
A Task-Driven Algorithm for Configuration Synthesis
of Modular Robots

Esra Icer, Andrea Giusti, and Matthias Althoff

Abstract— This paper presents a time-efficient, task-based
configuration synthesis algorithm for modular robot manipula-
tors. One of the main challenges in modular manipulators is to
find possible combinations of modules that are able to complete
given tasks while avoiding obstacles in the environment. Most
studies on modular robots focus on obtaining combinations
of modules to achieve a given task without considering the
required path planning in an environment with obstacles. In
contrast to previous works, we present a configuration synthesis
method for modular manipulators, considering collision detec-
tion and path planning in task space. Our simulations show
that our approach finds possible combinations with reduced
computational time compared to previous techniques.

I. INTRODUCTION

Although industrial robots generally offer high robustness,
accuracy, performance and cost efficiency, it is difficult to
adapt them to different tasks or environments. Purchasing
new robots for each task in a flexible manufacturing sce-
nario makes the manufacturing processes expensive. As an
affordable solution, modular robots enable us to configure
various robotic structures from several pre-designed modules,
typically consisting of link modules and joint modules, so
that they can be used for different tasks. Modular robots have
been studied for the last 30 years [1]; their unique properties
such as high versatility, easy maintenance, flexibility and
robustness make them a promising technology for future
flexible manufacturing.

One of the main challenges for adopting modular robots
is the problem of determining the optimal combination of
modules for given tasks. Those tasks can be specified by
carrying a pre-determined load from a given initial position
to a given goal position, passing through intermediate loca-
tions without colliding with any obstacle in the environment.
In this work, we propose a time-efficient algorithm to select
proper modules from a set of possible modules, such that
aforementioned tasks are fulfilled. Obviously, our approach
is not only useful for reassembling a modular robot, but
also for initially setting up a robot. To the best knowledge
of the authors, this is the first study which determines the
set of possible configurations of modular robots for a given
path planning task in one consistent approach. Task-based
configuration synthesis of modular robots is performed in
this work by automatically finding possible configurations for
given modules. Our synthesis method is simple and utilizes
automatic kinematic model generation of each configuration,

The authors are with the Department of Computer Science, Technische
Universität München, 85748 Garching, Germany. Corresponding e-mail:
{icer, giusti, althoff}@in.tum.de

sequentially discarding the configurations which cannot fulfil
the given task.

Among the previous works on configuration synthesis, a
modular robot assembly methodology is presented in [2] to
obtain non-isomorphic, serial or tree-like configurations. In
that work, identical cube or prism modules that have multiple
connection ports are used and an enumeration algorithm
is introduced to remove redundant configurations resulting
from symmetries. A minimized degrees-of-freedom (DOFs)
approach is introduced in [3] to find the task-based optimal
configuration of modules using the enumeration algorithm
in [2]. A configuration synthesis methodology for task-
based fault tolerant modular manipulators considering kine-
matic task requirements is proposed in [4]. However, their
methodology mainly depends on defining a penalty function
for less-likely combinations. A hierarchical modular design
approach is presented in [5] which is based on selecting
functional modules without considering kinematics and joint
limits. A genetic algorithm (GA)-based configuration syn-
thesis algorithm to find the optimal configuration for given
end effector positions is introduced in [6] and the objective
function is defined only regarding initial position and goal
position of the end effector without considering obstacles
and payloads. A two-level GA method is proposed in [7] to
obtain the kinematic design of serial modular manipulators
considering task specifications and environmental constraints
like obstacles. Nevertheless, they consider all configurations
without any elimination of possible compositions in the
optimization process and define penalty functions to cancel
less-likely configurations.

Most studies on the kinematic model of modular
robots focus either on the Product-of-Exponentials (POE)
method [2], [3] or the Denavit and Hartenberg (D-H)
convention [8], [9]. Our work is based on the D-H approach
as in [10] to automatically generate kinematic models for
evaluating possible configurations.

