
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 28, 1073-1090 (2012)

1073

Dynamic Frequency Scaling Schemes for Heterogeneous
Clusters under Quality of Service Requirements

JIAN-JIA CHEN1, KAI HUANG2 AND LOTHAR THIELE3

1Department of Informatics
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
E-mail: j.chen@kit.edu

2Department of Informatics
Technical University of Munich

80333 Munich, Germany
E-mail: kai.huang@tum.de

3Computer Engineering Group
ETH Zurich

8092 Zurich, Switzerland
E-mail: thiele@tik.ee.ethz.ch

Nowadays, both the performance and power consumption for modern server clus-

ters and data centers must be considered to reduce the maintenance cost for quality of
service guarantees, as power dissipation affects the cost of both the power delivery sub-
systems and cooling facility. Considering the popularity of heterogeneous clusters, this
paper proposes efficient and effective power management schemes for large scale server
farms. Distinct from existing heuristic approaches, we propose dynamic frequency scal-
ing schemes with approximation factor guarantees, compared to the optimal power man-
agement. By considering systems with discrete frequency levels on every server, our
schemes can be applied for different power consumption models. Our greedy power man-
agement schemes have 1.5 or 2 approximation guarantees depending on the complexity.
Our dynamic-programming approach can trade the quality, in terms of power consump-
tion, of the resulting solutions with the time/space complexity. We provide extensive
simulation results to show that the proposed schemes are effective for the minimization
of the power consumption for large scale clusters.

Keywords: power management, soft real-time systems, dynamic voltage scaling, quality
of service, heterogeneous clusters

1. INTRODUCTION

Power and energy consumption nowadays has become the key concern in server
clusters or data centers. For example, a high-performance server with 300Watt power
consumption consumes 2628 kiloWatt hours. Therefore, within one year, the annual
power cost of the server is around $263, if the electricity cost is $0.1 per kiloWatt hour.
Even without considering the cost of the power delivery subsystems and the cooling fa-
cility, for maintaining a cluster with hundreds of servers, the electricity cost is significant.
Another fact is that the performance per watt remains roughly flat over time [2], although
advanced hardware technology has improved the performance per hardware dollar. As a
result, the electricity cost of server clusters will be more than the hardware cost and be-

Received May 31, 2011; accepted March 31, 2012.
Communicated by Junyoung Heo and Tei-Wei Kuo.

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1074

come a major fraction of the total cost of ownership.
To reduce the power consumption without sacrificing the performance, power-aware

and energy-efficient scheduling has been extensively explored in the literature, especially
for real-time systems, e.g., [1, 5, 15]. Low-power opportunity for one single web server is
observed in [3, 10] to reduce the energy consumption by applying dynamic voltage scaling
(DVS) with minimal performance impact. For server clusters, by applying workload pre-
diction for predicting the workload or the average request arrival rate for the next sched-
uling interval, the power management routine in the front-end server has to decide
whether a back-end server should be activated for serving requests, deactivated for power
saving, accelerated for serving more requests, or decelerated for serving less requests. For
homogeneous server clusters with identical servers, Chase et al. [4] develop a load bal-
ancing framework to dynamically turn on/off servers, Xu et al. [14] propose algorithms to
determine the number of servers to turn on by applying both DVS and DPM, and Wier-
man et al. [13] explore how to balance the mean energy consumption and the mean re-
sponse time under processor sharing scheduling.

Considering the popularity of heterogeneous clusters, power management for hetero-
geneous server clusters under quality of service (QoS) guarantees has been recently ex-
plored in [7, 9, 12]. Specifically, Wang and Lu [12] develop a power management algo-
rithm to order heterogeneous servers in a pre-defined order. After deciding the activation
and deactivation of servers, Lagrange Multiplier Method is applied to decide the execu-
tion frequency. Similarly, for servers with discrete speeds, Rusu et al. [9] use two tables
for deciding which servers to be activated and which frequency levels to be executed.
Moreover, Guerra et al. [7] model the problem as an integer linear programming (ILP)
problem by applying ILP solvers with high complexity to get a table for storing decisions
for different workloads under pre-defined granularity.

For most commercial computing systems, the available frequency levels are fixed. As
a result, the approaches in [12] might not be suitable, in which using a higher available
frequency level might sacrifice the optimality. Because storing decisions in tables requires
exponential space complexity in the worst case, researchers in [7, 9] discretize the possi-
ble amount of the to-be-served workload into pre-defined granularity and derive the
scheduling tables based on the granularity. As a result, the quality of the derived solution
heavily depends on the granularity. Moreover, if a server in the cluster is out of service
due to some maintenance reasons, recomputing the scheduling tables by applying algo-
rithms in [7, 9] might be time-consuming.

This paper explores the power management problem for heterogeneous clusters un-
der QoS constraints. Distinct from the heuristic approaches in [7, 9, 12], we propose algo-
rithms to provide different approximation guarantees for power consumption minimization
under different time/space complexity. By considering systems with discrete frequency
levels on servers, our schemes can be applied for general power consumption models and
QoS models. Our greedy power management schemes have 1.5-approximation or 2-ap-
proximation guarantees depending on the complexity. Our dynamic-programming ap-
proach can trade the quality, in terms of power consumption, of the resulting solutions
with the time/space complexity. As our approaches do not rely on global tables, they are
more robust against failure of servers. If building a scheduling table is necessary for sys-
tem designers, our proposed dynamic programming approach can be applied and ex-
tended to build tables with different granularity. Simulation results show that the pro-

DVS SCHEMES FOR HETEROGENEOUS CLUSTERS UNDER QOS REQUIREMENTS

1075

posed schemes are effective for minimizing the power consumption. Note that this paper
is an extended version of the conference paper in [6]. Compared to the conference ver-
sion, we provide extensive simulation results by clusters with up to 800 servers to dem-
onstrate the effectiveness of our algorithms.

