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Abstract— Image-based scene representations enable a mo-
bile robot to make a realistic prediction of its environment.
Hence, it is able to rapidly detect changes in its surroundings by
comparing a virtual image generated from previously acquired
reference images and its current observation. This facilitates
attentional control to novel events. However, illumination effects
can impair attentional control if the robot does not take them
into account. To address this issue, we present in this paper
an approach for the acquisition of illumination-invariant scene
representations. Using multiple spatial image sequences which
are captured under varying illumination conditions the robot
computes an illumination-invariant image-based environment
model. With this representation and statistical models about
the illumination behavior, the robot is able to robustly detect
texture changes in its environment under different lighting.
Experimental results show high-quality images which are free
of illumination effects as well as more robust novelty detection
compared to state-of-the-art methods.

I. INTRODUCTION

Traditionally, the environment of a mobile robot is repre-
sented by geometry data which is used for collision detection
during navigation or during a grasping process. A sparse
set of texture images stored with the model allows for
the visualization of the surroundings and hence provides
information about the appearance of the scene. However,
this modeling approach can get computationally expensive
for translucent or filigree objects – due to the high level
of detail and the refraction of light. Image-based rendering
techniques, in turn, provide photorealistic virtual images
while maintaining a low complexity during the rendering
process.

The enviroment of a mobile robot is usually not static.
Hence, the robot has to be notified about changes such
as the removal or sudden appearance of objects. In [1],
we presented a technique for the computation of per-pixel
surprise maps using the robot’s current observation and a set
of reference views from its internal image-based environ-
ment representation. Surprise is a very important means in
cognitive systems to direct the attention to unexpected events
[2] and to segment objects from the known familiar part
of the environment. However, if surprise detection is based
on the raw intensity values provided by the robot’s camera,
robust attentional control to objects cannot be ensured if the
illumination changes. Many robots, like service robots, act in
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a closed environment and return to the same place over and
over again. Hence, the robot can collect several observations
over a longer period of time and under different lighting
conditions and infer the intrinsic colors (reflectance) of the
objects in the scene.

In this work, we present a method for the computation
of illumination-invariant image-based models from multiple
spatial image sequences acquired of the same scene under
varying illumination. The reflectance of the environment is
recovered at a dense series of viewpoints from virtual images
which are rendered from the captured sequences. Using the
reflectance images at these viewpoints together with local
geometry and camera pose information, a robot is able to
predict the reflectance of the scene in a continuous viewpoint
space. Statistical knowledge gathered from illumination im-
ages enables the robot to reliably distinguish novel objects
from illumination changes.

This paper is structured as follows. In Section II we
outline related work. Next, in Section III, we briefly describe
the visual localization technique used in this work and the
registration of several acquired image sequences with respect
to a common coordinate frame. Section IV presents our
framework for the generation and visualization of image-
based environment models. Section V presents the main
contributions of this work, namely the computation of an
illumination-invariant image-based environment representa-
tion for cognitive mobile robots as well as a method for
novelty detection under varying lighting conditions. After
showing experimental results in Section VI, we conclude this
paper in Section VII.

II. RELATED WORK

In [6], the huge body of work in the field of image-based
rendering is presented. Different approaches are classified in
terms of the amount of geometry information they incorpo-
rate.

Several methods for the computation of intrinsic images
have been presented. In [4], a reflectance and an illumination
image is recovered by entropy minimization. While this tech-
nique uses only one intensity image, several constraints are
imposed on the camera sensor and on the lighting which are
not always fulfilled in a real-world environment. The method
in [5] also recovers the reflectance and the illumination of
the scene from only one image. However, classifiers have
to be trained which distinguish between gradients in the
intensity image due to illumination effects and gradients due
to reflectance changes. A computationally cheap approach
was presented in [3] where intrinsic images are recovered



from multiple intensity images which show the scene under
different illumination. While this approach provides high-
quality reflectance images, the viewpoint of the camera has
to be static.

A survey on various image change detection algorithms is
given in [9]. Recently, an approach for detecting object and
motion changes under varying illumination was presented in
[10]. It is based on the assumption that the gradient structure
within a pixel block does not change with illumination.
Hence, the normalized correlation between corresponding
pixel blocks in two images is used as a measure for change.
Another popular technique is the transformation of an image
to an illumination-invariant color space. In [11], the Spherical
Coordinate Transform ([12]) (SCT) is a preprocessing step
for color learning in a mobile robot.

