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Abstract— A popular method for an easy and also flexible
programming of robots is learning by demonstration. An
intelligent controller learns a task from several examples
carried out by an experienced user. Afterwards, the task
can be adapted to new, formerly unknown environments.
One particular challenge arising with this technique is
generalization of demonstrations in order to get a generic
description of the task. In this paper a new methodology
for solving this problem is proposed. The main part of the
algorithm exploits principles known from fluid dynamics.

Index Terms— learning by demonstration, imitation learning,
one-shot learning, fluid dynamics

I. INTRODUCTION

Learning by demonstration (aka. imitation learning) has

proven to be an useful technique for instructing robots by

end-users. I.e. a user which is an expert in a domain different

from robotics (e.g. assembly, welding or even surgery) can

easily upgrade the controller of the robot with new capabili-

ties without caring about details of robot programming. Most

implementations of this technique require a sufficient number

of demonstrations in order to generalize the task. Generaliza-

tion normally comprises finding a description of the task de-

tached from any coordinate system. In addition, it is usually

desirable to adjust the shape of the trajectories themselves

in order to adjust the task to a certain environment. We have

addressed the typical challenges arising from this technique

with a new implementation of learning by demonstration

which employs algorithms from fluid dynamics. The basic

idea can be described as follows: imagine a person stirring

a fluid, e.g. a cup of tea. Two important observations can

be made. The first is, that not only particles lying on the

path of stirring are affected, but all particles in the fluid

are drawn into a certain direction biased by the stirring.

The other observation is, that the fluid, the tea, continues

with its motion after stirring has stopped. I.e. while the

former phenomenon implements some sort of generalization,

the latter realizes a memory. How can these observations

be exploited in order to implement the basic principles of

learning by demonstration? The answer is obvious: we have

to model the environment, where certain manipulation tasks

are demonstrated, as a fluid. An important prerequisite is,

that all demonstrations of the same task are congruent and

can be overlaid (a solution to this problem will be discussed

below). Given this assumption, user demonstrations can be

seen as the stirring of a fluid. The behavior of the fluid

will on the one hand bring about a generalization of the

overall movement and on the other hand smooth motions and

eliminate outliers. Since fluid dynamics is a field of extensive

research with an abundance of different methodologies, we

will discuss the selection of an appropriate model in an own

section of this paper. For now, it should only be emphasized

that a variety of dynamic, non-stationary models is available,

i.e. trajectories can cross themselves at different points in

time in order to enable demonstrations of complex tasks.

A crucial advantage of this approach is, that we will get a

Fig. 1. Illustration of the principle: Demonstrations of the task are
simulated as stirring a fluid, which consequently smoothes and “memorizes”
the movement (note that we employ a non-stationary, dynamic model which
allows self-crossing trajectories). Instantiations of the task are simulated as
throwing a particle into the flow. This particle, representing the center of
the robot’s end effector, will be drawn into the right direction by the flow.

working solution (fluid in motion) even after showing only a

single demonstration of the task (“one-shot learning”). Nev-

ertheless, it is still advising to have additional demonstrations

in order to make the solution more general and to eliminate

outliers. If we want to instantiate the learned task in a new

environment, we simply transform the previously acquired

model to the desired position. The fluid will adapt itself

to this new situation: e.g. the trajectory (the flow of the

fluid) will bypass obstacles and smooth out discontinuities.

Another advantage is, that the starting points within the

flow (i.e. the initial positions of the robot’s end effectors)

are not too important. From each point within a certain

neighborhood, particles representing the end effectors will be

automatically drawn into the right direction by the simulated

current of the fluid.

II. MATERIALS AND METHODS

In this section we introduce the hardware which has been

used for the experiments and whose operation has raised
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the demand for programming by demonstration. Afterwards

we will describe the task in detail and propose its decom-

position into several subtasks. Finally, these subtasks will

be addressed by appropriate algorithms. The crucial part

will be the adaption and application of a suitable model for

simulation of fluid dynamics.

