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Abstract—The soft robotics approach is widely considered to
enable human-friendly robots which are able to work in our
future homes and factories. Furthermore, achieving the smooth
and natural movements of humans has become a hot topic in
robotics, especially when robots are supposed to work in close
proximity to humans. The anthropomimetic principle aims at
mimicking not only the outside but also the inner mechanisms
of the human body in humanoid robots. However, for this class
of robots there exist as yet no scalable controllers that might
make it possible to control a full body, or even several joints. A
very similar problem is ongoing research in biomechanics which
is the computation of muscle excitation patterns for coordinated
movements. For this purpose, biomechanicists have developed
computed muscle control which has proven a very scalable
technique.

In this paper, we demonstrate the adaptation of computed
muscle control for a tendon-driven robot, comparing different
methods for obtaining the muscle kinematics, as well as different
low-level controllers. Results are shown for the implementation
on a distributed control architecture and a single revolute elbow
joint.

I. INTRODUCTION

Standard industrial manipulators offer extremely precise
performance for repetitive tasks for which trajectories can be
planned ahead, as would be the case in the well-structured
environments of a factory. However, when unstructured en-
vironments are considered, humans still outperform robots
in almost every aspect. This is due to the uncertainty that
comes with these environments which cannot be sufficiently
perceived and modeled, leading to possible collisions. In case
of a rigid impact, however, a stiff robot is very likely to
damage itself or its surroundings. The soft robotics approach is
therefore widely considered to enable human-friendly robots
which will be able to work in our modern homes and fac-
tories [1]. Humans display extremely smooth and effortless
motor control over a certainly very complex body, which is
still far from being matched by any robot. Achieving these
smooth and natural movements has become a hot topic in
robotics, especially when robots are supposed to work in
close proximity to humans [2]. We can try to achieve this
by actively computing human-like trajectories, but as long as
the internal mechanisms of the robot are so different from the
ones in the human body, this may never be truly achieved.
One way towards this goal is to incorporate more and more
of the mechanisms that can be found in humans for robots.
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Fig. 1. ANTHROB. A 3D printed anthropomimetic robot with a spherical
shoulder, and a revolute elbow joint. Eleven tendon-driven compliant muscles
are realized with DC motors, kite line and elastic elements.

The anthropomimetic principle [3] aims at mimicking not only
the outside but also the inner mechanisms of the human body
in humanoid robots. However, for this class of robots there
exist as yet no scalable controllers that might make it possible
to control a full body, or even several joints. With the design
come several challenges which are not present in other robotic
systems, like complex joint types (e.g. ball-and-socket joints),
multi-articular muscles, and most importantly muscles that
collide with the rigid structure of the robot as well as with
other muscles.

Tendon-driven robots can be differentiated by the tendon
configuration which is the number of tendons per degrees
of freedom (DoF) in the joints. Three main configurations
exist, N, N+1, and 2N [4], while models of human bodies
as well as anthropomimetic robots have to be classified as
2N+, denoting many more muscles per DoF in the joints
than 2N. Control approaches from the robotics community
like [4-7] deal only with the 2N configuration. For robots of
the 2N+ configuration with complex joint types and colliding
muscles, on the other hand, a control problem has to be
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solved that is also ongoing research in biomechanics. Here, the
goal is to compute muscle excitation patterns for coordinated
movements [8]. In biomechanics the motivation is to find out
how different muscles are involved when the human body
performs certain tasks, where only a few states, like joint
angles or excitation patterns of some muscles, can be measured
non-invasively. A robot controller on the other hand should
drive the system to perform tasks as desired [9]. For this
purpose biomechanicists have developed computed muscle
control [8] which is extended by de Sapio et. al. [10, 11]
into a highly generic approach to control a human shoulder
complex in simulation. While these techniques address exactly
the challenges of controlling anthropomimetic robots, they
lack the measurable performance criteria like robustness and
stability for actual robotic systems. Robotic controllers on the
other hand lack the scalability for more complex robots. The
controller proposed in [12] has proven useful to control the
simulation of an anthropomimetic robot arm and will in this
work be evaluated for controlling a physical robot based on
the control architecture described in [13].