One of the main contributions of this paper is an ap-
proach which provides a reflectance representation of the
environment not only at one static viewpoint but in a given
3D viewpoint space. Another core contribution is a method
for the robust detection of novel objects under varying
lighting conditions, which is based on statistical models of
the illumination behavior. These models are trained from
illumination images which separate the lighting effects from
the intrinsic appearance of the scene.

III. VISUAL LOCALIZATION AND REGISTRATION OF
MULTIPLE IMAGE SEQUENCES

The visual localization algorithm used in our work ex-
tracts salient features from stereo images according to [15].
The distance to the corresponding scene points is initially
estimated by the triangulation of sub-pixel accurate stereo
matches. This 3D structure is retained unchanged for the
whole run. During navigation, the features are tracked with
the Kanade-Lucas-Tomasi (KLT) tracker [13] in the images
of the left camera. Based on a robust variant of the visual
GPS algorithm (RVGPS), the camera motion is computed
w.r.t the local camera coordinate frame at the starting po-
sition. An M-estimator weights drifting features and rejects
outliers. More details on the pose estimation algorithm can
be found in [14].

The acquisition of multiple image sequences can happen
over a longer period of time. However, the visual localiza-
tion algorithm looses the tracked features after one image
sequence. Hence, the localization is initialized for each new
image sequence and the poses of the images in a particular
sequence are determined with respect to its first image.
However, if we want to render a virtual image at the same
viewpoint in space from different sequences, the relationship
between the image sequences is required.

Let us assume throughout this work that a robot acquires
M image sequences. The images in a given sequence are in-
dexed by j. We use the coordinate frame of the first sequence
I1 as the common coordinate frame of all sequences. In order
to register a particular sequence Im, m = 2, ...,M with
respect to this coordinate frame, a sparse set of NS support
views is taken from it. For illustration, three support views
are represented by the camera viewing frusta in Figure 1.
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Fig. 1. All acquired image sequences are registered in a common
coordinate frame. Using several support views in an image sequence Im,
the transformation between the sequence and the common coordinate frame
is determined.

The support views are inserted into the image sequence I1
between similar images which results in an augmented image
sequence I ′1. The transformation matrices of the support
views Sm,jn

(n = 0, . . . , NS) w.r.t the common coordinate
frame are determined by applying the visual localization
technique in [14] to I ′1.

Using the transformation matrices of the support views
and their poses Mm,jn (n = 0, . . . , NS) w.r.t the coordinate
frame of Im, the transformation between the two coordinate
frames of the sequences is calculated, respectively, for each
support view by

Qm,jn = Sm,jn ·M−1
m,jn

n = 0, . . . , NS − 1 (1)

Although describing the same relationship, these matrices
can be different from each other due to the error propagation
in the visual localization over the image sequence Im. Using
Qm,jn

, the transformation Qm,j between the two coordinate
frames is interpolated over the whole image sequence Im by
a Lagrange polynom. In order to fulfill the orthonormality
constraint on the rotation matrices, the column vectors of the
rotation matrix in Qm,j are normalized to unit length. The
poses Sm,j of the images in Im w.r.t the common coordinate
frame are then calculated by

Sm,j = Qm,j ·Mm,j (2)

where Mm,j is the pose of a given image in Im w.r.t. its
first image.

IV. IMAGE-BASED ENVIRONMENT MODELING AND
RENDERING

For image-based modeling, only the left images of the
captured stereo pairs are stored. In the following, these
images will be called reference images. Similar to [7] and
[8] we use local geometry information instead of a global
geometric model of the environment for the interpolation of
virtual views. The recovery of the view-dependent geometry
is done off-line while the computation of virtual images is
performed on-line by the graphics processing unit.

In order to render novel virtual views from captured image
data, correspondences between the pixels in the images have



to be established. Hence, for each stored image, a per-pixel
depth map is calculated. To this end, we define multiple
planes which lie parallel to the image plane of the camera and
quantize its viewing frustum within a given distance range.
Similar to the method in [16], a cost volume is computed
by a plane-sweep. In order to handle occlusions, we use
two other images from the sequence for the computation of
the depth map. These images lie at a certain baseline from
the reference view. For a given layer of the cost volume
the matching cost is determined by the minimum absolute
difference between the luminance values of the reference
image and the luminance of the other warped images. In
order to get smooth disparity maps in non-textured areas,
the loopy belief propagation algorithm in [17] is applied. In
a geometry validation step the values of a depth map are
corrected using the redundancy in neighboring depth maps.
The meshes reconstructed from the validated depth maps are
simplified in order to reduce memory consumption.

