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ABSTRACT
We present pCMALib, a parallel software library that implements
the Evolution Strategy with Covariance Matrix Adaptation (CMA-
ES). The library is written in Fortran 90/95 and uses the Message
Passing Interface (MPI) for efficient parallelization on shared and
distributed memory machines. It allows single CMA-ES optimiza-
tion runs, embarrassingly parallel CMA-ES runs, and coupled par-
allel CMA-ES runs using a cooperative island model. As one in-
stance of an island model CMA-ES, the recently presented Parti-
cle Swarm CMA-ES (PS-CMA-ES) is included using collabora-
tive concepts from Swarm Intelligence for the migration model.
Special attention has been given to an efficient design of the MPI
communication protocol, a modular software architecture, and a
user-friendly programming interface. The library includes a Matlab
interface and is supplemented with an efficient Fortran implemen-
tation of the official CEC 2005 set of 25 real-valued benchmark
functions. This is the first freely available Fortran implementation
of this standard benchmark test suite. We present test runs and par-
allel scaling benchmarks on Linux clusters and multi-core desktop
computers, showing good parallel efficiencies and superior compu-
tational performance compared to the reference implementation.

Categories and Subject Descriptors
D.1.3 [Software]: Programming techniques—Parallel program-
ming; D.2.2 [Software Engineering]: Design Tools and Techniques—
Software libraries
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1. INTRODUCTION
Over the past two decades, the parallelization of Evolutionary

Algorithms (EA) has received growing attention in computer sci-
ence and engineering. EA’s are well suited for parallel implementa-
tion since they evolve a population of candidate solutions. The two
main parallelization paradigms for EA’s are the coarsely grained
(a)synchronous cooperative island model and the master/slave mod-
el [8]. While libraries such as PGAPack [22] and libSRES [20] fol-
low the master/slave approach, examples for libraries that include
both approaches are the ParadisEO framework [8] and MALLBA
[3]. The pCMALib presented here uses a synchronous cooperative
island model. We refer to Ref. [2] for a summary of state-of-the-art
techniques in the field of parallel metaheuristics.

Among the various EA, Evolution Strategies (ES) [27] have been
a successful optimization paradigm for non-convex, real-valued func-
tions. A particularly prominent example is the Evolution Strategy
with Covariance Matrix Adaptation (CMA-ES) [17, 15]. In the
CEC 2005 competition on real-parameter optimization [32], CMA-
ES with a wide initial sample distribution and iteratively increas-
ing population size (IPOP-CMA-ES) [5] achieved the best perfor-
mance of all tested algorithms [13]. CMA-ES has been successfully
applied to numerous problems in science and engineering, includ-
ing computational fluid dynamics [30], automotive electronics [9],
biology [25], hydrology [7], and optics. On multi-funnel functions,
where local optima cannot be interpreted as perturbations to an un-
derlying convex (unimodal) topology, the performance of CMA-ES
can be improved [15, 23], e.g. by considering several concurrent
runs that are allowed to exchange information. This is realized in
the Particle Swarm CMA-ES (PS-CMA-ES) [26].



So far, several sequential implementations of CMA-ES are avail-
able in Matlab, Octave, C, C++, Java, and Python (see Ref. [12] for
a complete list). Moreover, a multi-objective variant of CMA-ES
(MO-CMA-ES) is included in the Shark C++ library [18]. CMA-
ES has, however, a comparatively high computational cost, since
an Eigen-decomposition has to be computed in each iteration. This
has motivated the development of several approximate CMA vari-
ants with reduced computational cost, such as the Elitist CMA [19],
L-CMA [21], and sep-CMA [28]. Since the evaluations of the cost
function for all candidate solutions within an individual CMA-ES
population are independent, they can also be distributed over mul-
tiple processors and evaluated in an embarrassingly parallel way.
This is, e.g., implemented in pCMA [16]. We believe that the per-
formance can be further increased by parallelizing over entire CMA
instances rather than single function evaluations. Such parallel is-
land models for CMA-ES have been successfully applied to the in-
ference of gene regulatory networks [31], to benchmark problems
in global optimization [26], and in the design of a fault-tolerant op-
timization tool [24]. To the best of our knowledge, however, no
portable library implementation is currently freely available.

