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Nowadays, both the performance and power consumption for modern server clus-

ters and data centers must be considered to reduce the maintenance cost for quality of 
service guarantees, as power dissipation affects the cost of both the power delivery sub-
systems and cooling facility. Considering the popularity of heterogeneous clusters, this 
paper proposes efficient and effective power management schemes for large scale server 
farms. Distinct from existing heuristic approaches, we propose dynamic frequency scal-
ing schemes with approximation factor guarantees, compared to the optimal power man-
agement. By considering systems with discrete frequency levels on every server, our 
schemes can be applied for different power consumption models. Our greedy power man-
agement schemes have 1.5 or 2 approximation guarantees depending on the complexity. 
Our dynamic-programming approach can trade the quality, in terms of power consump-
tion, of the resulting solutions with the time/space complexity. We provide extensive 
simulation results to show that the proposed schemes are effective for the minimization 
of the power consumption for large scale clusters. 
 
Keywords: power management, soft real-time systems, dynamic voltage scaling, quality 
of service, heterogeneous clusters 
 
 

1. INTRODUCTION 
 

Power and energy consumption nowadays has become the key concern in server 
clusters or data centers. For example, a high-performance server with 300Watt power 
consumption consumes 2628 kiloWatt hours. Therefore, within one year, the annual 
power cost of the server is around $263, if the electricity cost is $0.1 per kiloWatt hour. 
Even without considering the cost of the power delivery subsystems and the cooling fa-
cility, for maintaining a cluster with hundreds of servers, the electricity cost is significant. 
Another fact is that the performance per watt remains roughly flat over time [2], although 
advanced hardware technology has improved the performance per hardware dollar. As a 
result, the electricity cost of server clusters will be more than the hardware cost and be-
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come a major fraction of the total cost of ownership. 
To reduce the power consumption without sacrificing the performance, power-aware 

and energy-efficient scheduling has been extensively explored in the literature, especially 
for real-time systems, e.g., [1, 5, 15]. Low-power opportunity for one single web server is 
observed in [3, 10] to reduce the energy consumption by applying dynamic voltage scaling 
(DVS) with minimal performance impact. For server clusters, by applying workload pre-
diction for predicting the workload or the average request arrival rate for the next sched-
uling interval, the power management routine in the front-end server has to decide 
whether a back-end server should be activated for serving requests, deactivated for power 
saving, accelerated for serving more requests, or decelerated for serving less requests. For 
homogeneous server clusters with identical servers, Chase et al. [4] develop a load bal-
ancing framework to dynamically turn on/off servers, Xu et al. [14] propose algorithms to 
determine the number of servers to turn on by applying both DVS and DPM, and Wier-
man et al. [13] explore how to balance the mean energy consumption and the mean re-
sponse time under processor sharing scheduling. 

Considering the popularity of heterogeneous clusters, power management for hetero-
geneous server clusters under quality of service (QoS) guarantees has been recently ex-
plored in [7, 9, 12]. Specifically, Wang and Lu [12] develop a power management algo-
rithm to order heterogeneous servers in a pre-defined order. After deciding the activation 
and deactivation of servers, Lagrange Multiplier Method is applied to decide the execu-
tion frequency. Similarly, for servers with discrete speeds, Rusu et al. [9] use two tables 
for deciding which servers to be activated and which frequency levels to be executed. 
Moreover, Guerra et al. [7] model the problem as an integer linear programming (ILP) 
problem by applying ILP solvers with high complexity to get a table for storing decisions 
for different workloads under pre-defined granularity. 

For most commercial computing systems, the available frequency levels are fixed. As 
a result, the approaches in [12] might not be suitable, in which using a higher available 
frequency level might sacrifice the optimality. Because storing decisions in tables requires 
exponential space complexity in the worst case, researchers in [7, 9] discretize the possi-
ble amount of the to-be-served workload into pre-defined granularity and derive the 
scheduling tables based on the granularity. As a result, the quality of the derived solution 
heavily depends on the granularity. Moreover, if a server in the cluster is out of service 
due to some maintenance reasons, recomputing the scheduling tables by applying algo-
rithms in [7, 9] might be time-consuming. 

This paper explores the power management problem for heterogeneous clusters un-
der QoS constraints. Distinct from the heuristic approaches in [7, 9, 12], we propose algo-
rithms to provide different approximation guarantees for power consumption minimization 
under different time/space complexity. By considering systems with discrete frequency 
levels on servers, our schemes can be applied for general power consumption models and 
QoS models. Our greedy power management schemes have 1.5-approximation or 2-ap- 
proximation guarantees depending on the complexity. Our dynamic-programming ap-
proach can trade the quality, in terms of power consumption, of the resulting solutions 
with the time/space complexity. As our approaches do not rely on global tables, they are 
more robust against failure of servers. If building a scheduling table is necessary for sys-
tem designers, our proposed dynamic programming approach can be applied and ex-
tended to build tables with different granularity. Simulation results show that the pro-
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posed schemes are effective for minimizing the power consumption. Note that this paper 
is an extended version of the conference paper in [6]. Compared to the conference ver-
sion, we provide extensive simulation results by clusters with up to 800 servers to dem-
onstrate the effectiveness of our algorithms. 