Fig. 2. Hardware Setup: Four ceiling mounted robots can be equipped
with either a stereoscopic endoscope or different surgical instruments.
Instruments are augmented with force sensors. In-output is accomplished
at a master console, comprising two 6Dof force feedback devices

A. Hardware Setup

For all of our experiments we have used a robotic system

for endoscopic heart surgery. Hardware and software of the

system itself have already been introduced to the research

community [1], [2]. Therefore, we constrict the following

description to an extent necessary for understanding the

subsequent sections. As one can see in figure 2, the system

comprises four ceiling mounted robots. This setup was

chosen after an extensive evaluation with surgeons from

the German Heart Center Munich [3]. The ceiling mounted

arrangement is advantageous in comparison with other se-

tups, because it does not block access to the operating table,

although we even use four robots. The robots are mounted

on a gantry assembled of profiled girders which enable a

quick reconfiguration of the setup. Several emergency stops

guarantee secure handling of the system. Each robot can be

equipped with either an endoscopic stereo camera or different

surgical instruments. All instruments are augmented with

strain gauge sensors in order to measure occurring forces.

User interaction is realized with a master console which

can be freely placed in the room. It is equipped with two

PHANToMTM force feedback devices which on the one hand

can be used for 6DoF input and on the other hand provide a

3DoF force feedback derived from the measurements at the

instruments. It is possible to switch between control over

different robotic arms. Therefore, each of the four robots

can be controlled with this bimanual input device (two of

them at the same time). The control software of the system

implements so-called trocar kinematics, i.e. all instruments

will move about a fixed fulcrum after insertion into the body

(or a ribcage mockup).

B. Description of the Task

With the system described above we have already per-

formed surgical tasks like cutting and sewing. Due to a

more complex handling of minimally invasive systems, an

intrinsic issue of these procedures is, that their completion

takes significantly more time and suffers from an increased

rate of errors. E.g. tying a knot takes up to one minute with a

minimally invasive system, while this task is often completed

within seconds in open surgery. In addition, one can more

often observe breaking of suture material or even ruptures of

tissue. Therefore, the intention of this work is to provide a

possibility to automate complex tasks like endoscopic knot-

tying. The goal is a generic knot that can be applied by the

surgeon at a desired position on the tissue. In addition, it

should be possible for the surgeon (normally not an expert

in programming robots) to augment the system with other

tasks (e.g. a different type of surgical knot). The first step

towards this goal is to analyze how the knot-tying task is

performed by a human. Based on this, surgical knot-tying can

be decomposed into the following subtasks (see description

of fig. 3).

1 2

43

Fig. 3. Knot-Tying Procedure: After piercing, the needle with the thread
is pulled out of the tissue with the left gripper (1) and winded about the right
gripper (2). During this procedure, the loose end of the thread is retained
by an assistant. This facilitates grasping of the end by the right gripper (3).
Finally, the end of the thread is pulled through the loop around the right
gripper in order to finalize the knot (4).

So far, there has been only little research on this particular

task of automating a surgical knot. Kang has proposed a

ThA5.3

1801



generalized version of a taught knot in his PhD thesis [4].

In his project the task is performed with special knot-tying

instruments, while we are using multi-purpose instruments.

Hynes et al. [5] and Wakamatsu et al. [6] proposed robotic

setups for knot-tying, but did not evaluate the task under

realistic circumstances, yet (i.e. small-scale knot performed

under the restrictions of trocar kinematics and with original

suture material). There exists also some work on analyz-

ing the knot-tying task itself, focusing rather on surgical

evaluation instead of automation [7], [8]. We have already

implemented knot-tying with our system to alleviate analysis

of the task. The system described above is equipped with

three grippers and therefore can assume the work of both,

master and assistant. It was able to tie a surgical knot in about

30 seconds, which is already an improvement compared to

human performance in endoscopic knot-tying. Up to this

point no learning was included, i.e. the knot cannot be

adapted to unknown environments which is the topic of the

following sections.

