
f
e
r
e
n
c
e
)

Cycle count estimated with TotalProf

Estimated code size

(b) Estimated performance and code size

Figure 8: Results of VLIW design space exploration

trivial and error-prone. For example, changing the number
of EUs from 4 to 2 involves 428 lines of code modification in
5 different files.

On the other hand, configuring TotalProf to estimate the
performance of the VLIW processor with different numbers
of EUs is extremely easy. Changing the number of EUs
from 4 to 2 only involves 5 lines changes. Figure 8 shows
the performance and code size of the applications obtained
using the LISA model (with the generated cycle-accurate
ISS) and the semi-retargeted TotalProf s. The average, max-
imum, and minimum values are plotted on the figures. At
the same time, the execution speed of TotalProf is much
higher than using the ISSs.

Although TotalProf is not a design tool to develop an
architecture or its compiler/simulator, its use can help the
architect by reducing the design space significantly, so that
the effort of the further fine-grained DSE using the tradi-
tional approaches can be reduced. In this case study, LLVM
compiler is also used to generate LTVLIW assembly, which
is also an important reason why the results are so close.
However, even if a different compiler is chosen for the archi-
tecture, such an early estimation is still helpful in reducing
the design space that has to be explored later.

4.4 Case Study 2: MPSoC Design Space
Exploration

MPSoCs have emerged in the embedded domain to solve
the performance-power dilemma. However, application spe-
cific MPSoC design is still a difficult practice. This is due to
the enormous complexity of both the multi-processor soft-
ware and hardware. The lack of fast and accurate profiling
tools has prevented software developers from fully utilizing
the power of multi-processing, therefore has prohibited hard-
ware developers from evaluating their design variants with
decent workloads. The introduction of TotalProf attempts
to alleviate this situation. This case study is performed in

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6

Configuration (x)

C
y
c
l
e
s

(
m
i
l
l
i
o
n
)

Rx ISS

Vx ISS

RVx ISS

Rx TotalProf

Vx TotalProf

RVx TotalProf

Figure 9: Results of MPSoC DSE

the following context: A H.264 baseline decoder application
is parallelized by software developers into a scalable applica-
tion, i.e., engaging more processors can improve the perfor-
mance of the application. The software has been evaluated
on multi-core hosts where the scalability has been demon-
strated. However, there are two questions that need to be
answered: First, is the software truly scalable on a properly
configured embedded MPSoC platform? Second, what is the
best hardware configuration to execute the software?

To answer these questions, MPSoCs with various numbers
and types of Processing Elements (PEs) have to be evalu-
ated. This requires a configurable MPSoC virtual simulation
platform to be built. However, developing such a MPSoC
virtual platform is extremely difficult and cannot be avail-
able early enough, rendering both the software team and
the hardware team to possibly waste their time on deviated
development directions.

In this case study, the details of the design variants are as
follows: The MPSoC contains a number of RISC (LTRISC)
and VLIW (LTVLIW) PEs connected with an AMBA bus.
Maximally 7 PEs can be put on the chip. Each PE has its
own local memory, while synchronization and communica-
tion is done using a shared memory. The H.264 application
is parallelized into a master task (that undertakes control
and some computation jobs) and a number of slave tasks for
macroblock decoding that is deemed the most computation-
intensive subtask. In each MPSoC design variant, a dedi-
cated PE is used to execute the master task, and the slave
tasks are mapped to the rest of the PEs, which are in turn
called slave PEs. The design space consists of the following
configurations:

• RISC MPSoC: The master task is executed on one
RISC PE and the slave tasks are mapped to a number
(x) of RISCs. Each design variant is named as Rx.

• VLIW MPSoC: Similarly, VLIW PEs are used for
executing both the master and slave tasks, and each
design variant is called Vx accordingly.

• RISC-VLIW MPSoC: A RISC is used to execute
the master task and a number (x) of VLIW PEs are
dedicated to executing the slave tasks. Each design
variant is called RVx.

