
Run-time Adaptive Error and State Management for
Open Automotive Systems

Jelena Frtunikj∗
∗fortiss GmbH

Guerickestrasse 25

80805 München, Germany

Michael Armbruster†
†Siemens AG

Otto Hahn Ring 6

81739 München, Germany

Alois Knoll‡
‡Technische Universität München

Boltzmannstrasse 3

85748 Garching bei München, Germany

Abstract—Over the past few years semi-autonomous driving
functionality was introduced in the automotive market and this
trend continues towards fully autonomous cars. While in au-
tonomous vehicles, data from various types of sensors realize the
new highly safety critical autonomous functionality, the already
complex system architecture faces the challenge of designing
highly reliable and safe autonomous driving system. A common
approach to build a reliable real-time system is using hardware
replication; however the solution tends to be very costly. An
alternative approach is providing support for adaptive error and
state management and effective resource utilization that allows
a system to adapt and reconfigure after failures of part of the
system without requiring the user intervention. In addition, the
end-customer is used to the possibility of easy personalization or
extensibility of the electronic systems with new HW or SW. In
this paper we present our model-based framework and run-time
system that enables system extension and improves the safety of
autonomous driving systems by providing reusable formal scheme
enabling adaptive error and resource management. A case study
explaining the applicability of the approach is presented.

Keywords—dependability, safety, autonomous driving systems

I. INTRODUCTION

Nowadays, the automotive industry faces the challenge to
manage the electrics and electronics E/E-architecture’s com-
plexity [3] while in parallel more functionality (we call each
considered software-implemented function ”system function”
herein) is added within a vehicle. A recent study [2] shows
that the E/E architecture faces the challenge of raising demand
for vehicle automation up to fully autonomous functionality
(driving, parking). Future vehicles will be also able to co-
operate (Car2Car) in order to perform many functions in a
more effective and efficient way. Nowadays, the customer is
used to the possibility of easy personalization and extensibility
of electronic systems. The infotainment-domain has already
demonstrated these capabilities and it drives a similar expec-
tation now within the automotive domain. Thereby, the end-
customer does not care about qualities such as dependability,
since those are expected to be ensured by default.

Due to high criticality and the requirement for fail-
operational behavior of the autonomous functions, the E/E
architecture must provide built-in mechanisms to achieve
fault-tolerance. Traditional fault tolerance techniques such as
installing multiple identical hardware backup systems may
be cost prohibitive, since automotive systems typically have
tight cost constraints. Adaptive error and state management
and efficient resource usage offers the possibility to increase
system dependability without having to provide redundant
system resources. The concept enables in case of a subsystems

failure resulting in loss of some system resources, a run-time
evaluation of the system state and a reconfiguration to be
applied. The reconfiguration, provides the required functions
with the highest safety and reliability demand.

A possible technical approach for adaptive error and
sate management and efficient resource handling is a formal
framework for specifying degradation rules and a run-time
system (RTS) which ensures different non-functional qualities
of interfaces and functionalities at run-time. The idea behind
using a RTS approach that ensures the previously mentioned
functionality is to reuse the already developed safety measures
for different systems and functions and save future devel-
opment costs spent on non-functional qualities. In addition,
the RTS as a core element of a so called ”open automotive
architecture” also provides mechanisms for system extension.

The challenge considered here is providing a framework for
generic error and state management applicable to all system
functions. To do so, we consider each function as a composi-
tion of fault containment regions (FCR). Due to the fact that
only the function developer has the knowledge which FCRs
compose certain function and which system resources (e.g.
CPU, memory) are required by the function, the information
has to be given a priori as configuration parameters. Since
the RTS, contains safety mechanisms that can determine the
”health” state of each FCR and it has information about the
available non-faulty system resources, it is able to identify the
”health” and degradation of each function and to perform the
needed reconfigurations. It is important to mention, we assume
that functions can be performed in several degradation levels
of service (depending on the quality of the subsystems that
compose the function) and the proposed solution at run-time
selects the highest possible, but still safe.

This article is structured as follows. In Section 2, we first
introduce the target open fault-tolerant E/E architecture and
give a short overview of its main features. Afterward, we give
a detailed description of the proposed concept and we present a
case study where the approach is applied. Section 4 compares
gives brief overview of related work in the area. At the end
we give a brief conclusion and summarize the future steps.