C. Algorithmic Solution

The procedure depicted in fig. 3 describes a human-

centered decomposition of the task. It works fine for two

cooperating surgeons (master and assistant), but this human-

centered approach is not necessarily the best decomposition

of the task in order to transfer it to a technical system.

Therefore, we did not start our research with the observation

of two humans performing this task, like it is done in

manual surgery. Instead, we recorded the movements of a

single human working with our experimental system and

performing the knot with only two hands (i.e. without an

assistant like depicted in fig. 3). We started recording the

trajectories after an initial situation as depicted in fig. 3 (1)

was reached, i.e. the needle is already pierced through the

tissue. As a result of these recordings we have acquired two

trajectories (left / right hand) as data source for our research.

In the subsequent sections we will use the expressions task,

demonstration, skill and primitive in a specific way. A task is

a certain, well-defined description how to solve a problem.

A demonstration is an instance of this task performed by

a human user. A skill is the instantiation of a task on

a robotic system. Finally, primitives are meaningful, non-

overlapping subsequences of a skill. We now will apply the

following steps in order to derive a robotic skill from user

demonstrations:

1) Smoothing of the trajectory and transformation into

a generic, instantiable representation.

2) Decomposition of the complete trajectory into mean-

ingful primitives.

3) Grouping and matching of primitives from different

demonstrations.

4) Reassembly of skills from primitives and instantiation

as viscous flow

1) Smoothing and Transformation: As one can see in fig.

4, the data acquired from user demonstrations is quite noisy

and exhibits some tremor of the subject. Therefore, the first

step will be smoothing input data, but this is often associated

Fig. 4. Knot-Tying Trajectory: Visualization of the trajectory of the
left gripper during knot-tying. For clarity reasons, the right gripper and its
trajectory are hidden. The image was produced with the 3D planning and
recording software of our system.

with loss of information. I.e. before we can smooth the

data we have to be sure which parts of it are necessary

for further processing and which parts can be neglected

without consequences. One idea would have been to use

a Gaussian filter in order to remove noise. But this would

also remove some important edges, which are essential to

perform the task. E.g. the leftmost edge of the trajectory

in fig. 4 constitutes a correct pick up of the thread. If this

edge is smoothed out even just for millimeters, the thread

will be missed. Therefore, we need a kind of intelligent

smoothing. We have implemented this feature by means of

spline approximation, where important parts of the trajectory

(like the pickup edge) are chosen as breakpoints. These

points are found by including additional modalities into our

considerations. We have exploited temporal dependencies

within the trajectory and the state of the gripper. The former

is used to identify points where the user moves rather slowly,

which indicates increased precision. The latter implies im-

portant information where the user was interacting with the

environment by grabbing objects (e.g. the thread). At the left

side of fig. 5, all locations where the user stayed within a

radius of 1.5 mm for more than 0.2 secs are marked with

a cone. Therefore, the trajectory is supersampled within a

raster of 3 mm and the cone has the same orientation as

the gripper which has produced the trajectory. If the gripper

is closed, the color of the trajectory changes from green to

red. Important points on the trajectory are identified reliably

(e.g. the location where the thread is picked up, at the

upper left side of the trajectory, is marked by two cones

and in addition, the gripper is closed nearby). An important

observation is, that there are no cones on the way to the pick

up position and back. This indicates that the corresponding

part of the trajectory is not too important and therefore a

distinct smoothing can be applied. This methodology is based

on profound research on the psychology of user interfaces. If
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Fig. 5. Spline approximation: Significant points are selected from the
recorded trajectory (cones on left image). These points serve as breakpoints
for a spline approximation of the trajectory (right image). Note that human
tremor is annihilated while all significant edges are preserved

a user moves the mouse pointer across the screen very fast, it

is not possible to perform precise interactions with the user

interface, since the focus window of the eye cannot achieve

full focus and concentrate on the task [9]. Furthermore, this

observation can be prooven by Accot-Zhai’s steering law

[10], an enhancement of the well-known Fitts’ law [11] for

movements on constricted trajectories. In its original form it

is expressed as

TC = a + b

∫

C

ds

W (s)
(1)

where a and b are constants depending on the nature of

the experiment, W (s) is the width of the curved path C,

at a certain location s. For clarification, this formula can be

differentiated and rearranged to

ds

dT
=

W (s)

b
(2)