To explore this design space, TotalProf is semi-retargeted
to the RISC and VLIW processors. Multiple instances of
TotalProf are connected with SystemC bus/memory mod-
els to enable fast and accurate MPSoC profiling. Figure 9
shows the evaluation results. Compared to an ISS-based

312

virtual platform that is available later, the accuracy of the
TotalProf -based virtual platform is very good. The profil-
ing indicates that the introduction of the first and second
slave PEs can significantly improve the performance, but
further performance improvement cannot be achieved with
more slave PEs engaged. The profiling also unveils the un-
derlying reason: Their are too many bus transactions and
the chance of bus contention increases rapidly when more
PEs are introduced.

The TotalProf -based virtual platform executes fast
enough, and software developers can use it in their daily
work to iteratively evaluate their modifications. For exam-
ple, to evaluate the H.264 software on one of the MPSoC
configurations, the ISS-based virtual platform takes 12 to
46 minutes (depending on the actual configuration), while
the TotalProf -based only takes 11 to 42 seconds. In design
space exploration, the architect needs to evaluate all the de-
sign variants. The ISS-based virtual platform takes about 8
hours in this case, while the TotalProf -based only consumes
7 minutes.

Nevertheless, this case study also shows a limitation of
TotalProf that it only supports application profiling. If the
MPSoC contains an operating system for task scheduling,
the current TotalProf cannot handle it. It is our future work
to improve TotalProf with task scheduling functionality.

5. FURTHER DISCUSSION

5.1 Comparison to Instruction Set Simulation
As reviewed in section 2, the instruction set simulation

approach of highest execution speed is binary translation.
Indeed, as indicated by Figure 1, TotalProf can also be
regarded as a special binary translation based simulator
that translates virtual assembly to a host executable. How-
ever, there are several differences. First, TotalProf is self-
contained, as it does not rely on the availability of a target
compiler. Second, TotalProf does not have to parse assem-
bly files (or disassembled binary files) for various architec-
tures, which is a major effort of retargeting a binary trans-
lator. Third, TotalProf benefits from the full power of the
aggressive LLVM optimizing compiler, while the majority of
binary translators cannot.

To elaborate why a traditional binary translator cannot
benefit as much from optimizations as TotalProf does, it is
essential to stress the difference between their translation
processes. TotalProf generates virtual assembly, which is
the IR of LLVM that can be directly optimized. Many works
(e.g., [20]) also attempt to generate compiler IRs or HLLs
(e.g., C language) to utilize existing optimizing compilers.
However, many architectures have features that cannot be
translated into high-level statements. For example, indirect

branch instructions change the program counter to the val-
ues of the branch registers, and they are pervasively used
in many architectures. However, in the majority of HLLs,
only indirect calls are supported. Indirect branch instruc-
tions can be used to realize indirect calls, but can also be
used for other purposes, such as implementing jump tables
of switch-case statements. Given such problems, the gen-
eration of compiler IRs or HLLs is either infeasible or ineffi-
cient. As a consequence, many binary translators resort to
using home-made IRs and optimizers, which are normally
not as powerful as the counterparts of modern optimizing
compilers.

5.2 Assembly Translation and Hybrid
Simulation

As a source code profiler, TotalProf does not process tar-
get binaries, therefore cannot support the use of inline as-
sembly or third-party libraries per se. Two methods are
introduced to address this issue.

The first method is the aforementioned (subsection 3.1)
retargetable assembly-to-virtual-assembly translator. Even
if the C source code of a function is not available, virtual as-
sembly can still be generated using the translator. Although
not capable of translating indirect branch instructions, the
translator can handle the majority of cases.

To support the other cases, hybrid simulation is devel-
oped. When a function that cannot be translated into vir-
tual assembly is called, an instruction set simulator can be
invoked to process the function. This concept can be re-
garded as a simplified (and less powerful) version of [10].

5.3 Comparison to Architecture Description
Languages

Architecture Description Languages (ADLs) [23] are
widely used in Electronic System Level (ESL) design. The
majority [27, 28, 12] of the state-of-the-art ADLs dedicate to
describing the structure of architectures, with the behavior
of each instruction affiliated. As already mentioned in case
study 1, a structural ADL can be used to model an architec-
ture then both the software toolkit and the RTL description
can be generated. However, if the architect wants to eval-
uate some design variants prior to development, modeling
and modifying such kind of ADLs are not an easy task.