The rest of this paper is organized as follows: Section 2 provides system models and
problem definition along with hardness analysis. Section 3 presents our greedy power
management schemes with different approximation factor guarantees. Section 4 demon-
strates how to use dynamic programming to trade the quality of the derived solution with
the time/space complexity. Simulation results are presented in section 6. Section 7 con-
cludes this paper.

2. SYSTEM MODELS

This section presents the model of a cluster, the power consumption model of a server
in the cluster, and the problem definition.

2.1 System Model

We consider a cluster with a front-end server, which arbitrarily distributes workload
of requests to a cluster of back-end servers. The front-end server is assumed not to par-
ticipate in processing any requests, but only to decide the power states of back-end serv-
ers and how to distribute the requests to those back-end servers that are activated. Fig. 1
illustrates an example for a cluster of web servers. The cluster consists of M heterogene-
ous back-end servers, denoted by m1, m2, , mM, providing CPU-bounded services. The
heterogeneity comes from different hardware architectures, different manufacturing tech-
niques, different vendors, etc. However, all these M back-end servers have the same func-
tionality, i.e., a request can be served in any of these back-end servers. As a result, once a
back-end server is activated (turned on), it can serve any assigned request.

Fig. 1. An example for a web server cluster.

To satisfy the performance requirement, the cluster has to provide its services under

some quality of service (QoS) constraint. Due to heterogeneity of back-end servers, the

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1076

performance of servers mi and mj at frequency f might be different. To have the same per-
formance index under different servers, each server mi is associated with a performance
co-efficient i such that if is the throughput (in terms of executed number of cycles or
requests per time unit) of server mi at frequency f.

To measure quality of servers, we might either apply analysis for soft real-time sys-
tems for the (average) percentage of requests that miss their timing constraints [9], or ap-
ply Queueing Theory to guarantee the average response time, e.g., M/M/1 model in [12] or
M/G/1 PS model in [13]. For example, as shown in [12], if the quality of service is on the
average response time under the M/M/1 queuing model, to serve workload with average
request rate  on server mi, the average response time at frequency f is

1 ,
i f  where if

is the number of requests finished per time unit. For the rest of this paper, suppose that
qi(f, ) is the quality of service provided by server mi at frequency f when the average
request rate assigned on server mi is with arrival request rate . Note that, the metric of
qi(f, ) depends on the definition of the QoS of a server.

The derivation of qi(f, ) is not a focus of this paper. One might apply existing results
in the literature, e.g., [9, 12, 13]. We only assume that qi(f, ) is not worse than qi(f  , )
for any  > 0. In other words, this paper focuses on a more general setting, in which for a
fixed average request rate assigned to a server, the QoS provided by the server is not
worse when the server is operated at a higher frequency.

2.2 Power Consumption and DVS Models

We consider servers with discrete dynamic voltage scaling levels. The number of
available frequency levels on server mi is Ki. (Note that, if there is no possibility for dy-
namic voltage scaling on server mi, we can simply set that Ki to 1 and fi,1 is the frequency
of the server.) For brevity, we order the available frequency levels on server mi from the
lowest one to the highest. Let fi,j be the jth lowest available frequency for server mi, in
which fi,1 < fi,2 <  < fi,Ki

 when Ki > 1. The power consumption for server mi on frequency
fi,j is P†i,j.

When a server mi is activated, it must operate at least at frequency fi,1. However, if it
is not necessary to turn a server on, we can deactivated the server (if it is activated) to
reduce the power consumption. If a server mi is not activated, its power consumption is
assumed to be a constant Pi

. If the power consumption at frequency fi,j is less than fi,k for
some k < j, we can simply remove the power-inefficient frequency fi,k. Therefore, we con-
sider systems with Pi

 < P†i,1 < P†i,2 <  < P†i,Ki
. As we cannot reduce the power consump-

tion Pi
, it can be subtracted from the power consumption P†i,j. For the rest of this paper,

we will only focus on the manageable power consumption Pi,j of server mi at frequency fi,j,
in which Pi,j is P†i,j  Pi

.
When a server is activated for execution, both efficiency and power consumption is-

sues must be considered. For example, if a server has high power consumption, activating
the server might consume too much power even though we might not have to activate the
other servers. On the other hand, if a server has lower power consumption, activating the
server might not be enough, and, hence, we might have to activate many servers to satisfy
the QoS requirements.