As one can derive from equation 2, the speed of the user

moving on the trajectory is proportional to the width of the

path. Or in other words, if the user has to stay on a narrowly

constricted trajectory (i.e. performing a precise movement)

it will take more time than any unconfined movement. This

is exactly the phenomenon which was exploited by our

algorithm in order to define breakpoints without loss of

critical features.

2) Decomposition: After smoothing the trajectory and

transforming it into spline representation, the next step is to

decompose it into meaningful primitives. The decomposition

of manipulation tasks into sensorimotor actions or motion

primitives is an approved methodology to reduce complexity

[12], [13]. Nevertheless, motivations for this procedure might

differ: beside reduction of complexity, they can also be used

as a basis for new tasks, by reutilizing different primitives

and adjusting their parameters. In addition, a library of

primitives can be used to analyze previously unknown user

demonstrations. We will concentrate on the latter with this

step of the algorithm. In our case the selection of meaningful

primitives is complicated, because demonstrations are not

normalized. I.e. different demonstrations can be translated or

rotated and primitives can appear with different parametriza-

tions. Therefore, we cannot employ procedures proposed for

normalized data (e.g. [14], [15]). Another design criterion for

our primitive generation is, that we would like to decompose

any given trajectory into a sequence of two-dimensional

sections which can be embedded into computational fluid

dynamics. Using only two dimensions will accelerate this

process significantly. It is easy to proof that two-dimensional

decomposition is always possible, since every trajectory can

be sampled into single lines, which actually have just one

dimension. But then, we do not want the primitives to be-

come too simple, i.e. they should at least represent recurring

actions with distinct pre and post conditions. In order to reach

this, we can look at human manipulation tasks, again. An

important observation is, that even the complexest behaviors

are actually realized in only two dimensions, regarding the

movements of distal extremities (fingers, hands, feet): e.g.

playing piano or guitar only takes place on a two-dimensional

key- / fingerboard; walking or even stair-climbing can be

normalized to two dimensions. These observations are also

supported by recent research on learning sensorimotor be-

haviors [16]. Therefore, we can represent any 3D trajectory

A in the following way:

A = X0 ∪T1P1 ∪X1 ∪T2P2 ∪ . . .∪TnPn ∪Xn =
n
⋃

i=1

TiPi

(3)

Pi ∩ Pj = ∅ ∀i, j ∈ n; i 6= j (4)

where Pi is a two-dimensional primitive which is placed

at its correct position by a rigid transform Ti. Between

the primitives, chunk sections Xj might occur which have

no relevance for the task and can be replaced by a direct

connection of consecutive primitives. As a starting point for

our implementation of task decomposition we can use the

features of the previous section: the breakpoints of the spline

representation. These points are also important hints for

selecting significant primitives. They will be seed points for

the actual algorithm, which is based on 3D plane fitting. We

have implemented a divide-and-conquer algorithm working

on the temporally ordered point set of the trajectory which is

going to be decomposed. The central part of this approach is

a function which calculates an optimal plane for a given set

of 3D points (optimality regarding the sum of perpendicular

distances from the plane to all points in the set). This is done

by means of PCA, where the first two principal components

constitute the desired plane. Thereupon, the algorithm selects

the largest subset of points whose planar error is below a

certain threshold. Those point sets are collected in a list

of primitives which serves as input for the next step. The

algorithm is called recursively for the remaining part of the

trajectory.