Trimaran [35] uses the HMDES language to describe an
architecture. It is compiler-oriented, therefore except for the
behavior description, the rest of the description is similar to
a compiler machine description. Using Trimaran, compiler-
oriented DSE can be more easily performed. The downside
of compiler-oriented ADLs is that they are more difficult to
use by hardware developers with little compiler background.
In some sense, TotalProf is similar to Trimaran. However,
TotalProf significantly alleviates the efforts of retargeting,
and the execution speed of TotalProf is 3 orders of magni-
tude higher than that of Trimaran.

6. CONCLUSION
This paper introduces TotalProf, an application source

code cross profiler that is devoted to high execution speed,
good accuracy, and ease of retargeting. TotalProf introduces
a novel virtual backend to the classic flow of source-level per-
formance estimation to simulate the process of target com-
pilation. An optimistic static scheduler is implemented and
dynamic event simulation is encompassed. Experimental re-
sults show an average execution speed of more than one
GIPS, while the estimation accuracy of both the processor
datapath and the memory subsystem is close to instruction
set simulation. The case studies on VLIW processor and
MPSoC system design space exploration further highlight
the application of TotalProf, indicating that retargeting To-

talProf is much easier than modifying a model in an ar-
chitecture description language. It is our future work to ad-
dress the limitations of this approach, including developing a
graphical user interface to retarget TotalProf, implementing
automatic design space exploration, and supporting operat-
ing system profiling.

313

7. REFERENCES
[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.

Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous Profiling:
Where Have All the Cycles Gone? ACM Transaction on
Computer Systems, 15(4), 1997.

[2] D. Bartholomew. QEMU: a Multihost, Multitarget
Emulator. Linux Journal, 2006(145):3, 2006.

[3] A. Bouchhima, P. Gerin, and F. Pétrot. Automatic
Instrumentation of Embedded Software for High Level
Hardware/Software Co-Simulation. In ASP-DAC ’09:
Proceedings of the 2009 Conference on Asia and South
Pacific Design Automation, 2009.

[4] D. C. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. Technical Report CS-TR-1997-1342, 1997.

[5] B. D. Bus, B. D. Sutter, L. V. Put, D. Chanet, and K. D.
Bosschere. Link-Time Optimization of ARM Binaries. In
LCTES ’04: Proceedings of Conference on Languages,
Compilers, and Tools for Embedded Systems, pages
211–220, 2004.

[6] L. Cai, A. Gerstlauer, and D. Gajski. Retargetable Profiling
for Rapid, Early System-Level Design Space Exploration.
In DAC ’04: Proceedings of the 41st annual conference on
Design automation, pages 281–286, 2004.

[7] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter,
R. Leupers, G. Ascheid, H. Meyr, T. Isshiki, and
H. Kunieda. MAPS: An Integrated Framework for MPSoC
Application Parallelization. In DAC ’08, pages 754–759,
2008.

[8] E. Cheung, H. Hsieh, and F. Balarin. Fast and Accurate
Performance Simulation of Embedded Software for MPSoC.
In ASP-DAC ’09, 2009.

[9] L. Eeckhout, K. de Bosschere, and H. Neefs. Performance
analysis through synthetic trace generation. In ISPASS ’00:
Proceeding of IEEE International Symposium on
Performance Analysis of Systems and Software, 2000.

[10] L. Gao, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr.
A Fast and Generic Hybrid Simulation Approach using C
Virtual Machine. In CASES ’07: Proceedings of the 2007
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pages 3–12, 2007.

[11] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof:
A Call Graph Execution Profiler. Proceeding of SIGPLAN
Symposium on Compiler Construction, 17(6):120–126,
1982.

[12] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau. EXPRESSION: a Language for Architecture
Exploration through Compiler/Simulator Retargetability.
In DATE ’99: Proceedings of the Conference on Design,
Automation and Test in Europe, 1999.

[13] Y. Hwang, S. Abdi, and D. Gajski. Cycle-Approximate
Retargetable Performance Estimation at the Transaction
Level. In DATE ’08, pages 3–8, 2008.

[14] Intel VTune. software.intel.com/en-us/intel-vtune/.