As the pre-defined task mentioned earlier requires path
planning in an obstacle-laden environment, collision-free
path planning algorithms are required. Studies on collision-
free path planning are mainly based on two approaches:
i) the configuration space (C-space) approaches [11]–[14],
and ii) task space approaches [15]–[19]. C-space approaches
require a transformation of the obstacles from task space
to C-space which makes the process time-consuming. This
approach is not suitable for our problem due to the combi-
natorial complexity of possible compositions from a given
set of modules. Since our goal is to find collision-free
paths for a vast amount (typically several thousands) of

unique kinematic chains, an algorithm capable of checking
collision-free paths in a short period of time is needed. As a
consequence, the methods that require a mapping from task
space onto C-space cannot be used, which is the motivation
behind this work. We focus on task space solutions due to
their simplicity and computational time-efficiency.

In this paper, we present an algorithm to efficiently find
compositions that can reach goal positions without any
collision, from a given set of modules. Compositions are
varied by changing the combination of different modules
considering task requirements. In contrast to previous works,
we i) consider heterogeneous modules, ii) find an individual
solution for each configuration considering task require-
ments, iii) implement a quick obstacle avoidance algorithm
in the task space, and iv) present a computationally-efficient
configuration synthesis algorithm, which eliminates failed
configurations step by step.

The paper is organized as follows: Sec. II explains the
combinatorial problem for modular robots. Sec. III describes
our configuration synthesis method, followed by implemen-
tation details in Sec. IV. Finally, conclusions are drawn in
Sec. V.

II. PROBLEM STATEMENT

We consider modular and serially connected manipula-
tors, whose kinematics are uniquely determined by a vector
q ∈ Rn of joint positions (angles for revolute joints and
translations for prismatic joints), where n is the number of
DOFs. The task requirements are only constrained by the
kinematic model of the manipulator and static obstacles in
the environment. We consider four types of modules that
are categorized into bases, joints, links and end effectors.
We work under the following assumptions to obtain the
possible compositions: i) all modules have one input and
one output connection port, ii) all manipulators begin with
a base module and end with an end effector module, and
iii) there is only one base and only one end effector module
in all compositions. These are fairly practical assumptions
for industrial robots which hold for many realistic situations.
Without loss of generality, we refer to each possible com-
position with a unique number k ∈ N+ and the maximum
number of possible compositions without considering task-
specific constraints is N .

The environment consisting of the robot and obstacles is
denoted by W ⊂ R3. The subset of the space occupied by
the robot is indicated by A ⊂ W and the occupancy of a
robot for a specific joint position vector q is denoted by
A(q) ⊂ W . The space occupied by the kth configuration is
denoted by A(qk(t)) ⊂ W . The obstacles are represented by
arbitrary geometric shapes in R3, the occupancy of the jth

obstacle in the workspace is denoted by Oj ⊂ W and the
union of all obstacles is presented by O =

⋃
j Oj .

Variable t is defined as t = tcur/tf , where tcur is the
current time and tf is the final time to reach the goal. The
function q(t) maps normalized time t to the joint position
vector, where the initial time is assumed to be zero. The
forward kinematics from the joint position vector q(t) to the

end effector pose is denoted by f(q(t)). It is assumed that all
configurations start from a given set of initial pose Ps ⊂ R6.
Ps is defined as Ps = {f(q(0)) | q(0) ∈ Q0}, where Q0 is
the set of initial joint values. The final joint pose vector is
indicated by q(1) and the set of goal poses is defined as
Pg ⊂ R6. Pg is defined as Pg = {f(q(1)) | q(1) ∈ Q1},
where Q1 the set of goal joint values.

Variable τ (q(t)) represents the static torque-force vector
of the composition at time t. The set of combinations that
fulfill the given task can be described as:

κ = {k | 1 ≤ k ≤ N ∧ ∀t ∈ [0, 1] ∃ qk(·) :
A(qk(t)) ∩ O = ∅
∧ qk(t) ∈ [qk,min, qk,max]

∧ |τk(qk(t))| ≤ τk,max

∧ fk(qk(0)) ∈ Ps ∧ fk(qk(1)) ∈ Pg}

(1)

where qk,min and qk,max are the minimum and maximum
joint position limit vectors and τk,max is the maximum
torque-force vector of the kth composition, respectively. We
face the problem to find the set of compositions κ that fulfill
the described task in an efficient way.