3) Matching and Grouping: The whole learning proce-

dure described in this paper will produce an applicable

solution even after one single demonstration (“one-shot

learning”). This is a significant improvement over learning

based on neural networks. After one demonstration, neu-

ral networks can only provide an identical replay of the

demonstration, while this approach has an intrinsic adaptive

behavior, based on dynamical systems from fluid dynamics

(see below). Anyhow, if there are subsequent demonstrations
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of the same primitive, we want our system to consider them

in order to improve generalization. Therefore, we need a

methodology to identify similar primitives and merge their

peculiarities. This step is alleviated by the fact, that primi-

tives already have a 2D presentation. Nonetheless, different

instantiations of the same primitive may differ in rotation,

translation and scaling. Therefore, each newly acquired prim-

itive is matched against a list of already existing primitives, in

order to check if it is just another instantiation. This matching

is done by singular value decomposition of the corresponding

covariance matrix:

C =
1

n

n
∑

j=1

[ −→
Pij − Pi

] [ −−→
Qkj − Qk

]T svd
−→ C = USV T

(5)

where Pi =
1

n

n
∑

j=1

−→
Pij ; Qk =

1

n

n
∑

j=1

−−→
Qkj (6)

−→
Pij is the j-th point of the newly found primitive Pi, while

Qk is the k-th primitive in a list of m primitives which

have already been identified (1 ≤ k ≤ m). Note that both

primitives are stored as splines and therefore both can be

resampled with an equal number of n points. The diagonal

of S contains the eigenvalues s1, s2 of matrix CT C. U and V

contain the eigenvectors of CCT and CT C, respectively. By

means of these results, we can determine the scaling factor

f , the 2D rotation matrix R and the translation vector
−→
t

which can be used to map Pi onto Qk:

f =
s1 + s2

σP

where σP =
1

n

n
∑

j=1

(

−→
Pij − Pi

)

(7)

R = f · UV (8)

−→
t = Q − f · RP (9)

Now, primitive Pi can be mapped onto primitive Qk by

P ∗

ij = fR · Pij + t ∀j ∈ 1 . . . n. This procedure is repeated

for all primitives Qk which are already in the list (k ∈
1 . . .m) and for each k, the distance of P ∗

i from Qk is

determined (sum of squared errors of the congruent points).

If the error exceeds a given threshold, P ∗

i is appended to

the list as new primitive Qm+1. Otherwise P ∗

i is merged

with a primitive Qopt which yields the shortest distance.

Merging is done by linear interpolation between congruent

points of P ∗

i and Qopt. Since we need a spline representation

of each primitive, it is sufficient to take only breakpoints into

account. A breakpoint of P ∗

i is only included, if a majority

of demonstrations of this primitive shows this breakpoint,

too. In order to decide this issue, the original trajectory of

each primitive is stored in a list associated with this primitive

group. Since these trajectories have been recorded at discrete

time steps, we can use them later to determine the speed at

certain positions of the primitive.

4) Generalization and Instantiation: So far, we have

spline representations of the primitives. This would be suf-

ficient in order to reassemble a certain skill from equation

3, if all Ti are known. Otherwise, an application of splines

has some significant shortcomings. The most important is,

that any shift of the breakpoints, as it might become nec-

essary due to adaptation to a new environment, can lead

to unfavorable trajectories [17]. In addition, it is difficult

to store temporal features like speed with splines, since the

dependency between interpolation parameter and arc length

is nonlinear. Therefore, we propose the usage of dynamical

systems known from fluid dynamics in order to instantiate

primitives. So far there has been only little research on

dynamical systems for storage and generation of motion

primitives. Ijspeert et. al [18] have employed dynamical

systems as generators for motion patterns in order to mimic

locomotion of animals. A related approach was proposed by

Okada et. al. [19]. They have used attractors of dynamical

systems to generate and stabilize walking movements of

a humanoid robot. Both approaches operate on the joint-

level of motion generation, whereas the proposed method

generates trajectories in Cartesian space. Recently, there

has also been work on analyzing trajectories by means of

dynamical systems. Dixon et al. [20] have proposed a method

for segmenting primitives based on linear dynamical systems.