[15] D. Jones and N. Topham. High Speed CPU Simulation
Using LTU Dynamic Binary Translation. In HiPEAC ’09:
Proceeding of Conference on High Performance Embedded
Architectures and Compilers, 2009.

[16] K. Karuri, M. A. A. Faruque, S. Kraemer, R. Leupers,
G. Ascheid, and H. Meyr. Fine-Grained Application Source
Code Profiling for ASIP Design. In DAC ’05, pages
329–334, 2005.

[17] D. Kim, J. Eom, and C. Park. L4oprof: a
performance-monitoring-unit-based software-profiling
framework for the l4 microkernel. SIGOPS Operating
System Review, 41(4):69–76, 2007.

[18] M. Lajolo, M. Lazarescu, and A. Sangiovanni-Vincentelli. A
Compilation-Based Software Estimation Scheme for
Hardware/Software Co-Simulation. In CODES ’99:
Proceedings of the seventh International Workshop on
Hardware/Software Codesign, pages 85–89, 1999.

[19] C. Lattner and V. Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In CGO
’04: Proceedings of the International Symposium on Code
Generation and Optimization, page 75, 2004.

[20] M. T. Lazarescu, J. R. Bammi, E. Harcourt, L. Lavagno,
and M. Lajolo. Compilation-Based Software Performance
Estimation for System Level Design. In HLDVT ’00:
Proceedings of the IEEE International High-Level
Validation and Test Workshop, page 167, 2000.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 190–200,
2005.

[22] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann,
and D. Langen. Source-Level Timing Annotation and
Simulation for A Heterogeneous Multiprocessor. In DATE
’08, pages 276–279, 2008.

[23] P. Mishra and N. Dutt. Processor Description Languages,
ISBN: 1875-9661. Morgan Kaufmann Publishers Inc., 2008.

[24] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and
R. Peri. Shadow Profiling: Hiding Instrumentation Costs
with Parallelism. In CGO ’07, 2007.

[25] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In PLDI
’07, pages 89–100, 2007.

[26] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr,
and A. Hoffmann. A Universal Technique for Fast and
Flexible Instruction-Set Architecture Simulation. In DAC
’02, 2002.

[27] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA –
Machine Description Language for Cycle-Accurate Models
of Programmable DSP Architectures . In DAC ’99, 1999.

[28] J. V. Praet, D. Lanneer, W. Geurts, and G. Goossens.
nML: A Structural Processor Modeling Language for
Retargetable Compilation and ASIP Design. Processor
Description Languages, pages 65–94, 2008.

[29] W. Qin, J. D’Errico, and X. Zhu. A Multiprocessing
Approach to Accelerate Retargetable and Portable
Dynamic-compiled Instruction-set Simulation. In
CODES+ISSS ’06: Proceeding of Conference on
Hardware/Software Codesign and System Synthesis, 2006.

[30] M. Reshadi, P. Mishra, and N. Dutt. Instruction Set
Compiled Simulation: A Technique for Fast and Flexible
Instruction Set Simulation. In DAC ’03, 2003.

[31] A. Sahu, M. Balakrishnan, and P. R. Panda. A Generic
Platform for Estimation of Multi-threaded Program
Performance on Heterogeneous Multiprocessors. In DATE
’09, 2009.

[32] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel.
High-Performance Timing Simulation of Embedded
Software. In DAC ’08, pages 290–295, 2008.

[33] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and Exploiting Program Phases.
IEEE Micro, 2003.

[34] A. Srivastava and A. Eustace. ATOM: A System for
Building Customized Program Analysis Tools. In PLDI ’94,
pages 196–205, 1994.

[35] Trimaran. www.trimaran.org.

[36] K. Vaswani, M. J. Thazhuthaveetil, and Y. N. Srikant. A
Programmable Hardware Path Profiler. In CGO ’05, pages
217–228, 2005.

[37] M. T. Yourst. PTLsim: A Cycle Accurate Full System
x86-64 Microarchitectural Simulator. In ISPASS ’07, 2007.

[38] J. Zhu and D. D. Gajski. A Retargetable, Ultra-Fast
Instruction Set Simulator. In DATE ’99, 1999.

314