For the interpolation of novel virtual images of the envi-
ronment all reference cameras are ranked in terms of their
distances to the current position of the virtual camera and
the angular deviation of their viewing directions. The seven
closest reference cameras are selected for view synthesis and
their data (meshes, textures) is loaded into graphics memory.
The view interpolation is done in several passes. First, the
reference images are warped on the image plane of the virtual
camera using the view-dependent meshes and are stored as
textures in the off-screen memory of the graphics hardware.
These textures are the input to the pixel shader program
which finally calculates the virtual image.

V. ILLUMINATION-INVARIANT IMAGE-BASED MODELS
FOR NOVELTY DETECTION

In order to obtain an image-based environment represen-
tation which is free of illumination effects, our idea is to
render virtual images from each acquired image sequence at
identical viewpoints around the scene. This provides virtual
image sequences which are denoted by Iv,m in Figure 2. The
index m = 1, ...M here indicates the image sequence which
provides the eight reference images for view interpolation.
The reflectance at a given viewpoint is then recovered using
the virtual images rendered at this position.

……

……
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Fig. 2. The crosses with the dashed viewing frusta illustrate the interpo-
lation of virtual images at a series of viewpoints. At a given viewpoint, a
virtual image is rendered from each acquired image sequence, respectively.

For the recovery of a reflectance image from several in-
tensity images taken under different illumination, an efficient
method was proposed in [3] which we also use here. This
technique is briefly presented in the following.

An intensity image captured by a camera is the product of
a reflectance image and an illumination image. We also use
this model here for the rendered images. In the logarithmic
domain, a virtual image rendered from eight real images in
sequence Im is thus given by

im = rm + lm (3)

where rm is the logarithmic reflectance and lm the logarith-
mic illumination image. The convolution of the virtual image
with the filters fh = [1,−1] and fv = [1;−1] provides the
horizontal and vertical gradients of the image, respectively.

ihm = fh ∗ im (4)
ivm = fv ∗ im (5)

Although not explicitly expressed in our notation, the compu-
tation of the gradients is done in RGB domain, separately for
each color channel. Since illumination gradients are sparse
and since it is assumed that the reflectance at a viewpoint
remains constant over all image sequences, the reflectance
image in gradient domain can be recovered by

r̂h = median
m=1,...,M

(
ihm
)

(6)

r̂v = median
m=1,...,M

(ivm) (7)

As the convolution in (4) and (5) is a linear operation, we
get the following overconstrained system of equations for the
recovered reflectance gradients.

r̂h = fh ∗ r̂ (8)
r̂v = fv ∗ r̂ (9)

The eqs. (8) and (9) are solved for the reflectance r̂ using
pseudoinverse filtering.

r̂ =
(
r̂h ∗ f̃h + r̂v ∗ f̃v

)
∗ g (10)

The filters f̃h and f̃v are reversed versions of the respective
gradient filters in (8) and (9). The filter g only depends on the
gradient filters and is chosen such that it fulfills the equation(

fh ∗ f̃h + fv ∗ f̃v
)
∗ g = δ (11)

where δ is the Dirac impulse.
Using the reflectance of the scene at a given viewpoint and

the rendered virtual images im,m = 1 . . .M , a sequence
of images lm can be recovered by (3) which only contain
information about the lighting conditions in im. An example
for an illumination image is shown in Figure 3(c), which is
amplified for visualization. It appears greyish and with little
color saturation while the corresponding reflectance image in
Figure 3(b) gives information about the intrinsic colors of the
objects which are ideally independent of the illumination. In
the linear domain the illumination image indicates for each
color channel the scaling factor for the intrinsic colors in



Figure 3(b) which is necessary to produce the intensities of
the pixels in the camera image in Figure 3(a). In shadow
regions this factor is very small while in the rest of the image
it is close to one or larger if the light intensity is very strong.

(a) (b) (c)

(d)

Fig. 3. (a) Camera image. (b) Reflectance image. (c) Illumination image.
(d) Reflectance and illumination image plotted in logarithmic RGB space.