Although this can be used to segment and store motion

patterns, the expressiveness of the derived primitives is

limited and therefore they cannot be used for generalization

(which was not the intention of their work). Each of the three

mentioned projects uses time-invariant dynamical systems,

which lead to uncomplex and stable solutions for movements

in joint space. Contrarily, our goal is to provide trajectory

generation in Cartesian space for rather complex motions

(e.g. self-crossing trajectories). Therefore, we need a time-

dependent system which can reproduce complex trajectories.

Such systems are applied in fluid dynamics, where they

are used to simulate physical circumstances, e.g. in a wind

tunnel. Streaklines occurring in this environments are nothing

else than trajectories of particles in a fluid. So far, there has

been no attempt to utilize this form of trajectory generation

for robotic applications. For our approach we have chosen a

dynamical system based on Navier Stokes Equations. These

equations describe the behavior of a viscous, incompressible

fluid exposed to friction and external forces. The derivation

of the equations can be found in various books on fluid

dynamics (e.g. [21]). For our experiments we have chosen a

simplified form of the equations with constant density, since

we restrict our approach to incompressible flows:

∂−→u

∂t
+ (−→u · ∇)−→u + ∇p = ν∆−→u +

−→
f (10)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (11)

∇ is the Nabla operator and ∆ is the Laplace operator: ∆ =
∇·∇ = ∇2; −→u is the velocity of the fluid, ν its viscosity and
−→
f are external forces like gravity. As mentioned above, the

primitives we want to represent with this dynamical system

are already in 2D space. Therefore, equations 10 and 11 can

be concretized to (cf. [22]):

∂u

∂t
+

∂p

∂x
= ν

(

∂2u

∂x2
+

∂2u

∂y2

)

−
∂u2

∂x
−

∂ (uv)

∂y
+ fx (12)
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∂v

∂t
+

∂p

∂y
= ν

(

∂2v

∂x2
+

∂2v

∂y2

)

−
∂ (uv)

∂x
−

∂v2

∂y
+ fy (13)

∂u

∂x
+

∂v

∂y
= 0 (14)

where u and v are velocities in x and y direction, re-

spectively. We evaluate the equations by means of finite

differences within a rectangular area which is subdivided into

a grid of equally sized cells. Within these cells the partial

derivatives can be replaced by local difference quotients -

e.g.
[

∂u
∂x

]

ij
7−→

uij−ui−1j

d
, where d is the length of each

cell. A detailed description of this methodology can be found

in [22]. In addition to discretization, we have to fix the

velocities at the boudaries of the simulated area (e.g. u00 and

v00 in fig. 6). We will set them to zero, since we want the

fluid to adhere to boundaries or objects within the stream.

Therefore, velocities of particles near a boundary will be

relatively small, but due to the nature of this equations, no

particle will ever reach or even penetrate a boundary. I.e. a

kind of collision avoidance is included in our system from

scratch (of course, this only affects the position of the end-

effector which will be generated from particle simulation

- other parts of the robot can collide, yet). By means of

d

du00 u10

v00

v01

uij ui+1j

vij

vij+1

Pn

obstacle

Fig. 6. Fluid simulation: The area of interest is discretized into equally
sized cells. For clarity reasons this picture shows only a limited number of
cells which would be too coarse for practical use - the actual implementation
usually works on a grid of at least 50 × 50 cells. Evaluation of velocities
is not centered within a cell, but distributed on a staggered grid in order to
assure numeric stability.

these boundary conditions we can define obstacles within

the area of simulation in order to adapt the trajectory to new

environments. Now we can reproduce a demonstrated skill

by reassembling the corresponding primitives with equation

3. Therefore, each primitive will be instantiated by a 2D fluid

simulation. This can be achieved by sampling points from the

spline representation of the corresponding primitive. In this

case, equidistant sampling with length d is applied. There is

no direct way to guarantee an arc length of d for spline S(x),
since ∆x cannot be determined from S(x+∆x) = S(x)+d.