II. TARGET SYSTEM ARCHITECTURE

As stated in the introduction in order to enable automatic
run-time integration of different sub-systems (HW or SW) or
functions, new open E/E architecture that provides Plug&Play
ability is required. To enable Plug&Play in the automotive
field, the system architecture needs to provide capabilities to
guarantee extra functional properties for resource utilization,

2014 IEEE International Symposium on Software Reliability Engineering Workshops

978-1-4799-7377-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ISSREW.2014.77

467

safety and security. Such architecture is suggested in the
Robust and Reliant Automotive Computing Environment for
Future eCars1 project and its basic principles have been already
presented in [10]. The proposed platform is composed by a
scalable set of central execution nodes (also called Duplex
Control Computers (DCCs)) and a set of peripheral execution
nodes providing the physical sensing and actuating. The DCCs
assemble the Central Platform Computer (CPC) and are con-
nected to each other and to the Smart-Aggregates by redundant
switched Ethernet-Links. An RTS interconnects all system
components and facilitates generic safety mechanisms such
as real-time deterministic scheduling, data exchange services,
health monitoring and diagnosis, as well as time and space
partitioning for applications. The proposed system has two
different power supplies, named red and blue. Each execution
node is supplied by either the red or the blue power supply so
in case one power-supply fails, only a subset of the nodes get
lost and the residual nodes continue the operation.

To support Plug&Play, the traditional message-oriented
approach is replaced by a data-centric one: instead of speci-
fying sender-receiver relationships, the subsystems developers
have to specify the component interfaces by a standardized
data model. Based on this data model, the RTS establishes
data paths between subsystems. The data-model can be seen
as a data-base full of data-elements describing the vehicle’s,
the environment’s or the driver’s state. Integration of new
subsystems in the above mentioned E/E architecture is done in
3 steps (Figure 1). Since the integration occurs during run-time,
it has to be ensured that the system keeps operating according
to its specification.

Fig. 1. Bundle- Phase, Plug- Phase, Play-Phase

The integration of new subsystem starts with a ”Bundle-
Phase” where the HW/SW subsystem is delivered with de-
scription information containing also the safety related infor-
mation. The Plug&Play procedure is logically separated into
two phases. In the ”Plug-Phase” interpretation of description
documents is done to re-plan the E/E configuration and adapted
configuration data is provided. The next phase is entered
only in case all required qualities especially those addressing
functional safety can be ensured. In the ”Play-Phase” the new
configuration is enforced. For the remainder of this paper, we
assume such architecture as the underlying basis.

III. PROPOSED APPROACH

This section presents the proposed concept by giving
insights in our modeling approach and RTS.

A. Domain-specific meta-model
In order to be able to provide a generic approach dealing

with error management, system function degradation and dy-
namic resource reconfiguration, we need to introduce changes

1Robust and Reliant Automotive Computing Environment for Future eCars,
http://www.projekt-race.de/

to the development process. This means we have to take into
account the abstraction of functions from their former dedi-
cated electronic control unit and the requirement that functions
can be integrated into a variety of architecture variants. There-
fore, data dependencies between functions and the required
CPU or memory resources need to be defined explicitly and un-
ambiguously. To do so, at design time a domain-specific model
has to be used. In Figure 2, a meta-model describing system
functions, subsystems and their properties and dependencies,
is shown. This is the first step towards automated and uniform
function description. The model enables the composition of
functions from different subsystems (HW and/or SW) and the
definition of degradation rules. The degradation rules represent
specification of reduced system function functionality after
occurrence of failures of the subsystems from which the
function is composed. The meta-model is used in a model-
driven development tool which allows modeling each function
based on the available data in the system and subsequently
generating data structures from this model that are used at run-
time by the RTS. The resulting models are called models@run-
time [7] since they contain information (e.g. required memory
resources, degradation rules etc.) that is relevant at run-time.