III. PROPOSED METHOD

A large number of possible compositions can be generated
by varying modules and changing the assembly of the mod-
ules. This large design space makes modular robot synthe-
sis generally a complex and time-consuming combinatorial
problem. The main idea behind our proposed configuration
synthesis method is to go from simple task requirements to
more complicated ones and eliminate unfeasible composi-
tions as early as possible. The required tests are performed
starting from simpler ones to more complicated ones. As a
result, the compositions that cannot achieve the pre-defined
task can be discarded by simple tests, whereas tests requiring
longer time are only applied to the remaining compositions.

In the modular robot structure that we consider, each joint
module introduces one DOF, whereas each link module and
the fixed base module introduce no DOF. To restrict the
search space, we use the pre-determined structure:

Base - Joint - Link - Joint - · · · - Link - End Effector.

Starting from the base module, all possible robot com-
positions are generated until the desired number of DOFs
is reached considering the assumption mentioned above.
The number of the joint modules is equal to the number
of the link modules in the structure. The number of all
compositions up to n DOFs from a set of modules can be
obtained from (2), where b̃, j̃, l̃, ẽ denote the number of the
different base modules, joint modules, link modules and end
effector modules, correspondingly. The variable x represents
the total number of DOFs of the end effector module in the
structure and N denotes the maximum number of possible
compositions.

N =

n−x∑
i=1

b̃1 · j̃i · l̃i · ẽ1 (2)

The schematic representation of our proposed approach
is presented in Fig. 1. The method consists of three se-
quential steps: A) generation of possible configurations that
are feasible in the initial and the goal positions without
considering obstacles in the environment, B) path planning
without consideration of obstacles for the configurations
remaining from (A), and C) path planning including collision
detection for the configurations remaining from (B).

A. Generation of the Compositions with Feasible Initial
Positions and Goal Positions

To quickly discard impossible compositions, we apply
the tests given in Fig. 1, where κA refers to the set of
compositions that can pass test A. We first check if the
combined length of the modules can reach the initial and
the goal positions to obtain the remaining set of feasible
compositions κlength. Next, we check whether joint angles at
the initial and the goal positions are within the joint limits
and the remaining set of feasible compositions resulting in
κkinematics. Finally, the static torque-force limit test is applied
to the remaining compositions to further reduce the set of
feasible compositions to κstatic. Each of these sub-problems
is checked sequentially as shown in Fig. 1, such that steps
4 and 5 are performed only on the remaining compositions.
The total number of the compositions is reduced in each step
such that N static ≤ N kinematics ≤ N length, where NA=|κA| and
|κA| is the cardinality of κA.

1) Reachable Compositions: The maximum length of the
composition is obtained from (3), where lB , lJ,i, lL,i, and lE
are the lengths of the base module, the ith joint module, the

Joint limits at the initial and the goal position respected (κkinematics)

Torque limits at the initial and the goal position respected (κstatic)

A. Generation of Compositions

with Feasible Initial and Goal

Positions

B. Path Generation in

Obstacle-Free Environment

 Feasible path from start to goal exists (without obstacles)

 a. Plan path

 b. Check joint limits along the path

 c. Check torque limits along the path

C. Path Generation in

Environment with Obstacles

Feasible path from start to goal exist (with obstacles) (κachieved)

 a. Detect possible collisions in the generated path from 4a

 b. Generate new path in case of the end effector collision

 c. Check joint limits along the path (Identical to 4b)

 d. Check torque limits along the path (Identical to 4c)

1.

5.

3.

4.

2.

Combined length of modules sufficient to reach the initial and the goal

position (κlength)

Possible compositions

Fig. 1. Composition synthesis procedure.

ith link module and the end effector module, respectively.

l = lB + lE +

n−x∑
i=1

(lJ,i + lL,i) (3)

It should be noted that for this test we use the maximum
length of the prismatic joints. The base and the goal positions
for a robot are denoted by Pb and Pg , respectively. The
minimum distance between these two points in task space is
db2g = ‖Pg−Pb‖2, where ‖Pg−Pb‖2 refers to the Euclidean
distance between Pg and Pb. In this test, configurations
which cannot satisfy the condition l ≥ db2g are eliminated.