We present a portable, efficient, and scalable parallel library for
CMA-ES, parallel CMA-ES, and PS-CMA-ES using a synchronous
parallel island model. The library is implemented in Fortran 90/95
and uses the Linear Algebra Package (LAPACK), the Basic Linear
Algebra Subprograms (BLAS) [4], and the Message Passing Inter-
face (MPI). This ensures computational efficiency and portability.
When When using a parallel island model CMA-ES, the library is
able to dynamically exclude terminated CMA-ES instances from
communication, which reduces the communication overhead and
provides the opportunity of implementing alternative mechanisms
of fault tolerance. Besides considerations of computational effi-
ciency, we chose the Fortran language because it is widely used in
many fields of application, including solid mechanics, fluid dynam-
ics, hydrology, and, above all, computational chemistry, where pC-
MALib might serve as a valuable tool for the exploration of high-
dimensional potential energy surfaces of clusters and biomolecules
[34]. Our library provides an easy-to-use programming interface,
good parallel scaling on multi-core and multi-processor machines,
as well as Matlab bindings.

This paper is organized as follows. The next section describes
the implemented (PS-)CMA-ES algorithms and the test function
suite. In Sec. 3, the general software design of the library is out-
lined and several implementation details explained. In Sec. 4, we
assess the performance of the library on multi-core and cluster
computers, and Sec. 5 discusses the results and concludes this work.
We focus on benchmarks of computational efficiency and parallel
scalability. The success performance of (PS-)CMA-ES on opti-
mization benchmarks is published elsewhere [5, 26].

2. IMPLEMENTED ALGORITHMS
Before describing the pCMALib library, we review the imple-

mented algorithms and describe the Fortran 90/95 implementation
of the CEC 2005 benchmark suite.

2.1 The CMA Evolution Strategy
We consider the CMA Evolution Strategy with weighted inter-

mediate recombination, step size adaptation, and a combination of
rank-μ update and rank-one update [16, 15, 14]. At each iteration
of the algorithm, the members of the new population are sampled
from a multivariate normal distributionN with mean m ∈ R

n and
covariance C ∈ R

n×n. The sampling radius is controlled by the
overall standard deviation (step size) σ. Let x

(g)
k the kth individ-

ual at generation g. The new individuals at generation g + 1 are

sampled as:

x
(g+1)
k ∼m(g) + σ(g)N

“
0,C(g)

”
k = 1, . . . , λ . (1)

The λ sampled points are ranked in order of ascending fitness, and
the μ best are selected. The mean of the sampling distribution given
in Eq. 1 is updated using weighted intermediate recombination of
the selected points:

m(g+1) =

μX
i=1

wix
(g+1)
i:λ , (2)

with
μX

i=1

wi = 1, w1 ≥ w2 ≥ . . . ≥ wμ > 0 , (3)

where the wi are positive weights, and x
(g+1)
i:λ denotes the ith ranked

individual of the λ sampling points x
(g+1)
k . While different weight-

ing schemes are available for CMA-ES, the super-linear weight de-
crease wi = log(λ−1

2
+1)−log(i) is the standard setting [17] . The

covariance matrix is then adapted as described in various publica-
tions and reports [17, 15, 23, 14]. The computational complexity
of the full covariance matrix update is O(n3) due to a necessary
Eigen-decomposition in each generation.

The behavior of CMA-ES is mainly controlled by two parame-
ters: the initial step size σ and the population size λ. In standard
CMA-ES, the population size is chosen as λ = 4 + �3 ln n� [17].

Two important variants of CMA-ES, both available in pCMA-
Lib, use different standard settings for optimization in a bounded
subset [A, B]n: The local restart CMA-ES (LR-CMA-ES) [6] re-
starts a converged CMA-ES from a random position within the sub-
set [A, B]n with a purely local initial step size of 10−2(B − A)/2.
The CMA-ES with iteratively increasing population size (IPOP-
CMA-ES) [5] uses a large initial step size of (B − A)/2, and the
population size λ is doubled in each sequential restart until the
maximum number of function evaluations is reached.

2.2 Particle Swarm CMA-ES
The Particle Swarm CMA-ES [26] was introduced in order to

improve the performance of CMA-ES on multi-funnel fitness land-
scapes. Inspired by ideas from Particle Swarm Optimization (PSO),
the algorithm evolves multiple CMA-ES instances in parallel. Each
instance is considered a swarm particle, which exchanges promis-
ing solutions with all other swarm particles (CMA-ES instances)
every Ic generations. Both the swarm size S (total number of paral-
lel CMA-ES instances) and the communication interval Ic are new
strategy parameters. The global swarm information is used both
in the covariance matrix adaptation of each CMA-ES and in the
placement of the population means.