Fig. 2. Meta-Models defining function and its components

It is important to emphasize that each of the subsystems has
configuration description that expresses additional restrictions
(e.g. if the subsystem is a sensor, the description contains
information as sensor position, viewing direction, maximum
distance, type of target or collision objects etc.). The infor-
mation is used to check if the data from one type of sensor
in case of failure can be replaced by the data from another
type of sensor. Moreover, the data integrity information is very
important for the health monitoring mechanisms that provide
the information required to determine the ”health state” and
degradation of the subsystem. By using the models@run-time,
we provide the possibility for later system extension and safe
integration of the subsystems. Whenever a new subsystem
(HW or SW) is integrated in the system (Plug&Play) a
description of it and its requirements have to be provided to
the system. The idea behind the description is to establish
a predefined and standardized component description of the
single (sub-) systems that are to be integrated.

B. Formal System Model
Below we present the formal foundation of our approach

as described in our work [4].

468

Definition 1 A vehicle V = (Fa, SWa, HWa, D) is build
up from a finite set of System Function Architecture Fa, a
Software Architecture SWa, a Hardware Architecture HWa

and a Deployment Configuration D.

Definition 2 A System Function Architecture Fa =
(Sf , Sfc) is composed by a finite set of System Functions
Sf and a set of System Function Clusters Sfc.

Definition 3 A System Function set Sf = {sf1, ...sfn}
contains the system functions of the vehicle. A system function
can be realized by one or more SW components and the
required Sensors and Actuators.

Definition 4 System functions are grouped in set of
System Function Clusters Sfc = {sfc1, ...sfck}, where
sfci ⊆ Sfc while ∀i, j : sfci ∩ sfcj = ∅. We define
the mapping of sf ∈ Sf to sfc ∈ Sfc with ε (sfc) →
{sfi ∈ Sf |sfi is mapped to sfc}.

The grouping of sf is based on the safety properties of
the functions such as: 1) criticality level of the function (in
the automotive standard called Automotive Safety Integrity
Level (ASIL)) and 2) performance requirements regarding
fail-operational or fail-safe behavior. This way of grouping
reduces the system complexity with regard to the amount of
combinations to be considered for reconfiguration.

Definition 5 A Software Architecture is composed by a
finite set of SW components SWa = {s1, ...sm} that belong
to at least one system function s ∈ SWa to sf ∈ Sf with
α (s) → {si ∈ SWa|si is mapped to sf}.

Definition 6 A Hardware Architecture is composed by a
finite set of HW components HWa = {h1, ...hl}. The set is
divided in set of execution nodes and set of peripheral actuator
or sensor nodes HWa = HWe ∪HWp.

Definition 7 The Deployment Configuration D = (δ (sfc))
defines how the System Function Clusters and the corre-
sponding SW components are deployed to the execution
nodes HWe. For sfc ∈ Sfc, we define to δ (sfc) →
{hi ∈ HWe|sfc is executed to hi}.

The execution nodes represent the previously mentioned
duplex control-computers (DCC).

Definition 8 A fault is a physical defect, an imperfection
or a flaw that occurs within some hardware or software
component. An error is the manifestation of a fault and a
failure occurs, when the component’s behavior deviates from
its specified behavior [6].

Depending on the level of abstraction where a system
is investigated, the occurrence of a malicious event may be
classified as a fault, error or a failure. We define all malicious
events that might occur within a subsystem as error.

Fault Tolerance deals with mechanisms (error and fault
handling) in place. These mechanisms allow a system to
deliver the required service in the presence of faults despite
degraded level of that service.

Definition 9 A subsystem set is defined by the set of SW
components and peripheral actuator or sensor nodes SubS =
SWa ∪HWp.

Following definitions 3, 5, 6 and 9, a system function
is unambiguously defined by a set of logical subsystems
SF = {subS1, ...subSk}. The subsystems represent Fault-
Containment Regions (FCR) which is seen as black box w.r.t.
safety and error handling. The FCRs have precisely specified

interfaces in the domains of time and value, which are required
to detect anomalies at run-time. This means, in a case of
error the FCR and with that the subsystem is marked and
handled as faulty. The alteration of subsystem state can be
expressed formally by the definition of new state transition
subSStateok → subSStateerr. This definition and handling
is required in order to be sure that the fault within the FCR
will not be extended out of the defined subsystem borders.

Definition 10 Based on the subsystem subS ”health”
state (error free or erroneous) and the redundancy informa-
tion, different degradation level of the subsystem subSDeg0,
subSDeg1, ..,subSDegN can be defined.