2) Kinematics: Considering a modular and reconfigurable
structure, the kinematic model is generally different for
various modules and configurations of the robot. The man-
ual derivation of all the possible kinematic models is not
practical, especially when the number of different modules
increases. To address this challenge, automatic kinematic
modeling methods have been developed (see [10], [20]–
[23]). As previously introduced, our kinematic modelling
approach is based on the D-H convention proposed in [10].
The relative transformation of frames of subsequent links
T i−1
i is obtained using homogeneous transformation matrices

and the four D-H parameters ai, αi, di, θi, which are
explained in [24]. Each module is first characterized with
parameters that are used to synthesize the forward kinematics
using an extension of the standard D-H convention. When
analyzing the configuration, the parameters of the links
between each pair of joints are automatically synthesized
using the information of the modules.

In order to map a desired motion from the task space to the
joint space, the inverse kinematics is required. If this problem
has admissible solutions, they can be multiple or even infinite
(redundant manipulators) [24]. To address these difficulties,
iterative non-linear optimization techniques are applied [25].
To map a desired pose in the workspace for the end effector
and the positions of the joints to the joint space, the unit-
quaternions-based scheme in [26] is used to obtain inverse
kinematics.

3) Static Forces: Every joint of a manipulator has a static
torque-force capacity to carry. Forces applied to the end
effector affect the whole structure and are distributed across
all joints. To find the torque-force values applied to each
joint resulted from the payload, the wrench vector, F ∈ R6,
as defined in (4) is used, where f ∈ R3 and n ∈ R3 refer to
the force and the moment vectors, applied to the end effector,
respectively.

F =

[
f
n

]
(4)

Static torque-force values of each joint are obtained from
(5), where τ (q(t)) is the static torque-force vector and
J(q(t))T is the transpose of the Jacobian matrix at time t.

τ (q(t)) = J(q(t))T F (5)

We apply f and n to the end effector and calculate all
torque-force values applied to joints via (4) and (5). The
results for each joint obtained from (5) must satisfy the

condition τ (q(t)) ≤ τmax where τmax is the maximum
torque-force vector of the manipulator.

B. Path Generation in Obstacle-Free Environment

Most of the path planning approaches for manipulators
are based on joint space path planning due to its efficiency
and singularity avoidance [24]. When assuming obstacle-free
environments, we also plan the path in joint space, while the
task space approaches are used for collision detection. In
order to achieve joint space path planning, initial and goal
points are mapped onto joint space using inverse kinematics.
This step transforms the path planning problem from task
space into C-space. A cubic polynomial function is con-
sidered to obtain a smooth path due to its simplicity [24].
Configurations are checked kinematically and statically at
various points of normalized time t to see whether all points
in time satisfies the minimum and the maximum limits.

C. Path Generation in Environments with Obstacles

Path generation in an obstacle-laden environment requires
collision detection and an obstacle avoidance algorithm.
Since the projection of obstacles into C-space has an ex-
ponential complexity in the number of DOFs [19], a col-
lision detection algorithm in task space is preferred in this
study. Moreover, the projection of obstacles onto C-space is
different for each composition and therefore it is difficult
to implement C-space collision detection algorithms for our
problem. Collision detection in task space depends mainly
on two sub-problems: obstacle representation and collision
detection of all components of the robot. For the sake of
simplicity, many of the obstacle representation methods in
task space use spherical representations [18]. When using
a spherical representation, an obstacle is enclosed by the
smallest sphere regardless of its shape; as a result, the
representations of obstacles are larger than the real obstacles
and the volume of obstacle-free spaces in the environment
is smaller than the real obstacle-free spaces.

We perform collision checking of 1) the end effector, 2) the
joints, 3) the links, and 4) the robot itself (self collision). All
joints and links of the manipulator are assumed to be points
and lines, respectively, and their thicknesses are added to the
radius of the obstacles.

1) Collision of the end effector: The forward kinematics
of the robot configuration explained in Sec. III-A.2 is em-
ployed to determine the end effector position of the n-DOF
manipulator from the joint values. When we obtain the
position of the end effector, distances between the position
of the end effector and the center of the obstacles, dE2O,
must satisfy dE2Oj

≥ rj,O + rE where rj,O is the radius of
the corresponding obstacle and rE is the radius of the end
effector.