The covariance matrix of each CMA-ES instance is adapted such
that it is more likely to sample good candidates, based on the cur-
rent global best position pg,best ∈ R

n in the swarm. This is achieved
by mixing the standard CMA covariance matrix with a PSO covari-
ance matrix that is influenced by global information:

C(g+1) = cp · C(g+1)
CMA + (1− cp) · C(g+1)

PSO , (4)

where the mixing weight cp ∈ [0, 1] is a new strategy parameter
and C(g+1)

CMA follows the original adaptation rule [14]. C(g+1)
PSO is a

rotated version of C(g)
CMA, such that the principal eigenvector bmain

of C(g)
CMA is aligned with the vector pg = pg,best −m(g) that points

from the current mean m(g) toward the global best position pg,best.



C(g)
CMA can be decomposed as C(g)

CMA = BD2BT , such that the ro-
tated covariance matrix can be constructed by rotating the eigenvec-
tors (columns of B), yielding the orthogonal matrix B(g)

rot = RB ∈
R

n×n of the rotated eigenvectors. C(g+1)
PSO is then given by:

C(g+1)
PSO = B(g)

rot ·
`
D(g)´2 · `B(g)

rot
´T

. (5)

The rotation matrix R ∈ R
n×n is uniquely and efficiently com-

puted using Givens Rotations [29, 10, 26]. For each swarm mem-
ber, the rotation algorithm requires 2n (n − 1) + 1 matrix mul-
tiplications at each PSO update in order to construct R. Hence,
the computational cost increases quadratically with the number of
dimensions and linearly with the swarm size S.

PS-CMA-ES also introduces a mechanism that allows individual
CMA-ES instances to escape local minima. This is achieved by bi-
asing the mean value in direction of the global best solution. After
the recombination step of each CMA-ES generation, the updated
mean value for the next generation g + 1 is biased as:

m(g+1) ←m(g+1) + bias . (6)

Based on the step size σ, PS-CMA-ES distinguishes 3 exploration
scenarios for individual CMA-ES instances and applies different
biasing rules. We refer to Ref. [26] for a detailed description of
these rules and the standard settings of all PS-CMA-ES-specific
strategy parameters.

Note that PS-CMA-ES can be considered a generalization of
CMA-ES. When no communication occurs between CMA-ES in-
stances, PS-CMA-ES is equivalent to S parallel standard CMA-ES
runs. In the limit case S = 1, PS-CMA-ES is equivalent to a single
standard CMA-ES. Although the design of PS-CMA-ES is based
on ideas from PSO, the algorithm is an instance of a synchronous
parallel island model in which the PSO updates amount to migra-
tion events between sub-populations (CMA-ES instances). In con-
trast to the more common ring or torus migration (communication)
topologies, PS-CMA-ES uses a complete net topology.

2.3 Benchmark function test suite
Evolutionary optimization is almost always concerned with high-

dimensional, non-convex, highly multimodal, or noisy objective
functions, where other optimization paradigms such as gradient-
based methods, linear programming, or quadratic programming are
not applicable. Since rigorously proven run-time bounds for evo-
lutionary search methods are often not available on these types of
problems, carefully designed computer experiments have to be per-
formed in order to benchmark the effectiveness and efficiency of a
new method. In order for different methods to be comparable to one
another, they should all be benchmarked on a common standard set
of test problems. One key attempt to provide such a standard for
performance evaluation and analysis of search heuristics is the CEC
2005 test suite [32]. The test suite includes a set of 25 test functions
from a variety of classes such as uni-/multimodal, (non-)separable,
noisy, (a-)symmetric, multi-funnel, and scalable. Over the past
years, this test suite has been extensively used and analyzed by
various researchers. Along with the test functions, the CEC 2005
suite specifies a detailed protocol how to evaluate a given search
heuristic: the problem dimensions range from n = 10 . . . 50, the
number of allowed function evaluations is restricted, measures for
success performance are defined, and examples of how to present
the results in tables and figures are provided. Moreover, the test
suite defines measures to assess the computational cost of a search
heuristic. We refer to the original publication for the full descrip-
tion of the test suite [32]. So far, the CEC 2005 test suite has been
made available in Matlab, C, and Java. As part of pCMALib, we

introduce a stand-alone Fortran 90/95 module of the test suite. This
module has been thoroughly tested and is in exact agreement with
all previous implementations. The benchmark suite is an indispens-
able tool for testing new variants of (parallel island) CMA-ES.