The subsystem degradation level (also named only degra-
dation) can take values form 0 to N . The zero degradation
level is the lowest one and represent fully functionality, while
the N th level is the highest one and means no functionality
available (the subsystem is in erroneous state serr).

Definition 11 A system function sf degradation predicate
sfDegx is a boolean function over a set of degradation
level states of the subsystems composing the function. The
set of system function degradation predicates represents the
specification of the function and system degradation w.r.t.
safety. For each degradation predicate a set of attributes A =
{memoryResources, runtimeResources} are specified and
are used by the reconfiguration mechanism that keeps system
safety after a failure of execution component. The system
degradation predicate can also get values form 0 to N .

Reconfiguration mechanism: In case of execution nodes
scarce (due to a failure), a reconfiguration mechanism has to
be activated in the system in order to make the decision about
which system functions to be run in the system and which
not. The decision criteria needs to take into consideration
the available resources (execution and system resources e.g.
different sensors) and the criticalites of the functions. As
this is obviously a computationally complex multi-dimensional
optimization problem that has to be solved at run-time, tech-
niques that are not computationally extensive like greedy
approximation algorithm should be used.

C. Run-time system
Even though our approach is based on a formal foundation,

we explain it in an informal way for a better understanding.
The overall approach can be compared to the already existing
autonomic computing paradigm, where elements of a system
are managed by control loops based on the so-called MAPE-
K (Monitor, Analyze, Plan, Execute - Knowledge based) cycle
which optimizes operation of the supervised elements.

We consider a system function sf ∈ Sf as a composition
of subsystems. Since the subsystems have precisely specified
interfaces in the domains of time and value, that information is
used for configuring the safety mechanisms of the RTS, which
provide the information and the error indications required to
determine the ”health” state of the corresponding subsystems.
More detailed explanation of the safety mechanisms that the
RTS offers can be find in [5]. We define the following relevant
FCRs/subsystems of a system function: 1) sensors or actuators;
2) application software components - SW functions imple-
menting the system function control algorithm including its
resource partition (time and space) in which it is running. The
defined FCRs also include the communication links for sending
and/or receiving data. To enable calculation and appropriate

469

determination of function degradation level at run-time, a RTS
component named System Function Manager (SFM) identifies
the state, correct or faulty, of all subsystems. Figure 3 shows
the process of fault detection (health monitoring), consolida-
tion of error indications, ”health” state determination and the
mapping to RTS components.

Fig. 3. Separation of fault detection from fault handling

Depending on the error indications that the health mon-
itoring RTS components generate and the redundancy type
of the subsystem (e.g. single, double, triple redundancy etc.),
the SFM identifies the ”health” state and the degradation
level of each subsystem at run-time. The task of the System
Function Manager is mainly focused on the state management
(possible states: isolated, passive and active) of all subsystems
subS belonging to all system functions, based on their current
”health” state and on the available system resources. The
System Function Manager together with the Reconfiguration
Manager determines the next state. In case of a permanent
fault, the FCR and the corresponding subS is isolated, in a
case of transient fault the FCR is passivated and when no
faults exists the FCR continues to be active.

Based on the ”health” states and the redundancy informa-
tion, we have defined the following subS degradation level:

• degradation level 0 (subSDeg0): data available (no
fault detected and the subsystem is ”active”)

• degradation level 1 (subSDeg1): data available but
data coming via one network link are not available
(and the subsystem is ”active”)

• degradation level 2 (subSDeg2): data available but
one redundant subsystem from same type is faulty
(meaning lost) (and the subsystem is ”active”)

• degradation level N (subSDegN): data are not avail-
able due to a fault (and the subsystem is ”isolated”)

The information about the degradation level of each sub-
system is used to calculate the degradation of a system function
sfDeg at run-time. Since only the function developer has
the knowledge and the expertise, which subsystems compose
and are required for certain system function, he is responsible
for defining the allowed degradation of the system function.
A degradation rule for a system function is expressed by
means of boolean algebra. The boolean expression includes all
subsystems and their degradation state subSDeg. An example
of such an expression for a system function consisting of three
subsystems can look like:

sfDeg1 = subSDeg0i ∧ subSDeg1j ∧ subSDeg0k

An example system function sf in a vehicle is pedestrian
detection and auto brake function that consists of four sub-
systems/FCRs: camera subScamera, radar subSradar, brake
subSbrake, and SW component implementing the algorithm for
pedestrian detection subSpdswc. Each of the subS has different
degradation levels depending on the redundancy constellation:

• camera: subSDeg0camera and subSDegNcamera

• radar: subSDeg0radar, subSDeg1radar and
subSDegNradar

• brake: subSDeg0brake and subSDegNbrake
• SW component: subSDeg0pdswc and subSDegNpdswc

The degradation rules specified by the predicates define the
dependency between the specific function and the sensors or
actuators and other applications whose data is required in order
the function to work. Based on the degradation rules and the
actual degradation level subSDegxi of each subsystems, the
boolean expressions are evaluated at run-time and the ”best”
system function degradation sfDeg is calculated. An example
rule specified by the system function developer looks like:

sfDeg1pedDet = subSDeg0camera ∧ subSDeg1radar ∧
subSDeg0brake ∧ subSDeg0pdswc

A formal description of the degradation calculation algo-
rithm, which calculates at run-time the actual system function
degradation level for all active sf can be find in [4].

Various sensor types with different modalities are initially
deployed or are added afterward in autonomous vehicle. Since
sensors are prone to intermittent faults, using different sensor
is better than duplicating the same type of sensors as different
types of sensors typically react to the same environmental
condition in diverse ways. With the above in mind, our
approach for open automotive system offers the possibility to
define additional degradation rules including different types of
sensors, in case when different types of sensors, provide the
same data/information. In such situation, a possibility to switch
to a different source providing the same information (that has
correct configuration w.r.t. position, viewing direction etc.) ex-
ists and the system function still remains fully available in the
system. An example of such a case for the previously described
function, is when data from Radar subSradar sensor can be
”substituted” by data produced by a LiDAR (Light detection
and ranging) subSlidar sensor. Additional degradation rules
for the pedestrian detection and auto brake functionality like
the one below can be specified.

sfDeg0pedDet = subSDeg0camera ∧ subSDeg0lidar ∧
subSDeg0brake ∧ subSDeg0pdswc

Based on the fact that the function developer also specifies
the required resources for each degradation level and the
criticality level of the functions, the RTS has the possibility to
react appropriately in case of resource scarce. For example, if
not enough system resources are available, the RTS can deploy
and run all high criticality functions in the full functionality,
but the less critical ones in a degraded mode in which they
require fewer resources. At run-time, based on the ”health”
status of each subsystem, the ”lowest” available degradation
level of each system function is calculated. Depending on
the resources available in the system, the Reconfiguration
Manager (RM) RTS component dynamically decides if and

470

at which degradation level to execute each function (details
in next subsection). An Execution Manager component, which
manages the scheduling and execution of functions, performs
the required schedule changes.

D. Reconfiguration algorithm
In order to enable automatic graceful degradation at run-

time, reconfiguring the software components belonging to
sf of the system to accommodate the available hardware
duplex control-computers upon detection of a fault has to be
accomplished by the Reconfiguration Manager (by changing
their state: activate or deactivate). The proposed algorithm dy-
namically selects software components of the system functions
belonging to sfci ⊆ Sfc that maximize the safety properties
of the system. Our three step algorithm (Figure 4) is similar
and can be compared to a Greedy approximation algorithm.

Fig. 4. Reconfiguration algorithm

In Step 1 we choose the system function cluster based
on the Cost Function 1 that should be present in the system
in order to satisfy the safety properties (see meta-model in
Figure 2). The cost function contains two variables (and two
coefficients) that can influence the score of the function. The
criticality variable ASIL can get values {0, 1, 2, 3, 4} for
{QM,ASILA,ASILB,ASILC,ASILD} criticality level
respectively. The PerformanceRequirement can be as-
signed values {1, 2} for {fail − safe, fail − operational}
behavior respectively. First the clusters with the highest cost,
meaning ASIL D and a performance requirement (fail −
operational) is selected. For the two coefficients holds λ+δ =
1, and it is up to the system architect to decide upon their
weight. In our case study we have assigned 0,5 value to both
coefficient. In case of fail − operational (with hot-standby
slave) requirement, the redundant sfc have to be allocated to
two different computing units connected to different power
supplies to avoid that both instances are lost simultaneously
when a power supply fails.