2) Collision of the joint: The coordinates of each joint
in task space are found by subsequent multiplication of the
homogeneous transformation matrices of the D-H frames and
an additional translation for the ith link defined as ni in [10].
Checking the collisions between joints and obstacles, the
distance between the mid-point of the joints and the center

Ps

Pg

P

Pint,1

Pint,2

initial path

lines from Pj,0 to the Pcoll and Pg

new paths with intermediate points

bisector line

extended obstacle with

safety factor

extended obstacle for

intermeadiate points

Fig. 2. Schematic diagram of the obstacle avoidance algorithm.

of obstacles, dJ2O, must satisfy the condition dJi2Oj ≤
rj,O + rJ,i, where Pi is the mid-point of the ith joint and
rJ,i is the radius of the ith joint.

3) Collision of links: We consider each link as a cylinder
and model them as a line to simplify the calculations. Vari-
ables Pi,Li

and Pi,Le
denote the initial and the final positions

of the ith link, respectively. The line segment between these
two positions refers to the ith link of the manipulator. As a
result, dL2O, the distance between the link and the obstacle
is calculated from the point-line distance formula as in [27].
Each link should satisfy the condition dLi2Oj

> rj,O + ri,L
for collision-free path, where ri,L is the radius of the ith link
of the manipulator.

4) Self Collision of the Manipulator: Since all links are
modelled as a line, variable dLi2Lm , which refers to the dis-
tance between the ith and the mth link, is computed from the
line segment to line segment distance formulation as in [27].
Each link should satisfy the condition dLi2Lm

> ri,L + rm,L

for all combinations, where ri,L and rm,L are the radius of
the ith and the mth link, correspondingly.

5) Obstacle-Avoiding Path Planning: Our obstacle avoid-
ing path planning approach is mainly based on vectors from
the initial position to the goal position to generate interme-
diate points as in [28]. Based on the proposed approach, a
path is generated from the initial point to the goal point using
cubic polynomials in joint space and collision is checked in
task space for each component as explained in this section.
In case only the end effector collides with obstacles, a set of
intermediate points, Pint, are generated. To generate Pint,
the collision point Pcoll, the goal point Pg and the center of
the obstacles Pj,O are used (see Fig. 2). For the collision of
the end effector, two lines are generated in task space: one
line is between Pcoll and Pj,O; the other one is between Pg

and Pj,O where Pj,O is the center of the jth obstacle. Using
these two lines, a new line passing through Pj,O is created
which is equiangular to these lines. The main differences
between the proposed approach [28] and our work are that
the collision check is done in task space, the intermediate
points are generated using bisectors and the obstacles are
considered as spheres. The obstacle is extended to prevent
a collision and the set of intersection points between the
generated line and extended obstacle are defined as Pint. The

set of distances Dpnt, between the Pint and Pg is calculated
as follows:

Dpnt = { ‖Pg − Pp‖2 | p ∈ {1, 2}, Pp ∈ Pint} . (6)

The manipulator initially follows the closest point of
Pint,1 and Pint,2, and a new path is generated using this
as an intermediate point. Using inverse kinematics the pre-
determined intermediate point is mapped onto C-space and
a new path, as shown in Fig. 2, is generated to reach the
goal position. According to the aforementioned assumptions,
the obstacle avoidance algorithm is applied only in case of
the end effector collision. For the other collision types, the
module compositions are removed because implementing the
collision avoidance algorithm to all collision types is time-
consuming. This procedure is repeated until the end-effector
reaches Pg .

IV. SIMULATIONS

To demonstrate our configuration synthesis algorithm, we
implement it in MATLAB R2015b running on an Intelr

CoreTM i7-4712 2.30 GHz CPU equipped with 16 GB RAM.
To compare the results, we use one type of base module, two
types of 1-DOF joint modules (revolute (R) and prismatic
(P)), three types of no DOF link modules (α1 = 90◦, α2 = 0,
α3 = 90◦) and two types of one DOF end effector modules
(revolute (R) and prismatic (P)) in the robot structure (see
Fig. 3). We follow the composition structure defined in
Sec. III without considering the orientations. The base is
positioned in point Pb = (0, 0, 0). We consider serially
connected, modular manipulators with degrees of freedom
varying from 2 to 6. The type of the modules, the number
of the modules and the assembly of the modules are the
three main design parameters of our combinatorial problem.
Moreover, the types of the joints and the links, position of the
joints, the position and the torque-force limits of the joints,

xin
xin

xin

xin xin xin xin

xout xout
xout

xout xout xout xout

zin zin
zin

zin zin zin zin

zout
zout

zout

zoutzoutzoutzout

(a) (b) (c)