Thus, if we take a look at the values of an illumination
image in the logarithmic domain, we see that they cluster
around zero (see Figure 3(d)). In order to describe this
behavior in a statistical way, we use a multivariate Gaussian
model. For each viewpoint in our image-based representa-
tion, we learn the parameters of this model by Maximum
Likelihood (ML) estimation, using the pixel values of several
illumination images at the given viewpoint as a set of training
samples. Consequently, we obtain the mean vector µC and
the covariance matrix ΣC as follows

µC =
1
Np

Np∑
n=1

xn (12)

ΣC =
1

Np − 1

Np∑
n=1

(xn − µC) (xn − µC)T (13)

Here, xn denotes a column vector which contains the RGB
values of a pixel in an illumination image in logarithmic
domain. The total number of training pixels taken from
the set of illumination images is Np. The mean vector
and the covariance matrix are stored together with the
reflectance image, the depth map and the pose information
at each viewpoint so that the illumination-invariant image-
based representation is enriched by statistical knowledge
about the view-dependent illumination characteristics in the
environment.

When a mobile robot returns to a known part of the
environment it first has to register the currently acquired
camera views with respect to its internal representation. A
virtual reflectance image is predicted from the illumination-
invariant environment model at the estimated current pose of

the robot’s camera. Using this virtual image, the robot is able
to compute an illumination image for the new observation
by (3). For each pixel pu,v the robot evaluates the squared
Mahalanobis distance

∆2
u,v = (pu,v − µC,ref)

T Σ−1
C,ref (pu,v − µC,ref) (14)

where u and v denote the column and the row index of the
illumination image, respectively. The Gaussian mean µC,ref

and the covariance matrix ΣC,ref are chosen from one of
the reference views used for the interpolation of the virtual
reflectance image. If the Mahalanobis distance of a given
pixel is very large, the RGB triple lies far from the region
where the values of the training set of illumination images
cluster. Thus, it is very likely that this pixel indicates a
reflectance change due to a newly added or removed object
in the environment.

VI. EXPERIMENTAL RESULTS

In order to test our methods, we acquired 9 image se-
quences Im, m = 1, ...9 with a Pioneer 3-DX robot. The
robot was equipped with two cameras with a baseline of
9 cm. Each sequence consisted of 100 images. The robot was
controlled to follow a quarter-circle with the stereo camera
looking towards its center. Due to the inaccurate internal
odometry of the robot, however, the trajectories were not
perfect quarter-circles. Furthermore, the robot was manually
steered to the starting point of the trajectories. Consequently,
the trajectories were similar but never completely identical.

The first image sequence I1 was captured under outdoor
daylight which fell through a window behind the robot. Next,
we acquired two sequences I2 and I3 under indoor illumi-
nation. Here we used the lamps mounted on the ceiling of
the laboratory which provided white light. For the remaining
6 image sequences I4 to I9, the scene was illuminated by
daylight and by the light of two lamps which were mounted
on a tripod and which were placed at various positions in the
laboratory. The lamps provided yellow-white light so that not
only the positions but also the spectra of the light sources
varied between the different runs.

Figures 4(a), 4(b), 4(d) and 4(e) show four virtual images
rendered at different viewpoints from the image sequences
I4 and I5. These virtual images are photorealistic and hardly
show up artifacts due to erroneous poses of the reference
images or depth maps. The reflectance images recovered
from all 9 virtual images at the two viewpoints are shown in
Figures 4(c) and 4(f). Obviously, the shadows in the virtual
images cast by the objects on the table are largely gone in
the reflectance images.

In order to evaluate our method for illumination-invariant
novelty detection we acquired another image sequence Iob.
We positioned the two lamps in a way that the illumination
was different from all the runs before. Furthermore, we
removed one roll from the plate. One image, which is
depicted in Figure 5(a), was chosen as the robot’s observation
for our experiments. The corresponding virtual reflectance
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Fig. 4. (a),(d): Virtual images rendered at different viewpoints from images
acquired under dominant artificial illumination. (b),(e): Virtual images
rendered at the same viewpoints from images taken under dominant daylight
illumination. (c),(f): Reflectance images recovered from all virtual images
at these viewpoints. The illumination effects which are visible in (a),(b),(d)
and (e) are largely removed.

image rendered at the observation’s pose is shown in Figure
5(b).

(a) (b) (c)

Fig. 5. Table scene: (a) Observation which was taken after one roll had
been removed from the plate. (b) Reflectance of the scene computed from
the environment model. (c) Reference image for NGC and SCT.