3. THE FORTRAN CMA-ES LIBRARY
In this section we describe the software architecture and the MPI

communication protocol used in pCMALib.

3.1 Sequential CMA-ES in Fortran
Due to the Eigen-decomposition of the covariance matrix, CMA-

ES is a computationally expensive optimization heuristic, which
benefits from an efficient implementation. Our library is imple-
mented according to the Fortran 90/95 standard [1]. The code has
been designed to be structured and easy to read. Clearly defined
interfaces are used in order to facilitate the addition of new mod-
ules such as SI-operations or local optimizers. Our Fortran imple-
mentation of the standard CMA-ES follows N. Hansen’s Matlab
implementation (version 2.54) [12]. We use the same naming con-
ventions, strategy parameter data structures, and program flow. A
user who is familiar with the Matlab code can, thus, easily use the
present implementation whenever computational speed is a con-
cern.

We have verified correctness of our sequential CMA-ES imple-
mentation by direct comparison to the original Matlab routine. In
a first test, we used an identical sequence of pseudo-random num-
bers to generate samples from a multivariate Gaussian in both the
Matlab and the Fortran implementations, and we compared the op-
timization paths (starting from the same initial position) on the
sphere function in various dimensions. The paths from the two
implementations were identical within machine precision. A sec-
ond test consisted of an iterated optimization of functions F1 and
F9 of the CEC 2005 test suite using the protocol prescribed. Both
implementations showed the same success statistics within the sta-
tistical error. A detailed analysis of the computational costs is given
in Sec. 4.

3.2 Parallel (PS-)CMA-ES with MPI
We provide parallel Fortran implementations of both the stan-

dard CMA-ES and the PS-CMA-ES. Both use an MIMD control
structure, implemented using an SPMD programming paradigm,
and a message passing communication model for best portability
and efficiency. The architecture used in the present work paral-
lelizes over entire CMA-ES instances, rather than over individual
function evaluations, by using a (cooperative) parallel island model.
Each CMA-ES instance runs in a separate process with separate
memory address space. The processes are distributed over multiple
processors using MPI [33]. The hardware-independence of MPI
ensures portability of the library to distributed, shared, and hybrid
memory machines [11] as well as loosely-coupled compute grids.
On shared-memory machines, most MPI implementations substi-
tute network communication by memory copy operations.

The rationale behind the chosen parallelization scheme is twofold.
First, the application of evolutionary optimizers to any specific prob-
lem is always repeated multiple times because convergence to the
global optimum is not guaranteed. A parallelization over complete
CMA-ES instances simplifies the distribution of multiple optimiza-
tion runs on computer grids and clusters. Second, and more im-
portantly, it enables individual CMA-ES instances to communicate
with each other and to migrate information about their current sta-
tus. This can be used to improve the performance of CMA-ES
runs while they are running. PS-CMA-ES as outlined in Sec. 2.2
is an example of such an extension. There, individual CMA-ES in-



stances share their knowledge about the current GLOBAL_BEST
solution at fixed generation intervals. This is implemented as ex-
plained in the next subsection. Since the GLOBAL_BEST commu-
nication is followed by an n−dimensional matrix rotation, the PS-
CMA-ES algorithm is computationally demanding when multiple
CMA-ES instances run on the same processor core and the dimen-
sion of the problem exceeds n ≈ 100. A parallel implementation
can substantially reduce the cost of PS-CMA-ES and leverage the
computational resources offered by modern multi-core platforms.
Due to the modular design of pCMALib, other parallel island mod-
els can be easily integrated in the software by adapting the subrou-
tine responsible for migration.

3.2.1 Communication scheme in PS-CMA-ES
Each MPI process is identified by a unique number, called its

rank. In order for each CMA-ES instance to inform the other
swarm members (sub-populations) about its current best candidate
solution, we use the communication scheme illustrated in Fig. 1.
Each MPI process uses the 1-dimensional array F_BEST to store
the current best fitness value and the process rank (Fig. 1(a), el-
lipses). The MPI collective communication MPI_ALLREDUCE is
then used to find the global best function value within all F_BEST
arrays. Since the array also contains the process rank, the corre-
sponding CMA-ES instance is known. In a second step, this pro-
cess broadcasts the position of the global best solution to the other
swarm members (Fig. 1(b)). This broadcast is, however, only per-
formed if the current global best value has improved.