 (d) (e) (f) (g)

α

α

Fig. 3. Basic modules used in this study, (a) α = 90◦ link module, whose
length is along the y direction of the previous coordinate system (L1), (b)
α = 0◦ link module (L2), (c) α = �90◦ link module, whose length
is along z direction of the previous coordinate system (L3), (d) rotational
joint module (J1), (e) prismatic joint module (J2), (f) rotational end effector
module (E1), (g) prismatic end effector module (E2)

and the length of joints and the links are design parameters
for each module (see Tab. I).

All possible configurations from 2-DOF to 6-DOF
are computed and 18660 different compositions are ob-
tained. The initial and the goal positions are defined
as Ps = (1.5, 1.5, 2) and Pg = (−2, −1.2, 0.6), respec-
tively. As a first step, κlength is generated and 18576 over
18660 combinations can reach the initial and the goal po-
sitions in terms of length. After that, κkinematic is obtained
by applying the kinematic check test. Considering a 50 N
payload in -z direction, κstatic is obtained. Each test is
applied to all remained compositions sequentially and the
total number of feasible compositions is decreased in each
step (see Tab. II).

After generating the feasible compositions of the initial
and the goal positions, we apply the cubic polynomial path
planning method as discussed in Sec. III-C to find a path
between the initial position and the goal position. Moreover,
the kinematic test and the static test are also applied to the
intermediate points, to determine whether the joint values
and the applied torques-forces are within the limits.

As the next step, stationary obstacles in the environment
are taken into account in the configuration synthesis. Ran-
dom and complex-shaped obstacles are generated. Spheres,
which enclose each obstacle with the minimum radius, are
generated to represent the obstacles as stated in Sec. III-C.
The center of the spheres are located at the coordinates of
P1,O = (0.5, 0.2, 1.3) and P2,O = (−1.2, 2.1, 0.8). Radii
of the obstacles are defined as r1 = 0.3 m and r2 = 0.35 m
(see Fig. 4).

The obstacle avoidance algorithm is applied only for the
end-effector collision. To implement this algorithm, total
time is divided into time-step values where t ∈ [0, 1], the
kinematic test and the static test are also applied to the
generated intermediate points. The simulation time increases
with the increase in the number of the time-step values.
After t = 0.004, it is seen that the number of possible
compositions is almost the same although the simulation
time increased. The normalized time value t depends on
the Euclidean distance between Ps and Pg , the radii of the
obstacles in the environment and the extension value of the
obstacles.

TABLE I
THE MODULE PARAMETERS INVOLVED IN SIMULATION (SEE FIG.3)

Length Diameter Max τ Joint Limits
[m] [m] [Nm] [rad or m]

L1 0.75 0.2 - -
L2 0.75 0.2 - -
L3 0.75 0.2 - -
J1 0.25 0.2 80 [-π,π]
J2 0.25 0.2 75 [0,0.2]
EE1 0.2 0.2 75 [-π,π]
EE2 0.2 0.2 70 [0,0.1]

TABLE II
REMAINING NUMBER OF COMPOSITIONS AFTER APPLYING EACH TEST

Number of Time [s]
Feasible Comp.

Generation of
Feasible Comp.
κlength 18576 3.2
κkinematic 247 736
κstatic 152 749

Path Generation
Obs. Free Env.
κkinematic 152 751
κstatic 60 809

Path Generation
in Envi. with Obs.
κachieved (proposed method) 44 983
κachieved (TS-RRT) 28 8584

We compare our method against rapidly-exploring random
trees (RRT) approach, which is a popular path planning
approach due to their fast convergence and high success
probability [13]. We implement the task space RRT (TS-
RRT) algorithm in [19], where random points are generated
in a task space to find a collision-free path from the initial
position to the goal position. In [19], collision detection is
done in C-space using the pre-determined C-space configura-
tion although the random points are generated in task space.
Mapping all the obstacles onto C-space is not computation-
ally efficient for our particular problem; therefore, collision
detection is done in task space.