As a result, we have to consider the power density of a server, which is defined as the
power consumption of the server divided by the request rate it can serve under the QoS

DVS SCHEMES FOR HETEROGENEOUS CLUSTERS UNDER QOS REQUIREMENTS

1077

requirement, denoted by R, of the cluster. Note that as we focus on general settings of
QoS requirement, R could be average response time, average waiting time, or worst-case
response time1, etc. Suppose that Li,j(R) is the (average) request arrival rate that server mi
can serve at frequency fi,j with quality of service no worse than R. That is, qi(fi,j, Li,j(R)) is
not worse than R. For example, if the quality of service is the average response time in the

M/M/1 queuing model, qi(fi,j, Li,j(R)) =
, ,

1
()i i j i jf L R   R. For notational brevity, for the

rest of this paper, we will define both Pi,0 and Li,0 as 0. As R is assumed to be a fixed pa-
rameter, we will use Li,j to represent Li,j(R) for the rest of this paper. Fig. 2 illustrates an
example for the power consumption and the power density, in which the power consump-
tion is an increasing function of the average request arrival rate but the power density is
not.

 (a) Power profiles. (b) Power density.

Fig. 2. An example for power consumption and power density of servers.

Furthermore, we assume that the front-end server is responsible for estimating the

average request rate for the next time interval for scheduling, and for distributing the re-
quests to back-end servers such that the quality of service is satisfied and the power con-
sumption is minimized. To estimate the average request rate, one can apply a feedback-
control with queuing theoretic prediction approach, which is also adopted in [12]. Through-
out this paper, we assume that the workload prediction is known a priori, in which the av-
erage request rate of the cluster is , and our task is to decide the activation and frequency
levels of back-end servers to minimize the power consumption under the QoS constraint.

2.3 Problem Definition

This work explores power management for a heterogeneous cluster under the quality
of service requirement R. As the average request rate (workload) changes over time, the
power management must be done dynamically to cope with dynamic rates. Suppose that
the current average request rate of the cluster is . Our objective is (a) to activate/deacti-
vate servers to distribute the average request rate to those servers that are activated for
execution, and (b) to decide the operation frequency of activated servers, such that the
power consumption is minimized and the QoS requirement R is satisfied. For brevity, we
denote the above problem as the Power Management for hEterogeneous server Clusters
(PMEC) problem.

A solution S to the PMEC problem distributes  into 1(S), 2(S), , M(S) and de-

1 For worst-case response time, we can only guarantee under the prediction of estimated worst cases instead of
average cases.

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1078

cides the frequency levels s1(S), s2(S), , sM(S) of these M back-end servers. A solution S
is said feasible for the PMEC problem if the rate distribution is no less than , i.e., M

i=1
i(S)  , and the frequency level on server mi is sufficient to provide the quality of ser-
vice requirement, i.e., i(S)  Li,si(S). For brevity, we denote the power consumption of a

solution S by (S), in which (S) = M
i=1Pi,si(S). A solution S is said optimal for the PMEC

problem if its power consumption is the minimum among the feasible solutions. For a so-

lution, if M
i=1Li,si(S) is no less than , we can easily distribute Li,si(S) average request rate to

server mi when si > 0 without violating the QoS guarantee. Therefore, for the rest of this
paper, we only focus our discussions on how to decide the frequency levels of servers to
guarantee that the solution S satisfies Li,si(S)   with adoption of the above request distri-
bution strategy.

If activating all the back-end servers at the highest frequency level cannot satisfy the
QoS requirement, one has to augment the back-end servers, and there does not exist any
feasible solution for the PMEC problem. For the rest of this paper, we focus on the opti-

mality issue by considering cases with M
i=1Li,Ki

  . Obviously, the studied problem is
-hard, as it can be reduced to the Knapsack problem.

Due to the -hardness of the PMEC problem, this paper pursues polynomial-time
approximation algorithms with worst-case guarantees on the quality of the derived solu-
tions. A -approximation algorithm for the PMEC problem (or, an algorithm with a -ap-
proximation factor) guarantees to derive solutions with at most  times of the power con-
sumption of the corresponding optimal solutions [11].

3. GREEDY SCHEMES

This section presents our proposed greedy power management schemes for the PMEC
problem. We will first present the construction of a decision tree to decide whether we
should turn on a server, or accelerate or decelerate the execution frequency of a server. Then,
we will present our proposed greedy power management schemes with a 2-approximation
factor, followed by improved schemes.

3.1 Constructing Decision Trees

Before presenting our proposed greedy power management schemes, we will first
describe the construction of a decision tree for a server mi. Our proposed greedy power
management schemes will decide whether we should activate a server for serving requests
or accelerate a server for accommodating more request rate.

Suppose that server mi is activated and ci is the critical frequency level with Di,ci
  Di,j

for 1  j  Ki and ci > 0. The most power-efficient execution on server mi is to distribute
Li,ci

 amount of workload to server mi at execution frequency level ci. If we want to dis-
tribute more workload to server mi, it will require more additional power density to serve
these additional workload. If we want to reduce the allocated workload, we can definitely
reduce the power consumption, but the resulting solution will have more power density
than executing at the critical frequency level.

For the decision tree i of server mi, suppose that each vertex v of the tree has the
following fields: density, index, start, end, right, and left, in which density is the increased

DVS SCHEMES FOR HETEROGENEOUS CLUSTERS UNDER QOS REQUIREMENTS

1079

power density of this selection, index is the index of frequency level this vertex represents
for, start (end, respectively) is the low bound of the frequency level (highest frequency
level, respectively) used for the subtree rooted by v, left (right, respectively) is the left-
hand child (right-hand child, respectively) of vertex v. For clarity, we will use density(v),
index(v), start(v), end(v), right(v), and left(v) to present the corresponding values.