II. THE PLATFORM

In this work, a robot is utilized that implements the anthro-
pomimetic idea for a humanoid robot arm with a spherical
shoulder joint, a revolute elbow joint and a total of eleven
muscles (see Fig. 1). Therefore, the human skeleton, as well
as the muscular system is mimicked as close as possible. The
artificial muscles (AMs) consist of a DC motor, kite line, and
an elastic element, allowing the electric actuator to wind the
kite line on the attached spindle and hence either innervate
or relax the AM. Therefore, force can only be exerted on
the attachment points in one direction, i.e. a muscle can only
pull, not push. The elastic element adds the flexibility that is
also present in a biological muscle. Even though the technical
implementation of the AMs cannot fully capture the muscular
contraction dynamics of biological muscles, key features like
the elasticity and most importantly the muscle insertion points
have been emcompassed.

Both manufacturing techniques, as well as the sensory sys-
tem were largely improved from the previous anthropomimetic
robots, like CRONOS [3] or the ECCE [14]. Especially utiliz-
ing 3D printing techniques to fabricate the anthropomorphic
structures, makes it now possible to extend previously devel-
oped controllers [12] onto real physical robots, as CAD data is
available for obtaining reliable kinematic and dynamic system
models. Furthermore, this robot features a potentiometer in
the elbow for sensing the elbow angle. In this work we cover
the control of the revolute elbow joint with two AMs, the
Brachialis, and the Triceps as an exemplary configuration to
prove the feasibility of the control scheme for robot control.
Note that both muscles are implemented as mono-articular
muscles here. While this is physiologically correct for the
Brachialis, the human Triceps has three heads, of which
only the lateral and medial heads are mono-articular. The
attachment point chosen for the artificial Triceps is equivalent
to the medial head.

III. MODELING MUSCULOSKELETAL ROBOTS

In [4, 7] a model of a tendon-driven robot is obtained for
the full state-space. This leads to a very complex and also non-
linear model for which a controller can be found, provided the
system is small enough. However, the process of developing
these models and corresponding controllers shows that these
controllers lack the scalability for larger systems.

To cope with more complex systems, it is possible to decom-
pose them into a hierarchy of simpler subsystems for which
separate control methods can be derived. An anthropomimetic
robot can be divided in three subsystems. First a model of
the comparably stiff robot components—the skeleton—can
be obtained like for any conventional robot (Section III-A),
second the AMs are modeled (Section III-B), and last a
mapping between the two needs to be found (Section III-C).

A. Skeleton Model

For conventional robots the equation of motion can be
expressed in one of two canonical forms [15]. In joint space
this is written as follows,

T=H(q)§+C(q,4)q+ 7c(q) (1

giving a relationship between the joint torques 7 and the
generalized joint coordinates ¢, ¢, and ¢. Note that in the
following, dependencies of ¢ and ¢ of the mass matrix H, the
matrix of coriolis and centrifugal terms C' and the vector of
gravity terms 7 are omitted. A system model in the canonical
form can also be found for an anthropomimetic robot, by the
well known methods of the Newton-Euler Algorithm or more
efficiently using the Composite Rigid Body Algorithm [16].
For a more detailed analysis on how spherical joints can be
integrated into the canonical form, refer to [12]. To encompass
the effect of Coulomb friction in the canonical form, an
additional term 7y [17] has to be added to (1), denoting a
constant coulomb friction term 7.

T=Hij+Ci+1¢+717 with 7% =7, -sgn(q) 2)

B. Muscle Model

The AMs of the anthropomimetic robot consist of a DC
motor, kite line and shock cord. A model of an AM could be
obtained by combining the standard DC motor model with a
model of the gearbox and a linear spring (/' = k - Az). This
led to a continuous time state-space model of the following
form,

X = Ax 4+ bug + gt
f=c"x 3)

while x is the vector of states, the DC motor voltage w4 is
the input and muscle force f is the output of the system.
The system disturbance for the low-level muscle control,
which is essentially the joint movement, was modeled as a
linear coordinate x at the attachment point beyond the elastic
element, while {A, b, ¢, g} denote the linear system (see also
Fig. 4). For a more detailed description of the muscle model,
used in this work, please refer to [12].
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Fig. 2. Muscle lengths for the Brachialis and Triceps are shown, comparing
the polynomial fit from samples against the analytic function obtained by
assuming straight line muscles.