The rest of this paper is organized as follows: Section 2 provides system models and 
problem definition along with hardness analysis. Section 3 presents our greedy power 
management schemes with different approximation factor guarantees. Section 4 demon-
strates how to use dynamic programming to trade the quality of the derived solution with 
the time/space complexity. Simulation results are presented in section 6. Section 7 con-
cludes this paper. 

2. SYSTEM MODELS 

This section presents the model of a cluster, the power consumption model of a server 
in the cluster, and the problem definition. 

2.1 System Model 

We consider a cluster with a front-end server, which arbitrarily distributes workload 
of requests to a cluster of back-end servers. The front-end server is assumed not to par-
ticipate in processing any requests, but only to decide the power states of back-end serv-
ers and how to distribute the requests to those back-end servers that are activated. Fig. 1 
illustrates an example for a cluster of web servers. The cluster consists of M heterogene-
ous back-end servers, denoted by m1, m2, , mM, providing CPU-bounded services. The 
heterogeneity comes from different hardware architectures, different manufacturing tech-
niques, different vendors, etc. However, all these M back-end servers have the same func-
tionality, i.e., a request can be served in any of these back-end servers. As a result, once a 
back-end server is activated (turned on), it can serve any assigned request. 

 
Fig. 1. An example for a web server cluster. 

 
To satisfy the performance requirement, the cluster has to provide its services under 

some quality of service (QoS) constraint. Due to heterogeneity of back-end servers, the 
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performance of servers mi and mj at frequency f might be different. To have the same per-
formance index under different servers, each server mi is associated with a performance 
co-efficient i such that if is the throughput (in terms of executed number of cycles or 
requests per time unit) of server mi at frequency f. 

To measure quality of servers, we might either apply analysis for soft real-time sys-
tems for the (average) percentage of requests that miss their timing constraints [9], or ap-
ply Queueing Theory to guarantee the average response time, e.g., M/M/1 model in [12] or 
M/G/1 PS model in [13]. For example, as shown in [12], if the quality of service is on the 
average response time under the M/M/1 queuing model, to serve workload with average  
request rate  on server mi, the average response time at frequency f is 

1 ,
i f   where if  

is the number of requests finished per time unit. For the rest of this paper, suppose that 
qi(f, ) is the quality of service provided by server mi at frequency f when the average 
request rate assigned on server mi is with arrival request rate . Note that, the metric of 
qi(f, ) depends on the definition of the QoS of a server. 

The derivation of qi(f, ) is not a focus of this paper. One might apply existing results 
in the literature, e.g., [9, 12, 13]. We only assume that qi(f, ) is not worse than qi(f  , ) 
for any  > 0. In other words, this paper focuses on a more general setting, in which for a 
fixed average request rate assigned to a server, the QoS provided by the server is not 
worse when the server is operated at a higher frequency. 

2.2 Power Consumption and DVS Models 

We consider servers with discrete dynamic voltage scaling levels. The number of 
available frequency levels on server mi is Ki. (Note that, if there is no possibility for dy-
namic voltage scaling on server mi, we can simply set that Ki to 1 and fi,1 is the frequency 
of the server.) For brevity, we order the available frequency levels on server mi from the 
lowest one to the highest. Let fi,j be the jth lowest available frequency for server mi, in 
which fi,1 < fi,2 <  < fi,Ki

 when Ki > 1. The power consumption for server mi on frequency 
fi,j is P†i,j. 

When a server mi is activated, it must operate at least at frequency fi,1. However, if it 
is not necessary to turn a server on, we can deactivated the server (if it is activated) to 
reduce the power consumption. If a server mi is not activated, its power consumption is 
assumed to be a constant Pi

. If the power consumption at frequency fi,j is less than fi,k for 
some k < j, we can simply remove the power-inefficient frequency fi,k. Therefore, we con-
sider systems with Pi

 < P†i,1 < P†i,2 <  < P†i,Ki
. As we cannot reduce the power consump-

tion Pi
, it can be subtracted from the power consumption P†i,j. For the rest of this paper, 

we will only focus on the manageable power consumption Pi,j of server mi at frequency fi,j, 
in which Pi,j is P†i,j  Pi

. 
When a server is activated for execution, both efficiency and power consumption is-

sues must be considered. For example, if a server has high power consumption, activating 
the server might consume too much power even though we might not have to activate the 
other servers. On the other hand, if a server has lower power consumption, activating the 
server might not be enough, and, hence, we might have to activate many servers to satisfy 
the QoS requirements. 