The set of random points, Prand, are generated directly in
the task space. Using the inverse kinematics algorithm, the

joint values of the robot are obtained and the configuration
is checked for collisions as explained in Sec. III-C. The
parameters of the TS-RRT algorithm are: the maximum
displacement at each iteration (step size) and the maximum
number of iterations (max number of trees). The step size is
0.05 as a reasonable compromise between efficient compu-
tation and collision detection and the max number of trees
is 500. The comparison of the two algorithms is shown
in Tab. II and in Fig. 4. Utilizing the selected parameters
accurately, our method has more possible solutions compared
to the TS-RRT algorithm. The possibility of finding an
obstacle-free path in TS-RRT algorithm is higher when
the max number of trees is increased and the step size is
decreased, but at the same time, the computational time is
increased. Since our goal is to obtain possible combinations
in the quickest and the most accurate way, our proposed path
planning method is preferable. In addition, the computational
time of the TS-RRT algorithm is affected by the limits of the
search space. In our problem, we cannot restrict the search
space of the TS-RRT with the most effective limits because
the workspace of the manipulator is varied in every different
composition. The limits of the TS-RRT are assumed as the
sum of the each module’s length. Moreover, paths obtained
from the proposed method are smoother than TS-RRT (see
Fig. 4) because the new points are generated randomly in
RRT algorithms.

V. CONCLUSION

In this paper, a time-efficient, task-based composition
synthesis method for modular manipulators is proposed.
The sequential composition synthesis algorithm is used to
decrease the possible compositions considering the given
task requirements step by step to reduce the computational
effort. We assume that the given task has the following
requirements: reachability, joint limits, static limits, collision
detection and obstacle avoidance. Infeasible compositions

0
2

0.5

1

1

z

1

1.5

y x

00

2

-1
-1 -2

(a) (a) (b)

Fig. 4. Comparison of the paths generated from two methods: (a) the possible path obtained from the proposed method, (b) the possible path obtained
from the TS-RRT algorithm where red line indicates the possible path and blue lines are the branches of the search tree.

are eliminated by task requirement tests starting from less
time-consuming ones to most time-consuming ones. As a
result, tests taking longer time periods are only applied to the
remaining compositions, which reduces the computational
time. Path planning is performed using cubic polynomials
in joint space but the obstacle avoidance algorithm is per-
formed in task space using forward and inverse kinematic
models of the manipulators. To measure the efficiency of
the path planning algorithm, compositions of robots with
up to 6-DOFs are obtained and compared with the TS-RRT
algorithm. It is observed that the proposed algorithm needs
less computational time and provides more accurate results.
The main advantages of the proposed composition synthesis
algorithm are i) it is applicable to heterogeneous modules,
ii) it can be applied to different types of joint or link
modules, iii) it avoids repeated compositions, and iv) it gives
all possible compositions for the pre-defined task in the
computationally efficient way.

ACKNOWLEDGMENT

The research leading to these results has received
funding from the People Programme (Marie Curie Ac-
tions) of the European Unions Seventh Framework Pro-
gramme FP7/2007- 2013/ under REA grant agreement num-
ber 608022.

REFERENCES

[1] K. Wurst, “The conception and construction of a modular robot
system,” in Proc. 16th Int. Sym. Industrial Robotics (ISIR), 1986, pp.
37–44.

[2] I.-M. Chen and J. W. Burdick, “Enumerating the non-isomorphic as-
sembly configurations of modular robotic systems,” The International
Journal of Robotics Research, vol. 17, no. 7, pp. 702–719, 1998.

[3] G. Yang and I.-M. Chen, “Task-based optimization of modular robot
configurations: minimized degree-of-freedom approach,” Mechanism
and machine theory, vol. 35, no. 4, pp. 517–540, 2000.

[4] C. J. Paredis and P. Khosla, “Synthesis methodology for task based
reconfiguration of modular manipulator systems,” in Proc. of the 6th
International Symposium on Robotics Research, ISRR, 1993.

[5] S. Farritor, S. Dubowsky, N. Rutman, and J. Cole, “A systems-
level modular design approach to field robotics,” in International
Conference on Robotics and Automation, 1996, pp. 2890–2895.