C. Muscle Jacobian

A relationship between the muscle and the joint space can be
formulated based on the geometric mapping of muscle lengths
l, subject to the joint angles q.

l=f(q) “4)

By partially differentiating this function with respect to the
joint angles the so called muscle Jacobian L(g) is ob-
tained [18]. It gives a relation between the change of the
muscle lengths with respect to the change of joint angles at a
certain configuration.

_al
o

Using the principle of virtual work, this can be transformed
to a relation between the muscle forces f (the negative sign
arises from the definition of a positive force when pulling) and
the joint torques 7 [10].

T=—L"(q)- f (6)

The muscle Jacobian can be obtained in different ways. Either
by directly modeling the moment arms of the muscles [4] or
by finding a geometric representation of the muscle lengths
and subsequently differentiating it with respect to the joint
angles [19].

Finding geometric representations of the muscle lengths is a
complex and error prone task, and becomes almost impossible
for spherical joints where muscles might also wrap around
skeletal structures. Therefore, we propose a third possibility
which is to numerically approximate (4) by drawing samples
from the system. In the following, a comparison between a
numerical approximation and the geometric solution will be
drawn for the example of the elbow joint with two muscles.
Samples were obtained by utilizing the force control algorithm
(see Section IV-A) to maintain a minimum tension of 1 N and
manually moving the joint, covering the work space several
times. Throughout the experiment motor positions, joint angles
and muscle forces were recorded and subsequently used for the
numerical approximation. Samples were generated by moving

L(q) Lg)-q=1 (5)
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Fig. 3. Muscle Jacobians from differentiating both the polynomial fit and
the analytic muscle length functions.

the elbow joint 4 times and sampling with 50 Hz. By removing
samples, where forces were outside of a bound of +0.2 N of
the reference force, the number of samples was reduced to
1,708. This was necessary, as back-computing the expansion
of the elastic elements from the measured forces was too
error prone, as a detailed non-linear model was not available.
Therefore, the expansion could be neglected. In this case
the muscle lengths [ can be back-computed from the motor
positions ¢, utilizing the spindle radius 7.

l=lp+r- - 7

Here, the function could be approximated using a polynomial
fit (see Fig. 2). Good fits were achieved with a 2nd order
polynomial for the Triceps (R? = 0.99999) and a 3rd order
polynomial for the Brachialis (R? = 0.99991).

For the geometric solution, the CAD design of the robot,
was utilized to determine the two anchor points P4, Pp of
the muscles in the coordinate frame of the upper arm. While
P, is fixed within this frame, Pp is a function of the elbow
angle 6

Pg =Rz(0) - Ppo ¥

with Rz being the rotation matrix around the rotation axis (z)
of the elbow and Ppg being the anchor point Pg(0) of the
unrotated elbow. Assuming straight line muscles, a function
of the muscle length could be easily extracted.

I(q) = ||Pa — Rz(q) - Pol] )

In Fig. 2, a comparison between an analytically obtained
muscle lengths to joint angle relationship and the fitted func-
tions is depicted. This led to a good representation for the
Brachialis, even though the anchor points cannot be uniquely
determined due to the movement of the kite line inside the
guiding eyelets. For this robot the anchor point is able to move
inside the plane of the eyelet which has a radius of 3.5 mm.
For the Triceps, however, the deviations became significant,
as the Triceps cannot be modeled as a straight line muscle.
It collides both with the lower as well as the upper arm,
depending on the posture. Please note, that it is of course
not theoretically impossible to model the behavior of colliding
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Fig. 4. Muscle Force Controller. A comparison of a A: PD force controller
with a feed-forward term (FFW) and a B: state-space force controller k£ with a
pre-filter V' is shown for the linear system {4, b, cT', g} of the muscle model.

muscles analytically, and it has also been done for the simula-
tion model of a human body [20]. However, identifying these
parameters for a physical system is error prone, especially
when the model will be scaled to larger systems, like the full
arm. In this case, an approach like approximating the function
through artificial neural networks (ANN) or locally weighted
projection regression (LWPR) [21] is needed which has been
shown to work well in simulation [12]. In the simple case of a
revolute joint, the polynomial fit is fully sufficient. The great
advantage of this approach is that the complicated relationships
of colliding muscles are captured automatically by the samples
from the real robot.