We use Algorithm 1, i.e., calling Algorithm DT(mi, 0, Ki), to construct i. In the speci-
fied range between frequency level indexes a and b given as part of input parameters of
Algorithm DT, we find the index j* such that the increased power density by operating at
frequency fi,j* is the minimum, in which the increased power density at frequency fi,j is de-

fined as
, ,

, ,

 .i j i a

i j i a

P P
L L


 Then, for the vertex (root of a sub-tree), we set density(v) to

, ,

, ,

 ,i j i a

i j i a

P P
L L




index(v) to j*, start(v) to a, end(v) to b, the right child by calling DT(mi, j
*, b) recursively,

and the left child by calling DT(mi, a, j*  1) recursively. If Algorithm DT is called with a
 b, this is a termination condition, in which we just simply return a null pointer. The con-
struction of the decision tree i for server mi takes O(Ki

2) time complexity and has O(Ki)
space complexity. Note that the decision trees of servers are constructed only once in off
line.

Algorithm 1 DT
Input: (mi, a, b);
Output: a decision tree in the feasible range [a, b] for server mi;
1: if a  b then
2: return null;
3: end if
4: construct a vertex v;

5: j*  argmina<jb
, ,

, ,

 ;i j i a

i j i a

P P
L L


 (break ties arbitrarily)

6: density(v) 
, ,

, ,

 ;i j i a

i j i a

P P
L L








7: index(v)  j*, start(v)  a, end(v)  b;
8: right(v)  DT(mi, j

*, b);
9: left(v)  DT(mi, a, j*  1);

10: return v;

(a) 1. (b) 2.

Fig. 3. An example for the decision tree of the example in Fig. 1, where the numbers on a vertex
denote its fields start, end, density, and index accordingly.

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1080

Fig. 3 illustrates an example for the decision tree for the power consumption of a
server presented in Fig. 2. Note that, if the power consumption is a convex function of
average request rate as the case in Fig. 2, the resulting decision tree is skew. Based on the
definition of the decision, we will have the following lemmas.

Lemma 1 Given a vertex v in the decision tree i of server mi. For any index j with
start(v) < j  index(v),

Pi,j + density(v)(Li,index(v)  Li,j)  Pi,index(v).

Lemma 2 Given a vertex v in the decision tree i of server mi. For any index j with in-
dex(v) < j  end(v),

, , () , , ()

, , () , , ()

.i j i index v i j i start v

i j i index v i j i start v

P P P P

L L L L

 


 

Note that we skip all the proofs in this paper. The detailed proofs are referred to the con-
ference version.

3.2 Algorithm Greedy

By adopting the decision tree, we propose a greedy algorithm, denoted as Algorithm
Greedy, to decide the activation and operation frequencies of servers. The pseudo-code of
Algorithm Greedy is presented in Algorithm 2. The basic idea is to try to accommodate
more request rate with the smallest increased power density. We will start from the case
that none of the servers is activated at the beginning, and, in each step, we try to activate
or accelerate a server at a power-efficient frequency level by using the given decision trees
of servers.

Initially, the frequency level si of server mi is set to 0, and the vertex vi of server mi
in the decision tree is set to the root of decision tree i. The variable  is used to record the
amount of total request rate served by executing at frequency level si on server mi, i.e., 
is M

i=1Li,si. While there exists some non-null vi, we enter the loop to activate or acceler-
ate a server mi*, in which the increased power density is the smallest in step 8 in Algorithm
2. Clearly, if we increase si* to index(vi*), we will set increase the served request rate by
Li*,index(vi

)  Li,(vi
), abbreviated by qi. If  + qi* is less than , we set  to  + qi*, si* to in-

dex(vi*), and vi* to right(vi*). Otherwise, we know that the solution S  by setting server mi*
at frequency level index(vi*) and the others servers mi at frequency level si is a feasible
solution for the PMEC problem. If S  is better than the best solution S† so far, we replace
the best solution S† with S . Moreover, we also have to set vi* to left(vi*) for the case  + qi*
 . The solution S† is then returned when every vi of server mi is null.

The time complexity of Algorithm Greedy is O(MM
i=1Ki), since each iteration in the

while loop in Algorithm 2 takes O(M) time and there are at most O(M
i=1Ki) iterations.

Take the input instance in Fig. 1 for example. Suppose that  is 9. For the first itera-
tion in the loop of Algorithm Greedy, we will greedily choose i* as 1 by updating  to 3
and s1 to 3. The second iteration chooses i* as 2, and then  + q2 = 10 > . Therefore, we

DVS SCHEMES FOR HETEROGENEOUS CLUSTERS UNDER QOS REQUIREMENTS

1081

Algorithm 2 Greedy
Input: average request arrival rate , M servers with decision trees 1, , M, QoS

requirement R;
Output: a feasible solution under QoS requirement R;
1. If  > M

i=1Li,Ki then
2. return “no feasible solution”;
3. end if
4. let S† be the solution by activating all servers at their highest frequency levels;
5. set si to 0 and vi to the root of tree i;
6.   0;
7. While there exists vi  null do
8. i*  argmin1iM and vi  null density(vi);
9. qi*  Li*,index(vi

)  Li,start(vi
*);

10. if  + qi* <  then
11.    + qi*;
12. si*  index(vi*);
13. vi*  right(vi*);
14. else
15. let S  be the solution by setting server mi* at frequency level index(vi*) and

the others servers mi at frequency level si;
15. if S  has less power consumption than S† then
16. S†  S ;
18. end if
19. vi*  left(vi*);
20. end if
21. end while
22. return S† as the solution;

have a solution S  with (s1, s2) = (3, 4) and 20.2 power consumption by updating v2 to the
left child of the root of decision tree 2. In the third iteration, we will then choose i* as 2
again by setting s2

* to 3 and  to 6. For the next iterations, the algorithm goes to the right-
most child of decision tree 1, and then  + qi* = 9, where S in this case is with power
consumption 35.7. As a result, Algorithm Greedy will return the solution S† with (s1, s2) =
(3, 4) for this example.