As a result, we have to consider the power density of a server, which is defined as the 
power consumption of the server divided by the request rate it can serve under the QoS 
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requirement, denoted by R, of the cluster. Note that as we focus on general settings of 
QoS requirement, R could be average response time, average waiting time, or worst-case 
response time1, etc. Suppose that Li,j(R) is the (average) request arrival rate that server mi 
can serve at frequency fi,j with quality of service no worse than R. That is, qi(fi,j, Li,j(R)) is 
not worse than R. For example, if the quality of service is the average response time in the  

M/M/1 queuing model, qi(fi,j, Li,j(R)) = 
, ,

1
( )i i j i jf L R    R. For notational brevity, for the 

rest of this paper, we will define both Pi,0 and Li,0 as 0. As R is assumed to be a fixed pa-
rameter, we will use Li,j to represent Li,j(R) for the rest of this paper. Fig. 2 illustrates an 
example for the power consumption and the power density, in which the power consump-
tion is an increasing function of the average request arrival rate but the power density is 
not. 

        
   (a) Power profiles.                       (b) Power density. 

Fig. 2. An example for power consumption and power density of servers. 

 
Furthermore, we assume that the front-end server is responsible for estimating the 

average request rate for the next time interval for scheduling, and for distributing the re-
quests to back-end servers such that the quality of service is satisfied and the power con-
sumption is minimized. To estimate the average request rate, one can apply a feedback- 
control with queuing theoretic prediction approach, which is also adopted in [12]. Through-
out this paper, we assume that the workload prediction is known a priori, in which the av-
erage request rate of the cluster is , and our task is to decide the activation and frequency 
levels of back-end servers to minimize the power consumption under the QoS constraint. 
 
2.3 Problem Definition 
 

This work explores power management for a heterogeneous cluster under the quality 
of service requirement R. As the average request rate (workload) changes over time, the 
power management must be done dynamically to cope with dynamic rates. Suppose that 
the current average request rate of the cluster is . Our objective is (a) to activate/deacti- 
vate servers to distribute the average request rate to those servers that are activated for 
execution, and (b) to decide the operation frequency of activated servers, such that the 
power consumption is minimized and the QoS requirement R is satisfied. For brevity, we 
denote the above problem as the Power Management for hEterogeneous server Clusters 
(PMEC) problem. 

A solution S to the PMEC problem distributes  into 1(S), 2(S), , M(S) and de-

1 For worst-case response time, we can only guarantee under the prediction of estimated worst cases instead of 
average cases. 
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cides the frequency levels s1(S), s2(S), , sM(S) of these M back-end servers. A solution S  
is said feasible for the PMEC problem if the rate distribution is no less than , i.e., M

i=1  
i(S)  , and the frequency level on server mi is sufficient to provide the quality of ser-
vice requirement, i.e., i(S)  Li,si(S). For brevity, we denote the power consumption of a  

solution S by (S), in which (S) = M
i=1Pi,si(S). A solution S is said optimal for the PMEC 

problem if its power consumption is the minimum among the feasible solutions. For a so- 

lution, if M
i=1Li,si(S) is no less than , we can easily distribute Li,si(S) average request rate to 

server mi when si > 0 without violating the QoS guarantee. Therefore, for the rest of this 
paper, we only focus our discussions on how to decide the frequency levels of servers to 
guarantee that the solution S satisfies Li,si(S)   with adoption of the above request distri-
bution strategy. 

If activating all the back-end servers at the highest frequency level cannot satisfy the 
QoS requirement, one has to augment the back-end servers, and there does not exist any 
feasible solution for the PMEC problem. For the rest of this paper, we focus on the opti-  

mality issue by considering cases with M
i=1Li,Ki

  . Obviously, the studied problem is 
-hard, as it can be reduced to the Knapsack problem. 

Due to the -hardness of the PMEC problem, this paper pursues polynomial-time 
approximation algorithms with worst-case guarantees on the quality of the derived solu-
tions. A -approximation algorithm for the PMEC problem (or, an algorithm with a -ap- 
proximation factor) guarantees to derive solutions with at most  times of the power con-
sumption of the corresponding optimal solutions [11]. 

3. GREEDY SCHEMES 

This section presents our proposed greedy power management schemes for the PMEC 
problem. We will first present the construction of a decision tree to decide whether we 
should turn on a server, or accelerate or decelerate the execution frequency of a server. Then, 
we will present our proposed greedy power management schemes with a 2-approximation 
factor, followed by improved schemes. 
 