CMA-ES_1

Rank: 0
fbest: 100.369
p0,best

CMA-ES_2

Rank: 1
fbest : 78.173
p1,best

CMA-ES_3

Rank: 2
fbest: 102.705
p2,best

MPI_ALLREDUCE

Global Best

Rank: 1
fbest : 78.173

(a) MPI Allreduce

CMA-ES_1 CMA-ES_3

CMA-ES_2

Rank: 1
fbest: 78.173
p1,best = pg,best

pg,best pg,best

(b) MPI Broadcast

Figure 1: MPI Communication of the global best solution

3.2.2 Excluding processes from communication
Since each process is a complete CMA-ES run, they can inde-

pendently converge or meet other stopping criteria. In order to re-
duce the communication overhead in such cases, terminated CMA-
ES instances are dynamically excluded from subsequent communi-
cations. This is based on the MPI concepts of process groups and
communicators:

DEFINITION 3.1. A group is an ordered set of processes. Each
process in a group is associated with a unique integer rank. Rank
values start at zero and go to N-1, where N is the number of pro-
cesses in the group.

DEFINITION 3.2. A communicator consists of a group of pro-
cesses and a globally unique ID (context). Processes within the
same communicator can engage in collective communication oper-
ations. All MPI operations must specify a communicator.

At the end of each CMA-ES generation, we check whether one
or more processes have met a stopping criterion and are about to
terminate. These processes are then excluded from execution as
follows (Fig. 2):

1. The ranks of all terminating processes are determined.

2. MPI_COMM_GROUP and MPI_GROUP_EXCL are used to
build a new process group that excludes these ranks.

3. A new communicator is created that contains only the group
of running processes (MPI_COMM_CREATE).

4. The new rank of each process in the new communicator is
determined.

5. All processes that are not in the new communicator are ter-
minated.

Old Communicator

0 1 2 3

4 5 6 7

Group 1

1 2 4

5 7

New Communicator

0 1 2

3 4

Continue

Group 2

0 6 3

Terminate

Figure 2: Dynamically excluding processes from communica-
tion

3.3 Technical details
The current implementation of pCMALib has been successfully

tested on Windows XP SP2 (Intel Fortran 10.1/OpenMPI 1.3), Ma-
cOS X 10.4 (Intel Fortran 9.1 and 10.1/OpenMPI 1.2.6) and 10.5
(gfortran 4.4.0/OpenMPI 1.3), Gentoo Linux 2.6.25 (Intel Fortran
10.1/OpenMPI 1.2.8), Ubuntu Linux 8.10 (gfortran 4.3.2/OpenMPI
1.3) and OpenSolaris 2008.11 (Sun Ceres Fortran 95 8.3/OpenMPI



1.3) on both 32 bit and 64 bit architectures. Since all matrix opera-
tions in CMA-ES and PS-CMA-ES are local to a single processor
core, the present library uses LAPACK and BLAS [4] for efficiently
computing them. These libraries, along with an MPI library, must
be available on the system in order to compile and use pCMALib.

pCMALib also interfaces with Matlab in two ways: First, it is
able to store all output data in a structured binary Matlab file for-
mat (.mat), which allows analyzing and post-processing the data
in Matlab. Second, it can evaluate and optimize fitness functions
implemented in Matlab. This is done by opening and holding an
inter-process connection to a Matlab engine. A function template
is provided, which can be easily adapted to execute any Matlab
command.

4. BENCHMARKS
We benchmark the computational performance and parallel ef-

ficiency of pCMALib on multi-core and distributed memory com-
puters using computationally cheap explicit test functions. Notice
that this provides a stringent assessment of the parallel scalability
of the optimization algorithms themselves as their communication
overhead is not masked by expensive function evaluations.

4.1 Multi-core shared memory
We first test the on-chip performance of the library on an Apple

MacPRO with 2 dual-core 3 GHz Intel Xeon processors, a 4 MB
L2-cache per processor, and 8× 1 GB of RAM. The library was
compiled with the Intel Fortran compiler version 9.1 and optimiza-
tion level O3, and linked against OpenMPI version 1.2.6.