3.3 Analysis of Algorithm Greedy

Based on Algorithm Greedy, we have the following lemma for feasible solutions.

Lemma 3 For any feasible solution, there must be at least one activated server mi with
frequency level higher than si.

This lemma comes from the definition of si in Algorithm Greedy where we can guar-

antee that M
i=1Li,si <  at any moment.

For the optimal solution S* (it exists but is unknown), suppose that si
* is the assigned

frequency level of server mi. Note that if server mi is not activated for serving requests in

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1082

S*, then si
* is set as 0. By Lemma 3, there must be at least one faster server mi in solution

S*, in which si
* > si.

We now analyze the power consumption of the derived solution of Algorithm Greedy,
compared to the power consumption of solution S*. We first decompose optimal solution
S* by running Algorithm Greedy in the loop between steps 7 and 21 in Algorithm 2 as fol-
lows:

 If the condition  + qi* <  in step 10 in Algorithm 2 is false and si

*  index(vi*) > si*, let
this server be mk* and break the loop before step 19 in Algorithm 2.

 Let si
 (vi

, respectively) be the frequency level si (vi, respectively) before breaking the
loop.

 Let D* be density(vi*), which is the increased power density when we break the loop.

Let S be the solution by activating server mi at frequency levels si

 with average request
rate Li,si

. Moreover, let S be the solution by activating server mk* at frequency level in-
dex(vk*) with average request rate Lk*,index(vk

*) and the other servers mis at frequency levels
si
 with average request rate Li,si

. For brevity, let si
 (si

, respectively) be the frequency
level of server mi in solution S (S, respectively).

By the definition of S and S, we know that

(S)  (S)  (S*). (1)

We use the example in Fig. 2 for demonstrating how to construct Si

 and S. Suppose
that S* is with (s1

*, s2
*) = (2, 4). For constructing S and Si

, we have the situation that  +
qi*   in the second iteration of the loop, and then we know that s2

* = 4  index(v2*) = 4 
s2 = 4. Therefore, solution S is with (s1

, s2
) = (3, 4) and solution S is with (s1

, s2
) = (3,

0).

Lemma 4 Solution S is a feasible solution for the PMEC problem, and the power con-
sumption (S) is no less than the power consumption (S†) of the solution S† derived
from Algorithm Greedy.

Based on Lemma 4, to show the 2-approximation factor of Algorithm Greedy, we
will simply show

(S)  2(S*). (2)

By the feasibility of solution S* and infeasibility of solution S, we have the follow-

ing lemma.

Lemma 5 M
i=1Li,si

*   > M
i=1Li,si

.

By comparing solutions S and S*, we divide these M back-end servers into two sets

K1 and K2, in which

K1  {mi | si

* < si
}, (3a)

DVS SCHEMES FOR HETEROGENEOUS CLUSTERS UNDER QOS REQUIREMENTS

1083

K2  {mi | si
  si

*}. (3b)

For sets K1 and K2, the following lemmas show important properties resulting from

the decision trees.

Lemma 6 For any server mi in set K1, we have

Pi,si
  Pi,si

* + D*(Li,si
  Li,si

*).

Lemma 7 For any server mi in set K2, we have

Pi,si
*  Pi,si

 + D*(Li,si
*  Li,si

).

Based on the above lemmas, we show the approximation factor of Algorithm Greedy

in the following theorem.

Theorem 1 Algorithm Greedy is a polynomial-time 2-approximation algorithm for the
PMEC problem, provided that all Li,js on server mi at frequency fi,j are given.

3.4 Algorithm E-Greedy

Based on the 2-approximation of Algorithm Greedy, we are going to present an im-
proved greedy algorithm, called Algorithm E-Greedy. The approach is to force a server mi
to run at a specified frequency fi,j, and then the rest M  1 servers are used to serve the rest
  Li,j request rate. Among all (at most M

i=1Ki feasible) solutions under the above re-
striction, we return the best one. The algorithm is illustrated in Algorithm 3.

Algorithm 3 E-Greedy
Input: average request arrival rate , M servers with decision trees 1, , M, QoS re-

quirement R;
Output: a feasible solution under QoS requirement R;
1. let Ŝ be the solution derived from Greedy;
2. for i  1; i  M; i  i + 1 do
3. for j  1; j  Ki; j  j + 1 do
4. let S  be the solution by activating server mi at frequency fi,j and the other

servers by calling Algorithm Greedy with arrival rates   Li,j;
5. if S  is feasible and (S ) < (Ŝ) then
6. Ŝ  S ;
7. end if
8. end for
9. end for

10. return Ŝ as the solution;

Theorem 2 Algorithm E-Greedy is a polynomial-time 1.5-approximation algorithm for
the PMEC problem, provided that all Li,js on server mi at frequency fi,j are given.