3.1 Constructing Decision Trees 
 

Before presenting our proposed greedy power management schemes, we will first 
describe the construction of a decision tree for a server mi. Our proposed greedy power 
management schemes will decide whether we should activate a server for serving requests 
or accelerate a server for accommodating more request rate. 

Suppose that server mi is activated and ci is the critical frequency level with Di,ci
  Di,j 

for 1  j  Ki and ci > 0. The most power-efficient execution on server mi is to distribute 
Li,ci

 amount of workload to server mi at execution frequency level ci. If we want to dis-
tribute more workload to server mi, it will require more additional power density to serve 
these additional workload. If we want to reduce the allocated workload, we can definitely 
reduce the power consumption, but the resulting solution will have more power density 
than executing at the critical frequency level. 

For the decision tree i of server mi, suppose that each vertex v of the tree has the 
following fields: density, index, start, end, right, and left, in which density is the increased 
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power density of this selection, index is the index of frequency level this vertex represents 
for, start (end, respectively) is the low bound of the frequency level (highest frequency 
level, respectively) used for the subtree rooted by v, left (right, respectively) is the left- 
hand child (right-hand child, respectively) of vertex v. For clarity, we will use density(v), 
index(v), start(v), end(v), right(v), and left(v) to present the corresponding values. 

We use Algorithm 1, i.e., calling Algorithm DT(mi, 0, Ki), to construct i. In the speci-
fied range between frequency level indexes a and b given as part of input parameters of 
Algorithm DT, we find the index j* such that the increased power density by operating at 
frequency fi,j* is the minimum, in which the increased power density at frequency fi,j is de-  

fined as 
, ,

, ,

  
  .i j i a

i j i a

P P
L L


  Then, for the vertex (root of a sub-tree), we set density(v) to 

, ,

, ,

  
  ,i j i a

i j i a

P P
L L


  

index(v) to j*, start(v) to a, end(v) to b, the right child by calling DT(mi, j
*, b) recursively, 

and the left child by calling DT(mi, a, j*  1) recursively. If Algorithm DT is called with a 
 b, this is a termination condition, in which we just simply return a null pointer. The con-
struction of the decision tree i for server mi takes O(Ki

2) time complexity and has O(Ki) 
space complexity. Note that the decision trees of servers are constructed only once in off 
line. 
 
Algorithm 1  DT 
Input: (mi, a, b); 
Output: a decision tree in the feasible range [a, b] for server mi; 
1: if a  b then 
2:   return null; 
3: end if  
4: construct a vertex v; 

5: j*  argmina<jb
, ,

, ,

  
  ;i j i a

i j i a

P P
L L


 (break ties arbitrarily) 

6: density(v)  
, ,

, ,

  
  ;i j i a

i j i a

P P
L L






  

7: index(v)  j*, start(v)  a, end(v)  b; 
8: right(v)  DT(mi, j

*, b); 
9: left(v)  DT(mi, a, j*  1); 

10: return v; 

 
(a) 1.                                          (b) 2. 

Fig. 3. An example for the decision tree of the example in Fig. 1, where the numbers on a vertex 
denote its fields start, end, density, and index accordingly. 
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Fig. 3 illustrates an example for the decision tree for the power consumption of a 
server presented in Fig. 2. Note that, if the power consumption is a convex function of 
average request rate as the case in Fig. 2, the resulting decision tree is skew. Based on the 
definition of the decision, we will have the following lemmas. 

Lemma 1  Given a vertex v in the decision tree i of server mi. For any index j with 
start(v) < j  index(v),  

Pi,j + density(v)(Li,index(v)  Li,j)  Pi,index(v). 

Lemma 2  Given a vertex v in the decision tree i of server mi. For any index j with in-
dex(v) < j  end(v),  

, , ( ) , , ( )

, , ( ) , , ( )

.i j i index v i j i start v

i j i index v i j i start v

P P P P

L L L L

 


 
 

Note that we skip all the proofs in this paper. The detailed proofs are referred to the con-
ference version. 
 
3.2 Algorithm Greedy 
 

By adopting the decision tree, we propose a greedy algorithm, denoted as Algorithm 
Greedy, to decide the activation and operation frequencies of servers. The pseudo-code of 
Algorithm Greedy is presented in Algorithm 2. The basic idea is to try to accommodate 
more request rate with the smallest increased power density. We will start from the case 
that none of the servers is activated at the beginning, and, in each step, we try to activate 
or accelerate a server at a power-efficient frequency level by using the given decision trees 
of servers. 