We follow the CEC 2005 test suite protocol to assess the compu-
tational efficiency of our implementation. Three time measures are
defined in the protocol: T0 is the CPU time for 1 000 000 standard
mathematical operations, T1 is the time needed to evaluate func-
tion F3 – a shifted, rotated, highly conditioned elliptic function –
200 000 times in dimensions n = 10, 30, 50, and T̂2 is the mean
time over five executions of the complete algorithm with 200 000
evaluations of function F3 each. The computational cost of the
algorithm is quantified by the ratio (T̂2 − T1)/T0.

We benchmark our implementations of the standard CMA-ES
(on a single core), the parallel CMA-ES, and the parallel PS-CMA-
ES. The standard CMA-ES is run with the standard strategy param-
eter settings [14] on a single core. The parallel CMA-ES bench-
mark uses 4 independent CMA-ES instances on the available 4
cores of the computer, without any communication between the in-
stances. PS-CMA-ES is run with a swarm size of S = 4 on the
4 cores of the computer and the communication interval is set to
the standard value of Ic = 200 [26]. The system configuration and
CPU time measurements are summarized in Tab. 1, following the
CEC 2005 test suite requirements [32]. For n = 10 and 30 we ob-
serve that the T̂2 of the three methods are comparable. For n = 50,
the computational cost of PS-CMA-ES dominates due to the com-
plexity of the n−dimensional matrix rotations. For comparison,
we cite measurements of T̂2 for LR-CMA-ES and IPOP-CMA-ES
determined by Auger and Hansen [5, 6] using MATLAB 7.0.1 on
Red Hat Linux 2.4 running on a 3 GHz Intel Pentium 4 processor
with 1 GB RAM. For n = 10, 30, 50, LR-CMA-ES took T̂2 = 51s,
45s, 68s, and IPOP-CMA-ES T̂2 = 17s, 24s, 56s, respectively.

4.2 Distributed memory
We assess the parallel efficiency of our implementations of CMA-

ES and PS-CMA-ES on a distributed-memory computer cluster on
the constrained random fitness landscape Frand(x) = Y , where x
is defined in the bounded subset [−100, 100]n ∈ R

n. For any
x, Y is drawn from the uniform distribution U(−100, 100). Each

System Mac OS X 10.4.11
CPU 2× Dual-Core Intel Xeon 3.00GHz
RAM 1GB
Language Fortran 90

CMA-ES T0 T1 T̂2 (T̂2 − T1)/T0
n = 10

9.53e-2

3.02e-1 2.71e+0 2.53e+1
n = 30 2.26e+0 1.13e+1 9.49e+1
n = 50 6.49e+0 3.04e+1 2.51e+2

Parallel CMA-ES
n = 10 3.02e-1 3.96e+0 3.84e+1
n = 30 2.26e+0 1.39e+1 1.22e+2
n = 50 6.49e+0 3.53e+1 3.02e+2

PS-CMA-ES
n = 10 3.02e-1 3.87e+0 3.75e+1
n = 30 2.26e+0 1.55e+1 1.39e+2
n = 50 6.49e+0 5.04e+1 4.61e+2

Table 1: System configuration and measured CPU times in sec-
onds for standard CMA-ES, parallel CMA-ES, and parallel PS-
CMA-ES. T0 and T1 characterize the computer platform and
are independent of the algorithm used.