From the polynomial fit, the muscle Jacobian could be
easily identified by differentiating. Fig. 3 shows again a
comparison between the analytically obtained Jacobian and
the polynomial fit. While deviations are comparably small for
the Brachialis—with respect to measurement accuracy and the
fact that anchor point locations change with the posture—
the Triceps deviations are again quite large. It can be seen
from the figure that the Triceps could alternatively be modeled
by assuming a fixed muscle Jacobian of ~ 0.02m, which is
essentially the same as the assumption of a fixed moment arm.

IV. CONTROL

A hierarchical control structure (cascade) was developed to
control the robot. In a cascade, controllers for the subsystems
can be developed independently, provided that dynamics of
the inner control loop are at least an order of magnitude
faster than the dynamics of the outer control loop [22]. In
the following, a controller for the faster inner system—the
muscle force control—is synthesized first, and subsequently a
controller for the full robot body is developed.

The control approach developed in the following section
is distributable in a manner, where fast force control loops
can run with a frequency of 500 Hz on distributed nodes, and
the whole body control algorithm runs with a much slower
frequency on the central computer. The implementation of this
control architecture has been described in detail in [13].

reference
PD-controller
—— SS-controller
z
8
5
=
1 1.5 2 25 3 35 4 4.5
Fig. 5. Force Control Step. Step up and step down from 2N to 40 N for

the state-space controller as well as the PD controller.

A. Force Control

Force control for tendon driven systems is generally realized
by a P or PD controller, often in conjunction with a feed-
forward term (see Fig. 4) [4, 5]. Control parameters can be
found by methods from control theory like direct design by
root locus, utilizing the Nyquist stability criterion [22] or even
by simple trial and error. The linear feed-forward term FFW
is determined by calculating the steady state control input

1 T

FFW =R, - — -
Cr Grllg

(10)

where R 4 is the anchor resistance and ¢, is the torque constant
of the motor, g, and 7, are the gearbox ratio and energy
efficiency, respectively, and r is the radius of the spindle.

We compared the existing approach against a state-space
controller (see Fig. 4) that was synthesized using Ackermann’s
formula [22] for a discrete state-space model. A discrete state-
space model could be obtained from the continuous state-space
model of a muscle described in Section III-B. As a counter
piece to the feed-forward term, a pre-filter V' was introduced
for compensating the steady state error, by utilizing the state-
space system {A,b,cT, g} [22].

il =[5 ] T

V=M,+k- M,

(1)

(12)

The two controllers were compared on a typical muscle of the
robotic arm by performing a step up and step down from 2 N to
40N and back (see Fig. 5). The state-space controller followed
the force with a RMSD of 0.236 N and the PD controller with
0.579 N for the steady state phase at 40 N. It can be seen from
the graph in Fig. 5 that this larger error was mainly due to the
steady state offset which is —0.55 N for the PD and 0.06 N
for state-space controller A similar offset, but in the other
direction (0.44 N and 0.05N, respectively) can be observed
also at 2 N leading to the conclusion that this effect cannot be
compensated by a linear feed-forward term. Furthermore, the
state-space controller also shows a slightly faster rise time. For
these reasons, the state-space controller was utilized to control
the elbow joint.
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Fig. 6. Joint Space Control. The control scheme uses an analytical model
of the skeleton, along with the muscle Jacobian to calculate reference forces
for the individual muscle force controllers (see Fig. 4).

B. Joint control

For standard robotic systems there are various control meth-
ods based on the canonical form of the skeleton model. Here,
the method of computed torque control was adapted [15]. It
utilizes (2) to calculate the joint torques 7 necessary to produce
desired joint accelerations gf, given the system states g and
g. The reference joint acceleration can be obtained by any
control law. In this case a PD controller was chosen.