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1084

Algorithm 4 DP
Input: , average request arrival rate , M servers, QoS requirement R, solution of Al-

gorithm Greedy (S†);
Output: a feasible solution under QoS requirement R;

1. P

i,j

,

†

2
,

()

i jMP

S

 
  

  
1  M, 1  j  Ki,

2. for p  0; ;p  p + 1 do
3. for i  1; i  M; i  i + 1 do
4. derive i(p) by Eqs. (6) and (7);
5. end for
6. if M(p)   then
7. P   p;
8. back-track the dynamic programming entries from M(P ) to find the solu-

tion S contributing to M(P );
9. return solution S;
10. end for
11. end for

4. DYNAMIC PROGRAMMING

This section provides a fully polynomial-time approximation scheme (FPTAS) for
the PMEC problem by applying dynamic programming. An FPTAS for the PMEC prob-
lem is a (1 + )-approximation algorithm with polynomial-time complexity by treating
1/ as an input parameter for any positive . Unless  = , fully polynomial-time ap-
proximation schemes are the best in terms of polynomial-time approximation algorithms
with worst-case guarantees.

Suppose that (S†) is power consumption of the solution derived by applying Algo-
rithm Greedy in section 3. To derive (more precise) approximated solution, we first de-
rived the rounded power consumption P


i,j as follows:

P

i,j

,

†

2
,

()

i jMP

S

 
  

  
 (4)

where  is a user-specified parameter for the tolerable approximation factor. Then, we per-
form dynamic programming based on the rounded power consumption. Suppose that i(p)
is the maximum average request rate that can be served by using only servers m1, m2, ,
mi with rounded power consumption no more than p. Hence, for brevity, for 1  i  M, we
define

i(p) =   when p < 0. (5)

Suppose that jp is the frequency level j with P

1,j  p < P


1,j+1 for j < K1. Furthermore, when

p is no less than K1, let jp be K1. The boundary condition of 1(p) for p  0 is:

i(p) = Li,jp. (6)

DVS SCHEMES FOR HETEROGENEOUS CLUSTERS UNDER QOS REQUIREMENTS

1085

Then, for i  2, the value of k(p) can be calculated by the following recursive function:

0
() max

iK

i
j

p


  {i-1(p  P

i,j) + Li,j}. (7)

Suppose that P is the minimum value with M(P)  . By back-tracking the dynamic
programming table, we can derive a solution S with M

i=1P

i,si = P and M

i=1Li,si  , in
which the frequency level on server mi in the solution is si

. Algorithm 4 presents the dy-
namic programming, denoted by Algorithm DP, in which the detail for back-tracking is
omitted due to space limitation.

The following theorem shows that the quality of the derived solution S from the above
dynamic programming is not too far away from the optimum, even in the worse case.

Theorem 3 Deriving S takes  max
max

MKO MK  time complexity and  MO M 

space complexity, where Kmax is maxi=1,2,,MKi. For any input instance with feasible solu-
tion S*,

(S)  (1 + )(S*).

5. REMARKS AND EXTENSIONS

We so far assume that the front-end server makes decisions without considering the
overhead for activating or deactivating a server or the current state of servers. The consid-
eration of the overhead can be achieved by building multiple decision trees for a server.
That is, if server mi is currently not activated, activating mi takes additional energy and
some fixed time for booting. Therefore, we can calculate the overhead in both average
power and quality of service requirement. By adding this overhead to Pi,j and Li,j, we can
construct a new decision tree i,off, which is used by Algorithm Greedy when server mi is
currently not activated. Similarly, we can also use the same strategy to decide whether we
should turn off a server that is currently activated.

Suppose that the derived solution S† of Algorithm Greedy provides higher service
than the average cluster request rate, i.e., M

i=1Li,s†i > . If the average cluster request rate

 is with M
i=1Li,s†i     for the next scheduling interval, Algorithm Greedy derives

the same solution S†. Therefore, we do not have to change the configuration of the back-
end servers for such cases, which can reduce the run-time overhead.

Moreover, if the preference of the system designer is to build a scheduling table for
reference, e.g., the approach in [7, 9]. The dynamic programming approach in section 4
can be applied by using different rounding precisions  and suitable values of (S†).

6. PERFORMANCE EVALUATION

This section provides performance evaluation for the proposed power management
schemes, including Greedy, E-Greedy, and DP. To demonstrate the generality of our ap-
proach, three QoS models are applied, i.e., the M/M/1 [12] queuing model, the M/G/1 PS

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1086

[13] queuing model, and a soft real-time model similar to [9]. All results in this experi-
ment are mean values of 10 different runs on an Intel Xeon CPU with 3.06 GHz.

6.1 Simulation Setting

To evaluate how heterogeneity affects the power consumption, a 4-tuple (fi,max, ci, i,

i) is used to compute the power consumption. Variables fi,max, ci, i and i are random
variables within range [1, 4], [20, 80], [200, 400] and [2, 5], denoting the maximum speed,
the constant power consumption, the CPU performance coefficient, and the frequency co-
efficient of server mi, respectively. The power consumption of a deactivated server is as-
sumed to 0. The operating frequencies are discredited into 10 scaling levels by uniform
distribution within range (0, fi,max). The power consumption for server mi at frequency f is
Pi(f) = ci + i  f 3, as adopted in [5, 8, 12] as well. For evaluation, we evaluate cases with
100 and 200 back-end servers, considering three QoS models as follows.