algorithm evaluates the fitness function 500 000 times (correspond-
ing to drawing 500 000 uniformly distributed random numbers) on
Nproc = 1, . . . , 64 processor cores. The number of CMA-ES in-
stances – or the swarm size in PS-CMA-ES – is always chosen
equal to Nproc in order to avoid cache and memory congestion ef-
fects. Distributing a problem of fixed size onto an increasing num-
ber of processors measures the strong scaling of the algorithms,
where the workload per processor decreases and the communica-
tion overhead increases. The random landscape Frand ensures sev-
eral properties that are indispensable for an unbiased assessment
of the parallel scaling. First, the computational cost of evaluat-
ing the objective function is independent of the search dimension
and the specific optimization path. Second, the random landscape
guarantees that all CMA-ES instances experience the same search
space. We perform three benchmarks with varying values of the
strategy parameter Ic in order to disentangle the influence of the
covariance matrix Eigen-decomposition and the MPI communica-
tion in PS-CMA-ES. The first set-up considers the standard paral-
lel CMA-ES without swarm communication, i.e., Ic = ∞. The
second benchmark evaluates the performance of the standard PS-
CMA-ES with Ic = 200. Since Ic is in units of generations, and
increasing S (Nproc) also increases the number of function eval-
uations per generation, the number of MPI communications per-
formed in total during the fixed 500 000 function evaluations de-
creases. Therefore, the third set-up considers PS-CMA-ES with a
constant number of MPI communication steps, independent of the
swarm size S. This is achieved by setting Ic = 200/S. All three
benchmarks are conducted in n = 10, 30, 50, 100 dimensions, but
the figures for n = 50 are not shown since they are qualitatively
similar to n = 30. The Fortran library is compiled with the In-
tel Fortran compiler version 10.1 and optimization level O3, and
linked against OpenMPI version 1.2.8. The tests are performed
on a Gentoo 2.6.25 Linux cluster consisting of 12 compute nodes.
Each node contains 2 Intel Xeon 2.8 GHz quad-core processors (8
cores per node) with 2 GB of RAM per core. The nodes are con-
nected by a dedicated Gigabit Ethernet network, entirely reserved
for MPI communication (there is a second, identical network for
system communication). TORQUE and Maui are used as resource
manager and queuing system, respectively. In order to assess the
influence of intra- vs. inter-node MPI communication, the sched-
uler is instructed to assign 8 MPI processes per node. Each bench-
mark is repeated r = 1, . . . , R times. For each repetition r, we
measure the elapsed wall-clock time ti,r on each processor core
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Figure 3: Overall run time t(Nproc) in seconds for the parallel
CMA-ES (•), and PS-CMA-ES with constant (◦) and decreas-
ing (×) number of MPI communications on the random land-
scape test problem in n = 10, 30, 100 dimensions. The num-
ber of processor cores Nproc is varied from 1 to 64. Each point
is averaged from R = 5 runs. Error bars are comparable to
symbol size and therefore not shown.

i = 1, . . . , Nproc. The overall run time t(Nproc) of the algorithm on
Nproc processors is given by the maximum time over all processes,
averaged over the R independent runs:

t(Nproc) = mean
r

max
i=1,...,Nproc

ti,r . (7)

From this, the parallel speedup s and efficiency e are defined as:

s(Nproc) =
t(1)

t(Nproc)
, e(Nproc) =

s(Nproc)

Nproc
. (8)

The measured maximum wall-clock times for all 3 benchmarks are
reported in Fig. 3, the speedups in Fig. 4, and the parallel efficien-
cies in Fig. 5.

In n = 10 dimensions, there are no noticeable differences be-
tween the three different test set-ups. Up to Nproc = 8, i.e. on
a single node, the wall-clock time decreases from 2.5s to below
0.5s. The speedup increases up to 6 and the efficiency decreases
to 0.6–0.7. This should be compared to 37s for 50 000 function
evaluations on Nproc = 4 using the existing Matlab implementa-
tion [12]. The Fortran library thus is about 460 times faster than
the Matlab implementation. When using two compute nodes (16
processes) and communicating over the network, the wall-clock
time increases again, and speedup and efficiency drop consider-
ably. This is expected as the network latency becomes the limit-
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Figure 4: Parallel speedup s of the parallel CMA-ES (•), and
PS-CMA-ES with constant (◦) and decreasing (×) number of
MPI communications on the random landscape test problem in
n = 10, 30, 100 dimensions. The number of processor cores
Nproc is varied from 1 to 64. Each point is averaged from
R = 5 runs. Error bars are comparable to symbol size and
therefore not shown.

ing factor for such a small test problem. The situation changes in
higher dimensions. For n = 30, the wall-clock time of parallel
CMA-ES decreases from 12s on a single core to below 1s on 64
cores. The two PS-CMA-ES tests need around 17s on a single core
due to the additional construction of the rotation matrix. The PS-
CMA-ES with constant number of MPI communications shows a
similar scaling as the parallel CMA-ES, with an offset of about 4–5
seconds, corresponding to the constant communication overhead.
The PS-CMA-ES with decreasing number of communications ap-
proaches the behavior of the standard parallel CMA-ES since, with
increasing Nproc, the MPI communication overhead and the 30-
dimensional rotations become negligible compared to the computa-
tional cost of CMA-ES. This is also reflected in the parallel speedup
and efficiency. The standard PS-CMA-ES with Ic = 200 achieves
the best efficiency (due to a higher computational cost on a single
core), closely followed by the parallel CMA-ES. The existing Mat-
lab implementation needed 75s for 50 000 function evaluations on
Nproc = 4, thus about 200 times longer. The same qualitative be-
haviour is observed in n = 50 (figures not shown), but, due to the
higher computational cost, the parallel efficiency increases further.
The computational costs for the basic CMA-ES operations and the
matrix rotations now dominate, and the communication overhead
becomes less apparent. On a single core, parallel CMA-ES needs