Initially, the frequency level si of server mi is set to 0, and the vertex vi of server mi 
in the decision tree is set to the root of decision tree i. The variable  is used to record the 
amount of total request rate served by executing at frequency level si on server mi, i.e.,   
is M

i=1Li,si. While there exists some non-null vi, we enter the loop to activate or acceler-
ate a server mi*, in which the increased power density is the smallest in step 8 in Algorithm 
2. Clearly, if we increase si* to index(vi*), we will set increase the served request rate by 
Li*,index(vi

*)  Li*,(vi
*), abbreviated by qi*. If  + qi* is less than , we set  to  + qi*, si* to in-

dex(vi*), and vi* to right(vi*). Otherwise, we know that the solution S  by setting server mi* 
at frequency level index(vi*) and the others servers mi at frequency level si is a feasible 
solution for the PMEC problem. If S  is better than the best solution S† so far, we replace 
the best solution S† with S . Moreover, we also have to set vi* to left(vi*) for the case  + qi* 
 . The solution S† is then returned when every vi of server mi is null. 

The time complexity of Algorithm Greedy is O(MM
i=1Ki), since each iteration in the  

while loop in Algorithm 2 takes O(M) time and there are at most O(M
i=1Ki) iterations. 

Take the input instance in Fig. 1 for example. Suppose that  is 9. For the first itera-
tion in the loop of Algorithm Greedy, we will greedily choose i* as 1 by updating  to 3 
and s1 to 3. The second iteration chooses i* as 2, and then  + q2 = 10 > . Therefore, we  
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Algorithm 2  Greedy 
Input: average request arrival rate , M servers with decision trees 1, , M, QoS 

requirement R;  
Output: a feasible solution under QoS requirement R;  
1. If  > M

i=1Li,Ki then  
2.    return “no feasible solution”;  
3. end if  
4. let S† be the solution by activating all servers at their highest frequency levels;  
5. set si to 0 and vi to the root of tree i;  
6.   0; 
7. While there exists vi  null do  
8.    i*  argmin1iM and vi  null density(vi); 
9.    qi*  Li*,index(vi

*)  Li*,start(vi
*); 

10.    if  + qi* <  then 
11.          + qi*; 
12.       si*  index(vi*); 
13.       vi*  right(vi*); 
14.    else  
15.       let S  be the solution by setting server mi* at frequency level index(vi*) and 

the others servers mi at frequency level si;  
15.       if S  has less power consumption than S† then 
16.          S†  S ; 
18.       end if 
19.       vi*  left(vi*); 
20.    end if 
21. end while 
22. return S† as the solution; 

 
have a solution S  with (s1, s2) = (3, 4) and 20.2 power consumption by updating v2 to the 
left child of the root of decision tree 2. In the third iteration, we will then choose i* as 2 
again by setting s2

* to 3 and  to 6. For the next iterations, the algorithm goes to the right-
most child of decision tree 1, and then  + qi* = 9, where S in this case is with power 
consumption 35.7. As a result, Algorithm Greedy will return the solution S† with (s1, s2) = 
(3, 4) for this example. 
 
3.3 Analysis of Algorithm Greedy 
 

Based on Algorithm Greedy, we have the following lemma for feasible solutions. 
 
Lemma 3  For any feasible solution, there must be at least one activated server mi with 
frequency level higher than si. 

 
This lemma comes from the definition of si in Algorithm Greedy where we can guar-  

antee that M
i=1Li,si <  at any moment. 

For the optimal solution S* (it exists but is unknown), suppose that si
* is the assigned 

frequency level of server mi. Note that if server mi is not activated for serving requests in 
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S*, then si
* is set as 0. By Lemma 3, there must be at least one faster server mi in solution 

S*, in which si
* > si. 

We now analyze the power consumption of the derived solution of Algorithm Greedy, 
compared to the power consumption of solution S*. We first decompose optimal solution 
S* by running Algorithm Greedy in the loop between steps 7 and 21 in Algorithm 2 as fol-
lows: 
 
 If the condition  + qi* <  in step 10 in Algorithm 2 is false and si

*  index(vi*) > si*, let 
this server be mk* and break the loop before step 19 in Algorithm 2.  

 Let si
 (vi

, respectively) be the frequency level si (vi, respectively) before breaking the 
loop.  

 Let D* be density(vi*), which is the increased power density when we break the loop.  
 
Let S be the solution by activating server mi at frequency levels si

 with average request 
rate Li,si

. Moreover, let S be the solution by activating server mk* at frequency level in-
dex(vk*) with average request rate Lk*,index(vk

*) and the other servers mis at frequency levels 
si
 with average request rate Li,si

. For brevity, let si
 (si

, respectively) be the frequency 
level of server mi in solution S (S, respectively). 