Qref:PAq+DAq (13)

Even for the simple case of only a single DoF and two
antagonistic muscles, solving (6) for the muscle forces f is
underdetermined. This problem can be treated by formulating a
quadratic optimization problem [23]. In this work, an objective
function for the optimization was chosen that is the square of
the euclidean distance between the forces. Different objective
functions like minimum energy or minimum muscle activation
are possible here with different results, especially for multi
joint systems. However, in this work only the minimum force
criterion was evaluated. The optimization is subject to two
constraints. First, the forces are to apply the joint torque
acquired by computed torque control, and second, muscles can
apply force only in one direction, namely muscle forces have a
lower bound. This non-linearity in the system is problematic,
especially since slack muscles have to be avoided, as they
might get tangled. Therefore the lower bound for the forces
fmin should be chosen to maintain a certain safety zone from
zero, while at the same time reducing the internal forces.

mfmI\fH2 (14)
~L"(q)-f=7
f > fmin

Therefore, the control input f satisfies the following equation

subject to

H(P -Aq+D-Aj) +Ci+1¢+717=—-L(q)-f (15)

which, assuming perfect system models, leads to a closed-
loop behavior for the ith joint angle 6;, due to diagonal P =
diag{p;}, and D = diag{d;}.

pi - AO; +d; - AG; = 0. (16)
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Fig. 7. Elbow Step Response. The elbow angle (top) and the muscle forces

(bottom), while (1) performing a step up (2) exerting an external disturbance
and (3) performing a step down.

The transfer function of the closed loop Tf(s) can be ex-
pressed in the frequency domain for the complex frequency
5.
pi+di-s
Ty(s) =

= - 17
pi+d;- s+ s {1

Stability for this type of system can be proven using methods
from linear system theory [22]. Therefore the controller shows
global asymptotic stability, when assuming (1) perfect system
models, and (2) quasicontinuous control. In the following sec-
tion it is shown that the controller behaved in a stable manner,
for the derived system models and the discrete distributed
implementation.

V. RESULTS

The scalable control scheme shown in Section IV, was
implemented for a single revolute joint with two antagonistic
muscles. It has to be noted that even though this work only
treats a single DoF, it has already been shown to scale to larger
systems in simulation [12].

The implementation utilizes the Robotics Library (RL)' for
modeling the dynamics and kinematics of the system and the
polynomial fit of the muscle Jacobian (see Section III-C).
The optimization problem of calculating muscle forces for
given reference accelerations ¢ is solved online, using
QuadProg++? for a minimum force of fii, = 2N.

lavailable on sourceforge.net, by Markus Rickert
2available on sourceforge.net, by Luca Di Gaspero
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In Fig. 7, a step from 0.2rad up to 1.6rad and a corre-
sponding step down of the elbow angle are shown. We saw
accurate tracking of the angle and a rise time of ¢, = 1.00s
for the step up and ¢, = 0.86 s for the step down. Between the
steps an external disturbance was applied. Here, the muscles
flexed to keep the pose steady, however the system was
compliant enough to give in to approximately 1rad, due to
the disturbance. As soon as the disturbance was removed, the
controller brought the elbow angle back to 1.6 rad.

During the step down it could be seen that the dynamic
system model was able to compensate for the non-linear effect
of gravity, leading to a rise time that was similar to the rise
time of the step up. While stepping down, the role of the
muscles was inverted by the optimization, causing the Triceps
to pull the forearm down. It is obvious that the force controller
was not always able to track the reference forces fast enough to
follow. This was due to the constant disturbance of the moving
forearm. However, steady state behavior was highly accurate
and the overall movements are carried out with sufficient
speed. Most importantly, neither of the muscles went slack
at any time during the experiment.

VI. CONCLUSIONS AND FUTURE WORKS

The scalable joint-space controller for musculoskeletal
robots developed in [12] was evaluated on a physical robotic
joint, proving feasibility of the overall control strategy. It has
been shown that numerical methods can be used to model
the muscle kinematics in contrast to an analytical solution
assuming straight line muscles. The great advantage of the
numerical approximation approach for the muscle kinematics
is that it is capable of automatically capturing the main
challenges of controlling anthropomimetic robots, i.e. complex
joint types, colliding muscles, and multiarticular muscles.
Furthermore, the advantages of a state-space force control, in
comparison to the previously used PD controller with a feed-
forward term were demonstrated.

In the future we would like to extend the controller to
multi-joint structures including spherical joints and bi-articular
muscles. It has to be noted that intrinsic joint angle sensors
for spherical joints are extremely hard to realize and therefore
need to be replaced, either by back-computing joint angles
from muscle lengths [24] or by an extrinsic sensory system,
e.g. stereo-vision based motion tracking. Furthermore, the
control scheme will be extended to operational space control.
Especially solving the joint, as well as the muscle redundancy
in a single local optimization step has been shown to lead to
physiologically consistent trajectories [2, 11].
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