So far, we have solved this problem by a binary search:

Let ∆x be an arbitrary initial value and S(x) maps to a

coordinate within the cell with velocities uij and vij . Then

we test for S(x + ∆x) lying within any adjacent cell. If

it still lies in cell ij we try S(x + 2∆x), if it lies even

outside an adjacent cell we try S(x + 0.5∆x) and so on

(note that ∆x refers to a distance and has nothing to do

with the Laplace operator in equation 10). Once we have

sampled an applicable point Sx from the trajectory, we

can determine the speed at this point with the help of the

original trajectories which have been stored together with

this primitive. Afterwards, we interpolate the neighboring

values of uij , vij , ui+1j and vij+1 (see fig. 6). I.e. we

calculate a preset for these velocities at timestep tn. All other

velocities within the grid are derived from fluid simulation.

We now can throw a particle into the stream and it will be

attracted by the trajectory of the underlying primitive. Since

we know the position and orientation of the simulation grid

from equation 3, we can generate suitable 3D points for

a skill. Since the simulation is only refreshed at discrete

points in time (t0 < tn < tmax), we have to interpolate

again to get positions at arbitrary points in time. Fortunately,

this works well even for tiny time steps. Therefore, we can

sample positions at the frequency of the controller of the

robot (approx. 150 Hz). I.e. we can directly control our robots

with positions from fluid simulation.

III. EXPERIMENTAL RESULTS

For generating demonstration examples we have used two

grippers, but no assistant arm (as opposed to the procedure

depicted in fig. 3). This was not necessary, because we have

used an artificial heart, where the thread will not be occluded

by blood. Therefore, it can be grasped again without the help

of an assistant arm that guarantees retainment of the thread’s

position. In order to get utilizable trajectories, their starting

points (positions of the grippers) have to lie within a limited

working space (10×10×10 cm). This is not due to a weak-

ness of the methodology described above, but the absolute

calibration of the robots is limited. Anyway, the size of this

working space is sufficient for endoscopic heart surgery. For

our experiments we have recorded several performances of

an endoscopic knot (see above). The trajectories have been

sampled at the frequency of our robots (approx. 150 Hz).

In order to avoid accumulation of points during stops of

the user, we only have recorded points which are at least

1mm away from their predecessor (which is approximately

the accuracy of our system). To get first results and a proof

of concept, we have processed the data offline.

First of all, we have applied the spline based smoothing as

it was described in section II-C.1. This part of the algorithm

has caused no problems and we were able to derive a

spline representations of the data (depicted above in fig. 5).

The next step was the decomposition of the trajectory into

meaningful primitives (see section II-C.2). The trajectory was

sampled into smaller parts, but some of them have been too

small to be regarded as meaningful primitives. In addition the

problem occurred, that some points have been missed, where

an abscission of a primitive would have been expedient. All

in all, about 30 percent of the primitives have needed manual

interference, i.e. we have moved or removed some cutting

points within the trajectory. After repeated application of the
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above steps to all demonstrations, we have acquired groups

of similar primitives derived from different demonstrations.

The normalization of the primitives with the SVD-based

method described in section II-C.3 has raised no further

problems. All primitives of the same group have been merged

into one presentation this way. Anyway, it should not be

concealed that this positive outcome is partially due to the

manual decomposition of primitives which certainly relieves

this step.

At this point, we had a single representation for each

group of primitives. As mentioned in section II-C.3, this

representation comprises the 2D spline and a list of all

original trajectories for each primitive pruned from certain

demonstrations. We now define a raster (as depicted in fig.

6) sized to fit the 2D spline representation of the primitive

group. This raster is divided into 50×50 cells. Afterwards the

fluid simulation is started by calculating the starting point of

the spline representation. Given this coordinate, we seek the

closest points of the trajectories in the list mentioned above.