By the definition of S and S, we know that  
 
(S)  (S)  (S*).   (1) 
 
We use the example in Fig. 2 for demonstrating how to construct Si

 and S. Suppose 
that S* is with (s1

*, s2
*) = (2, 4). For constructing S and Si

, we have the situation that  + 
qi*   in the second iteration of the loop, and then we know that s2

* = 4  index(v2*) = 4  
s2 = 4. Therefore, solution S is with (s1

, s2
) = (3, 4) and solution S is with (s1

, s2
) = (3, 

0). 
 
Lemma 4  Solution S is a feasible solution for the PMEC problem, and the power con-
sumption (S) is no less than the power consumption (S†) of the solution S† derived 
from Algorithm Greedy. 
 

Based on Lemma 4, to show the 2-approximation factor of Algorithm Greedy, we 
will simply show  

 
(S)  2(S*).        (2) 
 
By the feasibility of solution S* and infeasibility of solution S, we have the follow-

ing lemma.  
 

Lemma 5  M
i=1Li,si

*   > M
i=1Li,si

. 
 
By comparing solutions S and S*, we divide these M back-end servers into two sets 

K1 and K2, in which 
 
K1  {mi | si

* < si
},    (3a) 
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K2  {mi | si
  si

*}.    (3b) 
 
For sets K1 and K2, the following lemmas show important properties resulting from 

the decision trees. 
 
Lemma 6  For any server mi in set K1, we have 
 

Pi,si
  Pi,si

* + D*(Li,si
  Li,si

*). 
 
Lemma 7  For any server mi in set K2, we have 
 

Pi,si
*  Pi,si

 + D*(Li,si
*  Li,si

).  
 
Based on the above lemmas, we show the approximation factor of Algorithm Greedy 

in the following theorem. 
 
Theorem 1  Algorithm Greedy is a polynomial-time 2-approximation algorithm for the 
PMEC problem, provided that all Li,js on server mi at frequency fi,j are given.  
 
3.4 Algorithm E-Greedy 
 

Based on the 2-approximation of Algorithm Greedy, we are going to present an im-
proved greedy algorithm, called Algorithm E-Greedy. The approach is to force a server mi 
to run at a specified frequency fi,j, and then the rest M  1 servers are used to serve the rest  
  Li,j request rate. Among all (at most M

i=1Ki feasible) solutions under the above re-
striction, we return the best one. The algorithm is illustrated in Algorithm 3. 
 
Algorithm 3  E-Greedy 
Input: average request arrival rate , M servers with decision trees 1, , M, QoS re-

quirement R; 
Output: a feasible solution under QoS requirement R; 
1. let Ŝ be the solution derived from Greedy;  
2. for i  1; i  M; i  i + 1 do  
3.   for j  1; j  Ki; j  j + 1 do  
4.    let S  be the solution by activating server mi at frequency fi,j and the other 

servers by calling Algorithm Greedy with arrival rates   Li,j; 
5.      if S  is feasible and (S ) < (Ŝ) then  
6.        Ŝ  S ;   
7.      end if  
8.   end for  
9. end for  

10. return Ŝ as the solution; 
 
Theorem 2  Algorithm E-Greedy is a polynomial-time 1.5-approximation algorithm for 
the PMEC problem, provided that all Li,js on server mi at frequency fi,j are given. 
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Algorithm 4  DP 
Input: , average request arrival rate , M servers, QoS requirement R, solution of Al-

gorithm Greedy ( S†); 
Output: a feasible solution under QoS requirement R;  

1. P 

i,j 

,

†

2
,

( )

i jMP

S

 
  

  
1  M, 1  j  Ki,      

2. for p  0; ;p  p + 1 do    
3.   for i  1; i  M; i  i + 1 do  
4.      derive i(p) by Eqs. (6) and (7); 
5.   end for  
6.   if M(p)   then  
7.       P   p;   
8.      back-track the dynamic programming entries from M(P ) to find the solu-

tion S contributing to M(P );  
9.        return solution S; 
10.   end for  
11. end for  

4. DYNAMIC PROGRAMMING 

This section provides a fully polynomial-time approximation scheme (FPTAS) for 
the PMEC problem by applying dynamic programming. An FPTAS for the PMEC prob-
lem is a (1 + )-approximation algorithm with polynomial-time complexity by treating 
1/ as an input parameter for any positive . Unless  = , fully polynomial-time ap-
proximation schemes are the best in terms of polynomial-time approximation algorithms 
with worst-case guarantees. 