 M/M/1 Queuing Model [12]: In this model, the average response time is used as the

QoS constraint. As a result, Li,j(R) = fi,j  i  1/R where R is the average response time
given for the QoS control. Since R only introduces constant offset, the setting of R only
has minor effect. Therefore, we set R as 1 in our experiment. For comparison, we also
simulate an algorithm extended from the TP-CP-OP algorithm developed in [12] which
assumes continuous frequencies. To find a feasible solution for discrete frequencies,
the closest upper frequency on each server is used, denoted as R-TP-CP-OP.

 M/G/1 PS Queuing Model [13]: In this model, job arrivals to the servers follow a Pois-
son distribution. The QoS constraint is the mean response time E[R] = 0.38 sec. The re-
sulting Li,j(R) = (  r  1/E[R])(1/fi,j) where 1/ = 38ms is the mean job-execution time
and r = fi,j/fi,max is the speed ratio of the execution speed to the maximum speed of server
mi. We do not compare with the approaches in [13] since they focus on homogeneous
servers.

 Soft Real-Time Request (SRR) Model: The SRR model is similar to the one in [9] and
considers only dynamic requests. The execution time of a request follows a normal dis-
tribution with mean  = 24.5ms and deviation  = 60ms. The deadline of a request is D
= 200ms. The QoS constraint is that the probability of all requests that will not miss their
deadlines is R = 95%. The Li,j(R) is thus defined as the maximal Li,j such that the prob-
ability of Li,j   < fi,j  D is 0.95. In this experiment, we use the inverse cumulative dis-

tribution function of the normal distribution (Li,j  ,
2

,)i jL  coupled with a binary
search to find Li,j(R).

To vary the average request rate, we first compute the maximum tolerable request rate

max of the cluster, M
i=1Li,Ki

(R). For an input average request rate , the load ratio is de-
fined as /max. A lower bound of the optimal solution is computed as the baseline, which

is obtained by adding density(vi*)
i

q 

 to the solution when Algorithm 2 hitting the con-

dition  + qi*  . For comparison, all power consumption reported are normalized with
respect to the computed lower bounds.

DVS SCHEMES FOR HETEROGENEOUS CLUSTERS UNDER QOS REQUIREMENTS

1087

6.2 Simulation Results

Fig. 4 illustrates the normalized power consumption of a 400-server cluster for the

aforementioned three models. As shown in the figure, our schemes reasonably approxi-
mate the lower bounds for all cases. In general, better results are achieved when the load
ratio increases. Especially for cases of load ratio larger than 0.4, our schemes derive solu-
tions that consume less than 1% additional power consumption for all three models, com-
pared to the lower bounds. The second observation is that since Algorithm R-TP-CP-OP
uses a fixed order of servers according to high workload (80% of the maximal average
request rate on servers), the decision for activating servers might be only sub-optimal, as
depicted in Fig. 4 (a). Note that, in Figs. 4 (b) and (c), we only compare our results with
the computed lower bounds, because the approaches presented in [9, 13] apply exhaustive
search and exact method to compute the optimum, respectively, the complexity of which
constrains these approaches to clusters with small scales.

We also present the impact of the  to Algorithm DP for all three QoS models in Fig.
5 for a cluster with 300 servers. As expected, the smaller , the better approximation is
obtained, at the cost of longer computation time. One observation is that the impact of
varying the  becomes more significant as the load ratio increases. The reason is that with
a larger load, the exploration space is larger, and a higher  would result in more errors
for rounding down the power consumption in Eq. (4). From the figure, we can conclude
that 0.05 is a proper value for . Further smaller values are not necessary.

(a) M/M/1. (b) M/G/1 PS. (c) SRR.

Fig. 4. Normalized power consumption of a 400-server cluster for the three QoS models with  =
0.05 for algorithm DP.

(a) M/M/1 model. (b) M/G/1 PS model. (c) SRR model.

Fig. 5. Varying the  for all three models for a 300-server cluster.

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1088

(a) M/M/1 model. (b) M/G/1 PS model. (c) SRR model.

Fig. 6. Computation time for all three models for a 200-server cluster.

(a) M/M/1 model. (b) M/G/1 PS model. (c) SRR model.

Fig. 7. Computation time of algorithm greedy for all three models for 100/200/400/800 servers.

Fig. 6 depicts the computation time of our algorithms for a 200-server cluster. From
the figure, one can observe that the time to compute a solution for this cluster is reasona-
bly fast for all three algorithms. Algorithm GREEDY takes only a few milliseconds while
the slowest one, i.e., Algorithm E-GREEDY, is still in the range of seconds. Note that the
computation time for Algorithm R-TP-CP-OP is not included, because it takes hours even
for the 100-server case. The computation time of Algorithm GREEDY for clusters with up
to 800 servers is reported in Fig. 7. As the figure shown, even with 800 servers, the com-
puting time of our algorithm is still around 100 milliseconds. From these figures, we can
conclude that our algorithms are also suitable for time-critical large-scale clusters.

7. CONCLUSION

This paper explores the power management problem for a heterogeneous cluster to
minimize the power consumption while guaranteeing quality of service constraints. We
propose approximation algorithms to provide tradeoffs of approximation guarantees in
power consumption minimization with time/space complexity. Extensive simulation re-
sults with up to 800 servers show that the proposed schemes are effective for minimizing
the power consumption large scale server farms or data centers.