Step 2 selects the SW components that belong to the system
functions of the selected cluster. Step 3 then ensures that all
selected SW components are allocated to one of the available
execution units (DCC) and that constraints (enough memory
and CPU resources) for a valid configuration hold. Failure of
the allocation results in a re-execution of previous step, with
SW components that have smaller Cost Function 2 as a result
of degradation. The degradation can be decided based on the
allowed degradation levels of the system functions. Normally,
the degraded levels require less hardware resources. As shown

on Figure 4, the score is dependent on the three parameters
and their corresponding weight coefficients. Despite of the
required resources, the priority of the function, which states the
importance (w.r.t. system safety) of the system function within
the cluster (which can have values in range [0−M] depending
on the system specification), also has influence on the score of
the Cost Function 2. Again, for the three coefficients holds the
following α+ β + γ = 1. In our case study we have assigned
0,2 value to α and β, and 0,6 to γ since the system architect
has the opinion that the priority of the function within the
cluster has a greater influence on system safety.

E. Case study
This subsection presents how the explained concept is used

in a scenario, where the pedestrian detection and auto brake
system function and other system functions are integrated in a
demonstration vehicle. Firstly, the function developer specifies
different degradation rules describing the pedestrian function.
In addition to the rules, for each of them the requirements
regarding the run-time execution resources (worst-case ex-
ecution time- WCET) and the RAM and ROM are stated
in ms and MBytes respectively. The pedestrian detection
and auto brake function belongs to one cluster ε (sfc1) =
{sf1}. Two other lusters sfc2, sfc3 also exsist in the sys-
tem (Figure 5). The sfc2 that contains the system functions
ε (sfc2) = {sf2, sf3, sf4} has the highest Cost Function 1
= 3.0, since it is highly critical cluster with ASILD and
fail-operational requirement. The third cluster is specified with
ε (sfc3) = {sf5}.

Fig. 5. Case Study: System Function Clusters

All five system functions Sf = {sf1, sf2, sf3, sf4, sf5}
and their corresponding SWa = {s1, s2, s3, s4, s5} are allo-
cated to the four computing units DCCs as shown on the left
side of Figure 6. Since the sfc2 cluster has a fail-operational
requirement, the SW components s2, s3, s4 belonging to the
corresponding system functions of that cluster, are allocated
twice (on two different DCCs). We can notice that all SW com-
ponents belonging to sfc2 are allocated to the same computing
unit as our algorithm suggests, and s1 is also allocated to the
same DCC. When the first fault in the system happens and the
third DCC computing unit (and its resources) is not available
any more, the software components s2, s3, s4 belonging to the
highly critical cluster sfc2 are able to get the resources which
are available on the fourth computing DCC (middle part of
Figure 6) using our reconfiguration algorithm. When a second
fault occurs in the system and the resources from the first
DCC are not available any more, our framework decides upon
reconfiguration and reallocation of the software components
belonging to the sfc2 to the second computing unit, where
enough resources are available. Since the sfc1 has a higher
Cost Function 1 then sfc3, the software component s5 will not
be executed any more due to unavailability of resources, and s1

471

will be reallocated to the second computing unit. However, due
to unavailability of sufficient computing resources the system
function sf1 will degrade in the sfDeg2pedDet level where less
computing resources are required.

Fig. 6. Case Study: Reconfiguration

IV. RELATED WORK

Here, we compare our approach against available solutions
provided by industry and scientific community.

In [9], authors show an approach to analyze graceful
degradation. They use a utility function to measure the set
of active features which can be seen as quite similar to our
cost functions. To reduce complexity, they group components
by defining subsystems and system as a composition of sub-
systems that each contribute to overall system utility. We see
systems as a composition of system function that are then
composed from subsystems. We group the system functions
into clusters according to their safety requirements. The main
difference is that they focus only on the reconfiguration
algorithm but not on RTS and the reconfiguration mechanisms.

Authors in [11], suggest an approach that includes formal
specification technique to describe known standard fault toler-
ance solutions. They propose fault tolerance patterns (similar
to our degradation rules) which capture the essential structure
and relevant deployment restrictions of these solutions. Fault
tolerance patterns are easily applied during the design of
component-based systems to increase the reliability or avail-
ability of specific components. However, they do not aim at
self-reconfiguration and extension of the system at run-time.