Suppose that (S†) is power consumption of the solution derived by applying Algo-
rithm Greedy in section 3. To derive (more precise) approximated solution, we first de-
rived the rounded power consumption P 


i,j as follows: 

P 

i,j 

,

†

2
,

( )

i jMP

S

 
  

  
    (4) 

where  is a user-specified parameter for the tolerable approximation factor. Then, we per-
form dynamic programming based on the rounded power consumption. Suppose that i(p) 
is the maximum average request rate that can be served by using only servers m1, m2, , 
mi with rounded power consumption no more than p. Hence, for brevity, for 1  i  M, we 
define 

i(p) =   when p < 0.      (5) 

Suppose that jp is the frequency level j with P 

1,j  p < P 


1,j+1 for j < K1. Furthermore, when 

p is no less than K1, let jp be K1. The boundary condition of 1(p) for p  0 is: 

i(p) = Li,jp.    (6) 
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Then, for i  2, the value of k(p) can be calculated by the following recursive function: 

0
( ) max

iK

i
j

p


  {i-1(p  P 

i,j) + Li,j}.   (7) 

Suppose that P is the minimum value with M(P)  . By back-tracking the dynamic  
programming table, we can derive a solution S with M

i=1P 

i,si = P and M

i=1Li,si  , in 
which the frequency level on server mi in the solution is si

. Algorithm 4 presents the dy-
namic programming, denoted by Algorithm DP, in which the detail for back-tracking is 
omitted due to space limitation. 

The following theorem shows that the quality of the derived solution S from the above 
dynamic programming is not too far away from the optimum, even in the worse case. 
 

Theorem 3  Deriving S takes  max
max

MKO MK   time complexity and  MO M    

space complexity, where Kmax is maxi=1,2,,MKi. For any input instance with feasible solu-
tion S*, 
 

(S)  (1 + )(S*). 

5. REMARKS AND EXTENSIONS 

We so far assume that the front-end server makes decisions without considering the 
overhead for activating or deactivating a server or the current state of servers. The consid-
eration of the overhead can be achieved by building multiple decision trees for a server. 
That is, if server mi is currently not activated, activating mi takes additional energy and 
some fixed time for booting. Therefore, we can calculate the overhead in both average 
power and quality of service requirement. By adding this overhead to Pi,j and Li,j, we can 
construct a new decision tree i,off, which is used by Algorithm Greedy when server mi is 
currently not activated. Similarly, we can also use the same strategy to decide whether we 
should turn off a server that is currently activated. 

Suppose that the derived solution S† of Algorithm Greedy provides higher service  
than the average cluster request rate, i.e., M

i=1Li,s†i > . If the average cluster request rate  

 is with M
i=1Li,s†i     for the next scheduling interval, Algorithm Greedy derives 

the same solution S†. Therefore, we do not have to change the configuration of the back- 
end servers for such cases, which can reduce the run-time overhead. 

Moreover, if the preference of the system designer is to build a scheduling table for 
reference, e.g., the approach in [7, 9]. The dynamic programming approach in section 4 
can be applied by using different rounding precisions  and suitable values of (S†). 

6. PERFORMANCE EVALUATION 

This section provides performance evaluation for the proposed power management 
schemes, including Greedy, E-Greedy, and DP. To demonstrate the generality of our ap-
proach, three QoS models are applied, i.e., the M/M/1 [12] queuing model, the M/G/1 PS 
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[13] queuing model, and a soft real-time model similar to [9]. All results in this experi-
ment are mean values of 10 different runs on an Intel Xeon CPU with 3.06 GHz. 

 
6.1 Simulation Setting 

 
To evaluate how heterogeneity affects the power consumption, a 4-tuple (fi,max, ci, i, 

i) is used to compute the power consumption. Variables fi,max, ci, i and i are random 
variables within range [1, 4], [20, 80], [200, 400] and [2, 5], denoting the maximum speed, 
the constant power consumption, the CPU performance coefficient, and the frequency co-
efficient of server mi, respectively. The power consumption of a deactivated server is as-
sumed to 0. The operating frequencies are discredited into 10 scaling levels by uniform 
distribution within range (0, fi,max). The power consumption for server mi at frequency f is 
Pi(f) = ci + i  f 3, as adopted in [5, 8, 12] as well. For evaluation, we evaluate cases with 
100 and 200 back-end servers, considering three QoS models as follows. 

 
 M/M/1 Queuing Model [12]: In this model, the average response time is used as the 

QoS constraint. As a result, Li,j(R) = fi,j  i  1/R where R is the average response time 
given for the QoS control. Since R only introduces constant offset, the setting of R only 
has minor effect. Therefore, we set R as 1 in our experiment. For comparison, we also 
simulate an algorithm extended from the TP-CP-OP algorithm developed in [12] which 
assumes continuous frequencies. To find a feasible solution for discrete frequencies, 
the closest upper frequency on each server is used, denoted as R-TP-CP-OP. 