DVS SCHEMES FOR HETEROGENEOUS CLUSTERS UNDER QOS REQUIREMENTS

1089

REFERENCES

1. H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez, “Dynamic and aggressive
scheduling techniques for power-aware real-time systems,” in Proceedings of the
22nd IEEE Real-Time Systems Symposium, 2001, pp. 95-105.

2. L. A. Barroso, “The price of performance,” Queue, Vol. 3, 2005, pp. 48-53.
3. P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and R.

Rajamony, “The case for power management in web servers,” Power Aware Comput-
ing, 2002, pp. 261-289.

4. J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and R. P. Doyle, “Managing,
energy and server resources in hosting centres,” in Proceedings of the 18th ACM Sym-
posium on Operating Systems Principles, 2001, pp. 103-116.

5. J. J. Chen, H. R. Hsu, and T. W. Kuo, “Leakage-aware energy-efficient scheduling
of real-time tasks in multiprocessor systems,” in Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium, 2006, pp. 408-417.

6. J. J. Chen, K. Huang, and L. Thiele, “Power management schemes for heterogeneous
clusters under quality of service requirements streams,” in Proceedings of the 26th
ACM Symposium on Applied Computing, 2011, pp. 546-553.

7. R. Guerra, J. Leite, and G. Fohler, “Attaining soft real-time constraint and energy-ef-
ficiency in web servers,” in Proceedings of ACM Symposium on Applied Computing,
2008, pp. 2085-2089.

8. R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage scaling for
real-time embedded systems,” in Proceedings of the 41st Annual Design Automation
Conference, 2004, pp. 275-280.

9. C. Rusu, A. Ferreira, C. Scordino, and A. Watson, “Energy-efficient real-time hetero-
geneous server clusters,” in Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2006, pp. 418-428.

10. V. Sharma, A. Thomas, T. F. Abdelzaher, K. Skadron, and Z. Lu, “Power-aware QoS
management in web servers,” in Proceedings of the 24th IEEE International Real-
Time Systems Symposium, 2003, pp. 63-72.

11. V. V. Vazirani, Approximation Algorithms, Springer, 2001.
12. L. Wang and Y. Lu, “Efficient power management of heterogeneous soft real-time

clusters,” in Proceedings of the 29th IEEE Real-Time Systems Symposium, 2008, pp.
323-332.

13. A. Wierman, L. L. H. Andrew, and A. Tang, “Power-aware speed scaling in processor
sharing systems,” in Proceedings of IEEE INFOCOM, 2009, pp. 2007-2015.

14. R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé, “Energy-efficient policies for
embedded clusters,” in Proceedings of ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, 2005, pp. 1-10.

15. F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU energy,”
in Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
1995, pp. 374-382.

JIAN-JIA CHEN, KAI HUANG AND LOTHAR THIELE

1090

Jian-Jia Chen joined Department of Informatics at Karlsruhe
Institute of Technology in Germany as a Juniorprofessor for Insti-
tute for Process Control and Robotics in 2010. He received his
Ph.D. degree from Department of Computer Science and Informa-
tion Engineering, National Taiwan University, Taiwan in 2006. He
received his B.S. degree from the Department of Chemistry at Na-
tional Taiwan University 2001. He was a postdoc researcher at
Computer Engineering and Networks Laboratory in ETH Zurich,
Switzerland between Jan. 2008 and April 2010. His research in-
terests include real-tie systems, embedded systems, energy-effi-

cient scheduling, power-aware designs, temperature-aware scheduling, and distributed
computing. He received Best Paper Awards from ACM Symposium on Applied Comput-
ing in 2009 and IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications in 2005.

Kai Huang is currently a research associate in the Technical
University of Munich in Germany. He was a research group leader
in the fortiss GmbH Germany before joining TUM. He received
his Ph.D. degree in the Computer Engineering and Networks Labo-
ratory of ETH Zurich, Switzerland, in 2010. He received B.Sc.
degree in Computer Science at Fudan University, China, in 1999
and M.Sc. degree in Computer Science at Leiden University, The
Netherlands, in 2005. His research interests include methods and
techniques for the analysis, design, and optimization of embedded
systems. He received Chinese Government Award for Outstanding

Self-Financed Students Abroad 2010, Best Paper Awards from International Symposium
on Systems, Architectures, Modeling and Simulation, and General Chairs’ Recognition
Award for Interactive Papers in the IEEE Conference on Decision and Control in 2009.

Lothar Thiele joined the Swiss Federal Institute of Tech-
nology, Zurich (ETH) as a full Professor of Computer Engineering
in 1994, where he currently leads the Computer Engineering and
Networks Laboratory. His research interests include models,
methods, and software tools for the design of embedded systems,
embedded software, and bioinspired optimization techniques. He
received the 1986 Dissertation Award of the Technical University
of Munich, the 1987 Outstanding Young Author Award of the
IEEE Circuits and Systems Society, the 1988 IEEE Browder J.
Thompson Memorial Award, and the 2000-2001 IBM Faculty

Partnership Award. In 2004, he joined the German Academy of Natural Scientists Leo-
poldina. He received the 2005 Honorary Blaise Pascal Chair of Leiden University, The
Netherlands. Since 2009 he is a member of the Foundation Board of Hasler Foundation,
Switzerland. Since 2010, he is a member of the Academia Europaea.