Since we know the sampling rate of the trajectories, we can

determine the mean velocity at this points as follows:

−→v t,i =
−→p t+1,i −

−→p t,i

dt
⇒ −→v t =

1

n

n
∑

i=1

−→v t,i (15)

where i is the number of the demonstration from which the

trajectory was taken; −→p t,i is the corresponding point at time

t and dt is the time step for sampling the trajectory. While

all other velocities in the raster are set to zero, we initialize

the values of u and v (see fig. 6) of the cell closest to −→p t

with the help of −→v t:

uij =

(−→p te
T
1

d
− i

)

−→v te
T
1 , ui+1j =

(

i + 1 −
−→p te

T
1

d

)

−→v te
T
1

(16)

note that i and j are coordinates of the raster this time. The

values for vij and vij+1 can be acquired accordingly. Given

this initial situation, we now can run the fluid simulation

until it reaches a stable distribution of u and v, i.e. the

change in velocities falls below a certain threshold. We

keep this distribution as initialization for the next time

step t + 1 and preset the next velocity vt+1 as described

above. Due to the initialization with the results from t,

the simulation converges much quicker for all subsequent

time steps. Figure 7 shows the simulation at time step 100
where the velocity was set at the position marked with

a circle. In order to instantiate the primitive we need a

fixture point in the environment where it should be placed.

For the primitive depicted in fig. 7 we have taken the

point marked with a quad, which is the position of the

gripper to be winded about. Once the primitive is fixed and

instantiated, it can adapt itself to different initial situations

by means of the simulated flow (marked with + in fig. 7).

Therefore, the primitive can be reused in different tasks with

different geometrical restrictions. Another important feature

for learning tasks is the adaption to new environments.

In fig. 8 one can see the adaption of the same primitive

to an environment with an obstacle. After deforming the

Fig. 7. Flow visualization: Fluid simulation of the winding primitive. The
vector field is a snapshot at the time step, where the particle (i.e. the gripper)
is at the position marked with a circle. Note that the depicted trajectories
are overlays just for illustration and the vector field looks different for
all other time steps. Therefore, parts of the depicted trajectories might be
contradictory to the vector field which is only valid for this particular time
step.

trajectory spline, the obstacle is inserted into the simulated

environment and the fluid simulation is continued until it

reaches a stable distribution again.

IV. CONCLUSION AND DISCUSSION

We have presented a novel approach for learning by

demonstration based on fluid simulation. This method can

be used to derive a very general form of motion primitives.

We have presented techniques for adapting these primitives

to different initial situations and to new environments with

previously unknown geometric features (e.g. obstacles). The

concept has been proven by experiments, although there

are still some issues to be resolved in future versions. One

particular problem is the segmentation of primitives. Since

approx. 30% of the breakpoints are set manually, this step

cannot be called autonomous, yet. We are currently working

on an improvement by means of inclusion of other modalities

like force measurement. Another issue is computation time,

in particular the time needed for generalization (e.g. approx.

16.5 min for the winding primitive). This is caused by the

fact that we have to run the fluid simulation for each time step

(i.e. each sampling point on the trajectory). After inserting

an obstacle we have to run the simulation again for each

point and it takes significantly more cycles to reach again a

stable distribution of velocities. One possible solution to this

issue, which we are currently working on, is parallelization

and computation on the GPU of a graphics card. Regarding

fluid simulation, we are planning to evaluate a 3D version.
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Fig. 8. Obstacles: The same primitive as depicted in fig. 7 adapted to
an obstacle. At each time step the obstacle is inserted into the raster and
simulation is continued under the new circumstances. Additionally, this leads
to a shift of the fixture point (marked with a quad) and therefore will also
have influence on other primitives (e.g. the movement of the second gripper).
Note that the shape of the obstacle is improved for illustration - the real
shape used for simulation is discretized with quads at cell level.
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