 M/G/1 PS Queuing Model [13]: In this model, job arrivals to the servers follow a Pois-
son distribution. The QoS constraint is the mean response time E[R] = 0.38 sec. The re-
sulting Li,j(R) = (  r  1/E[R])(1/fi,j) where 1/ = 38ms is the mean job-execution time 
and r = fi,j/fi,max is the speed ratio of the execution speed to the maximum speed of server 
mi. We do not compare with the approaches in [13] since they focus on homogeneous 
servers. 

 Soft Real-Time Request (SRR) Model: The SRR model is similar to the one in [9] and 
considers only dynamic requests. The execution time of a request follows a normal dis-
tribution with mean  = 24.5ms and deviation  = 60ms. The deadline of a request is D 
= 200ms. The QoS constraint is that the probability of all requests that will not miss their 
deadlines is R = 95%. The Li,j(R) is thus defined as the maximal Li,j such that the prob-
ability of Li,j   < fi,j  D is 0.95. In this experiment, we use the inverse cumulative dis-  

tribution function of the normal distribution (Li,j  , 
2

, )i jL   coupled with a binary 
search to find Li,j(R). 

 
To vary the average request rate, we first compute the maximum tolerable request rate  

max of the cluster, M
i=1Li,Ki

(R). For an input average request rate , the load ratio is de-
fined as /max. A lower bound of the optimal solution is computed as the baseline, which  

is obtained by adding density(vi*)
i

q 

  to the solution when Algorithm 2 hitting the con- 

dition  + qi*  . For comparison, all power consumption reported are normalized with 
respect to the computed lower bounds. 
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6.2 Simulation Results 
 
Fig. 4 illustrates the normalized power consumption of a 400-server cluster for the 

aforementioned three models. As shown in the figure, our schemes reasonably approxi-
mate the lower bounds for all cases. In general, better results are achieved when the load 
ratio increases. Especially for cases of load ratio larger than 0.4, our schemes derive solu-
tions that consume less than 1% additional power consumption for all three models, com-
pared to the lower bounds. The second observation is that since Algorithm R-TP-CP-OP 
uses a fixed order of servers according to high workload (80% of the maximal average 
request rate on servers), the decision for activating servers might be only sub-optimal, as 
depicted in Fig. 4 (a). Note that, in Figs. 4 (b) and (c), we only compare our results with 
the computed lower bounds, because the approaches presented in [9, 13] apply exhaustive 
search and exact method to compute the optimum, respectively, the complexity of which 
constrains these approaches to clusters with small scales. 

We also present the impact of the  to Algorithm DP for all three QoS models in Fig. 
5 for a cluster with 300 servers. As expected, the smaller , the better approximation is 
obtained, at the cost of longer computation time. One observation is that the impact of 
varying the  becomes more significant as the load ratio increases. The reason is that with 
a larger load, the exploration space is larger, and a higher  would result in more errors 
for rounding down the power consumption in Eq. (4). From the figure, we can conclude 
that 0.05 is a proper value for . Further smaller values are not necessary. 

 
(a) M/M/1.                  (b) M/G/1 PS.                    (c) SRR. 

Fig. 4. Normalized power consumption of a 400-server cluster for the three QoS models with  = 
0.05 for algorithm DP. 

 
(a) M/M/1 model.            (b) M/G/1 PS model.             (c) SRR model. 

Fig. 5. Varying the  for all three models for a 300-server cluster. 
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(a) M/M/1 model.            (b) M/G/1 PS model.              (c) SRR model. 

Fig. 6. Computation time for all three models for a 200-server cluster. 

 
(a) M/M/1 model.             (b) M/G/1 PS model.              (c) SRR model. 

Fig. 7. Computation time of algorithm greedy for all three models for 100/200/400/800 servers. 

Fig. 6 depicts the computation time of our algorithms for a 200-server cluster. From 
the figure, one can observe that the time to compute a solution for this cluster is reasona-
bly fast for all three algorithms. Algorithm GREEDY takes only a few milliseconds while 
the slowest one, i.e., Algorithm E-GREEDY, is still in the range of seconds. Note that the 
computation time for Algorithm R-TP-CP-OP is not included, because it takes hours even 
for the 100-server case. The computation time of Algorithm GREEDY for clusters with up 
to 800 servers is reported in Fig. 7. As the figure shown, even with 800 servers, the com-
puting time of our algorithm is still around 100 milliseconds. From these figures, we can 
conclude that our algorithms are also suitable for time-critical large-scale clusters. 

7. CONCLUSION 

This paper explores the power management problem for a heterogeneous cluster to 
minimize the power consumption while guaranteeing quality of service constraints. We 
propose approximation algorithms to provide tradeoffs of approximation guarantees in 
power consumption minimization with time/space complexity. Extensive simulation re-
sults with up to 800 servers show that the proposed schemes are effective for minimizing 
the power consumption large scale server farms or data centers. 
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