The squared Mahalanobis distance computed by our
method for each pixel is shown in Figure 6(a). It clearly
indicates a region of high novelty around the missing roll
(values between 60 and 120) while the shadow regions
have a very low Mahalanobis distance (up to 20). Elevated
values along the edges of the objects and in the background
are due to a slight inaccuracy in the estimation of the
observation’s pose. We compare change detection methods
based on Normalised Gradient Correlation (NGC) ([10]) and
Spherical Coordinate Transform (SCT) ([11], [12]) to ours
whose results are shown in Figures 6(b) and 6(c). In SCT,
a point in cartesian RGB space is represented in spherical
coordinates. One coordinate is the magnitude of the vector
while the others represent the azimuth and elevation angles.
The distance d in our experiments is the sum of squared
differences between the azimuth and elevation values at a
given pixel in two images. For both NGC and SCT we
chose a virtual image rendered from the image sequence
I4 as a reference image (see Figure 5(c)). High correlation
coefficients ρ obtained by NGC indicate blocks with no
changes while a change is likely if the coefficient is low (see
Section II). For coherent visualization we chose the measure
1− ρ. As proposed in [10], we computed and combined the
gradient correlation coefficients from three resolution layers.
Compared to our method, NGC is much more sensitive to
pose inaccuracies and clearly indicates the object edges as

regions of high novelty since there the gradient structure
between blocks from the observation and from the reference
image is different. Hence, this method is less suitable for
mobile robot applications since slight pose inaccuracies are
inevitable. The SCT method reliably detects the missing roll
but also shows up comparably high chromaticity differences
d in the rest of the change map.
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Fig. 6. (a) Squared Mahalanobis distance computed by our method,
(b) Normalized Gradient Correlation (1 − ρ), (c) Spherical Coordinate
Transform, (d) Ground truth.

We evaluated our method for novelty detection for another
scene which is shown in Figure 7. In contrast to the table
scene all images of the washing machine scene were taken at
a static viewpoint. We again compare the performance of our
method with respect to the two reference approaches NGC
and SCT. Figure 8(a) shows the novelty map obtained from
our method. Again, it provides high Mahalanobis distance
values in the region of the observation image that shows
the hair dryer that is added to the scene. Remarkably, our
algorithm is able to distinguish between a black object and
a shadow which is difficult for the other two methods. The
change from the white color of the washing machine to the
deep black of the hair dryer leads to an attenuation of the
intensity that is not typical for a shadow. That is why it is
classified as a reflectance change in our scheme. The result
of the NGC shows that the edges of the shadows produce
high values in the map in Figure 8(b). Due to the faint
chromaticity change the values in the change map in Figure
8(c) in the region of the hair dryer are not higher than at
many other pixels.

For a quantitive comparison of the three methods, we
computed the corresponding receiver operating characteristic
(ROC) curve. ROC curves are a common means to analyze
the reliability of change detection algorithms. For the table
scene we evaluated the false positive rate (FPR) vs. the
true positive rate (TPR) using the ground truth in Figure
6(d), which we determined manually. The gray regions in
the ground truth map are excluded from evaluation since



(a) (b) (c)

Fig. 7. Washing machine scene: (a) Observation which shows the hair
dryer as a newly added object. (b) Reflectance of the scene. (c) Reference
image for NGC and SCT.

 

 

2
50 100 150 200 250

(a)

 

 

1 - 
0.2 0.4 0.6 0.8 1

(b)

 

 

d
0 10 20

(c) (d)

Fig. 8. (a) Squared Mahalanobis distance computed by our method,
(b) Normalized Gradient Correlation (1 − ρ), (c) Spherical Coordinate
Transform, (d) Ground truth.

there the virtual reflectance image does not provide any
information. In Figure 9(a) the ROC curves are obtained by
varying a threshold between the minimum and the maximum
value of the maps in Figures 6(a) to 6(c). The ROC curve
for our method shows higher TPRs at low FPRs than the
other methods. Analyzing the ROC curves in Figure 9(b)
that we get for the washing machine scene we see that the
one for our method almost shows ideal behavior while the
perfomance of the other methods is clearly worse.
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Fig. 9. ROC curves for the table scene (a) and the washing machine data
set (b). They show the performance of the three approaches in terms of the
true positive rate vs. the false positive rate.

VII. CONCLUSION

In this paper, we presented a method for the acquisition of
illumination-invariant image-based representations for mo-
bile robots. Virtual reflectance images predicted from this
representation and statistical knowledge of the illumination
behavior in the scene allow for a robust detection of object
changes under varying lighting conditions. In experimental
results our method shows better detection performance at
low false positive rates compared to other state-of-the-art
techniques. Our future work will focus on the extension of
the current illumination models for specular surfaces and on
novelty detection in the presence of varying spectra of the
light sources.
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