Current industry practice dealing with faults and failures
in embedded systems focuses on the traditional approaches of
fault tolerance and fault containment [8], as we do. SW subsys-
tems are physically separated into different hardware modules.
Additionally, system resources, such as sensors and actuators,
that may be commonly used are replicated for each subsystem.
Similar to our framework, this approach provides assurance
that faults will not propagate between subsystems since they
are physically partitioned, but on contrast the fault tolerance is
achieved only by replicating resources and subsystems rather
than shedding some not that critical functionality.

The automotive AUTOSAR standard [1] describes a plat-
form which allows implementing vehicle applications and
minimizes the barriers between functional domains. One of
the main objectives of AUTOSAR version 4 is to support

safety critical applications. To do so, the AUTOSAR execution
environment offers safety capabilities that focus on the correct
execution of software components only, and the monitoring
of functional behavior of the system functions is neglected.
Currently 3 levels of statically pre-configured mode managers
allowing degradation are supported by AUTOSAR. However,
they lead to a cluttered and complex implementation. In com-
parison to this we enable easy system and function degradation
by specifying intuitive degradation rules, so our approach can
be seen as an extension and improvement to AUTOSAR. In
addition, we also support the possibility of system extension
which currently AUTOSAR does not support.

V. CONCLUSION AND OUTLOOK

This paper presented a domain-specific meta-model that
enables to compose different high-level functions from differ-
ent components, define their dependencies and their required
resources. We specified RTS components that based on this
information are able to calculate the available degradation
level of all system functions, and based on the resources and
the information about the criticality of the functions, decide
upon appropriate reconfiguration. Future work includes further
implementation and integration of our approach in the ”Rev-
olution” car demonstrator of the RACE project. In addition,
we will evaluate how the proposed architecture can be used in
cooperative vehicular systems with Car2Car technologies.

ACKNOWLEDGMENT

The work presented here is partially funded by the German
Federal Ministry for Economic Affairs and Energy (BMWi)
through the RACE project.

REFERENCES

[1] AUTOSAR Group. AUTomotive Open System ARchitecture (AU-
TOSAR) Release 4.1, 2013.

[2] M. Bernhard et al. The Software Car: Information and Communication
Technology (ICT) as an Engine for the Electromobility of the Future.
ForTISS GmbH, March 2011.

[3] M. Broy, I. Kruger, A. Pretschner, and C. Salzmann. Engineering
automotive software. Proceedings of the IEEE, 95(2):356–373, 2007.

[4] J. Frtunikj, V. Rupanov, M. Armbruster, and A. Knoll. Adaptive
Error and Sensor Management for Autonomous Vehicles: Model-based
Approach and Run-time System. In 4th International Symposium on
Model Based Safety Assessment, October 2014.

[5] J. Frtunikj, V. Rupanov, A. Camek, C. Buckl, and A. Knoll. A safety
aware run-time environment for adaptive automotive control systems.
In Embedded Real-Time Software and Systems (ERTS2), February 2014.

[6] J. C. Laprie, A. Avizienis, and H. Kopetz, editors. Dependability: Basic
Concepts and Terminology. 1992.

[7] G. Lehmann, M. Blumendorf, F. Trollmann, and S. Albayrak. Meta-
modeling runtime models. In MoDELS Workshops, pages 209–223,
2010.

[8] J. Rushby. Partitioning in avionics architectures: Requirements, mech-
anisms, and assurance. Technical report, 1999.

[9] C. Shelton, P. Koopman, and W. Nace. A framework for scalable
analysis and design of system-wide graceful degradation in distributed
embedded systems. In Object-Oriented Real-Time Dependable Systems
(WORDS), pages 156–163, Jan 2003.

[10] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L. Fiege,
M. Armbruster, G. Spiegelberg, and A. Knoll. Race: A centralized
platform computer based architecture for automotive applications. In
Electric Vehicle Conference (IEVC), 2013 IEEE International, pages
1–6, Oct 2013.

[11] M. Tichy and H. Giese. Extending fault tolerance patterns by visual
degradation rules. In Workshop on Visual Modeling for Software
Intensive Systems (VMSIS), pages 67–74, 2005.

472