1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

E
ffi

ci
en

cy
E

ffi
ci

en
cy

E
ffi

ci
en

cy

n=10

n=30

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
n=100

Nproc

Figure 5: Parallel efficency e of the parallel CMA-ES (•), and
PS-CMA-ES with constant (◦) and decreasing (×) number of
MPI communications on the random landscape test problem in
n = 10, 30, 100 dimensions. The number of processor cores
Nproc is varied from 1 to 64. Each point is averaged from
R = 5 runs. Error bars are comparable to symbol size and
therefore not shown.

40s and the two PS-CMA-ES variants around 68s. While the wall-
clock time of the standard PS-CMA-ES rapidly approaches the one
of CMA-ES for increasing Nproc, the PS-CMA-ES with a constant
number of MPI communications shows an offset of around 25s due
to the communication overhead and the 50-dimensional matrix ro-
tation. The speedups of the parallel CMA-ES and the standard PS-
CMA-ES for Nproc = 64 are 40 and 50, respectively, corresponding
to parallel efficiencies of 0.55 and 0.75. For comparison, the Mat-
lab implementation required 187s for 50 000 function evaluations
and hence was about 150 times slower than the Fortran library. For
n = 100, the parallel scaling further improves. The efficiency for
standard CMA-ES is 0.87 on 64 cores, while standard PS-CMA-
ES achieves a super-linear efficiency of 1.07 due to the decreasing
number of MPI communications. Using a constant number of MPI
communications, the matrix rotations of the PSO update dominate,
and almost no speedup is observed.

5. CONCLUSIONS AND OUTLOOK
We have presented pCMALib, a computationally efficient, scal-

able, and portable software library that implements (IPOP-/LR-
)CMA-ES, parallel CMA-ES, and PS-CMA-ES, the latter as an ex-
ample of a parallel island CMA-ES. The library also includes the
first Fortran implementation of the CEC 2005 standard test suite.

It is written in Fortran 90/95 and uses LAPACK, BLAS, and MPI
for efficient linear algebra operations and inter-process communi-
cation. It features a run-time Matlab interface for easy visualiza-
tion and interoperability, and employs a dynamic process grouping
scheme to reduce the communication overhead of the PS-CMA-
ES algorithm. pCMALib’s parallelization paradigm is based on
the synchronous cooperative island model. Parallelizing over entire
CMA-ES instances enables migration of information every Ic gen-
erations, which can improve search performance using, e.g., con-
cepts from swarm intelligence.

We have validated the correctness of the presented implementa-
tion by extensive comparison to an existing and well-tested refer-
ence implementation in Matlab, and we benchmarked the computa-
tional performance on multi-core and distributed memory parallel
computers. Compared to the Matlab implementation, the presented
library is several hundred times faster. Even on a small, 10-dimen-
sional test problem, where the computational cost of evaluating the
objective function is negligible, the library demonstrated excellent
parallel efficiencies (strong scaling) of 0.6–0.7 on up to 8 cores of
the same compute node. For larger problems, the efficiency further
improves and is close to 1.0 in 100 dimensions. Also, the paral-
lel efficiency is higher for weak scalings (where the problem size
grows proportionally to the number of processors used) or when the
computational cost of evaluating the objective function is larger. In
such cases, the wall-clock time on a single processor core rapidly
becomes prohibitive and the present library could provide an effi-
cient and easily accessible tool to reduce the time-to-solution by
exploiting the parallelism of modern computer platforms.

Ongoing and future work considers mixed multi-threading/ multi-
processing paradigms in order to combine the present parallel is-
land scheme with the classic master/slave protocol. Within each
parallel process (corresponding to a CMA-ES instance), multiple
threads can be used to perform several function evaluations in par-
allel. Such hybrid mechanisms could, e.g., be implemented us-
ing OpenMP or MPI-2, which supports one-sided communications
and fork/join parallelism. We also plan to implement additional
communication (migration) schemes and extend the library to asyn-
chronous parallel island models. Moreover, pCMALib will be ex-
tended by further optimization algorithms and additional interfaces
and language bindings, for example to python.

The library and its documentation will be made freely available
as open-source software on www.mosaic.ethz.ch.
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