[6] W. Gao, H. Wang, Y. Jiang, and X. Pan, “Task-based configuration
synthesis for modular robot,” in Proc. International Conference on
Mechatronics and Automation (ICMA), 2012, pp. 789–794.

[7] O. Chocron and P. Bidaud, “Evolutionary algorithms in kinematic de-
sign of robotic systems,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 2, 1997, pp. 1111–1117.

[8] C. J. Paredis and P. K. Khosla, “Kinematic design of serial link
manipulators from task specifications,” The International Journal of
Robotics Research, vol. 12, no. 3, pp. 274–287, 1993.

[9] J. Denavit and R. Hartenberg, “A kinematic notation of lower-pair
mechanisms based on matrices,” ASME Journal of Applied Mechanics,
vol. 22, pp. 215–221, 1955.

[10] A. Giusti and M. Althoff, “Automatic centralized controller design for
modular and reconfigurable robot manipulators,” in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2015, pp.
3268–3275.

[11] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The International Journal of Robotics Research, vol. 1, no. 5,
pp. 90–98, 1986.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[13] S. M. LaValle, Planning algorithms. Cambridge University Press,
2006.

[14] A. Chakravarthy and D. G., “Obstacle avoidance in a dynamic envi-
ronment: A collision cone approach,” Systems, Man and Cybernetics,
Part A: Systems and Humans, vol. 5, no. 28, pp. 562–574, 1998.

[15] G. Mesesan, E. Icer, and M. Althoff, “Hierarchical genetic path planner
for highly redundant manipulators,” in Proc. of the Workshop on Task
Planning for Intelligent Robots in Service and Manufacturing, 2015.

[16] J. Yu and P. Müller, “An on-line cartesian space obstacle avoidance
scheme for robot arms,” Mathematics and Computers in Simulation,
vol. 41, no. 5, pp. 627–637, 1996.

[17] W. Zhang and T. M. Sobh, “Obstacle avoidance for manipulators,”
Systems Analysis Modelling Simulation, vol. 43, no. 1, pp. 67–74,
2003.

[18] R. Menasri, A. Nakib, B. Daachi, H. Oulhadj, and P. Siarry, “A
trajectory planning of redundant manipulators based on bilevel opti-
mization,” Applied Mathematics and Computation, vol. 250, pp. 934–
947, 2015.

[19] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions
using a task-space Voronoi bias,” in IEEE International Conference
on Robotics and Automation, 2009, pp. 2061–2067.

[20] L. Kelmar and P. K. Khosla, “Automatic generation of kinematics
for a reconfigurable modular manipulator system,” in Robotics and
Automation, Proceedings., IEEE International Conference on, 1988,
pp. 663–668.

[21] B. Benhabib, G. Zak, and M. Lipton, “A generalized kinematic
modeling method for modular robots,” Journal of Robotic Systems,
vol. 6, no. 5, pp. 545–571, 1989.

[22] I. Chen, S. Yeo, G. Chen, and G. Yang, “Kernel for modular robot ap-
plications: Automatic modeling techniques,” The International Journal
of Robotic Research, vol. 18, no. 2, pp. 225–242, 1999.

[23] Z. Bi, W. Zhang, I. Chen, and S. Lang, “Automated generation of the
D-H parameters for configuration design of modular manipulators,”
Robotics and Computer-Integrated Manufacturing, vol. 23, pp. 553–
562, 2007.

[24] J. J. Craig, Introduction to robotics: mechanics and control. 2nd ed.
Reading, MA: Addison-Wesley, 1989.

[25] C. Welman, “Inverse kinematics and geometric constraints for articu-
lated figure manipulation,” Ph.D. dissertation, Simon Fraser University,
1993.

[26] S. Chiaverini and B. Siciliano, “The unit quaternion: A useful tool for
inverse kinematics of robot manipulators,” Systems Analysis Modelling
Simulation, vol. 35, no. 1, pp. 45–60, 1999.

[27] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf,
Computational geometry. Springer, 2000.

[28] C. W. Warren, “A vector based approach to robot path planning,” in
IEEE International Conference on Robotics and Automation, 1991,
pp. 1021–1026.

