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Abstract—Current manufacturing and production are chang-
ing more and more into a flexible and adaptable factory layout
that requires rapid changeover and short reconfiguration times
of machines. Additionally the setup time for new devices should
be as short as possible.

In this paper we propose a hierarchical architecture for a
multi-level Plug & Produce system and evaluate the proposed
structure using open source OPC UA implementations for easy
integration of new devices into an existing system. Aside from the
requirements for such a system, basic concepts of the OPC UA
Discovery Service Set are described and different open source
OPC UA implementations for C/C++ and Java are compared.

I. INTRODUCTION

Flexible and adaptable manufacturing is getting more and
more important not only for small- and medium-sized enter-
prises, but also for large enterprises, which need to cope with
increasing customization demands from their customers. In an
adaptable manufacturing shop floor new intelligent machines
and devices need to be integrated as fast and easy as possible,
and the time to setup and configure should be short [1].

The concept of the Administration Shell, as defined in
Reference Architecture Model Industrie 4.0 (RAMI) for
components[2], embodies such intelligent machines and de-
vices by describing the virtual representation and technical
functionality of the component. This embodiment may be cou-
pled or decoupled from the component, i.e., it may be hosted
by a higher level IT system. The encapsulation of components
with the administration shell provides a standardized interface
for other Industry 4.0 (I4.0) components, and also higher
level control systems. Additionally such I4.0 components can
be logically nested to group multiple sub-components into a
bigger component (see Figure 1).

An I4.0 component should provide its functionality through
simple skills to abstract implementation and hardware details.
I4.0 components can be either passive (sensor), or active
(actuator). A skill could be, for example, triggering an action
that the component can perform and/or providing some data.
Skills can be combined with each other and form more
complex skills, which compound the low level skills.

To easily integrate I4.0 components into a production line
the overhead for configuring new devices should be kept
as small as possible. Comparable to USB devices on a PC
System, if a device is plugged in, it should be automatically
detected and configured. Therefore a method is required to
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Fig. 1. The administration shell embodies machines, devices or sensors
and provides a standardized interface to other Industry 4.0 components. An
administration shell may also act as a logically nested group of multiple sub-
components[2].

allow other devices to discover the newly plugged device,
while the new device does not need any pre-configuration.
The horizontal and vertical integration of new devices can be
simplified and the changeover time for new production cycles
can be reduced by using a Manufacturing Service Bus (MSB)
which implements automatic device discovery functionality,
and a common standard for skills.

Section II gives a short overview of other Plug & Produce
implementations and research. In Section III we propose a
hierarchical architecture for a multi-level Plug & Produce
system which is able to automatically discover newly plugged-
in devices using OPC UA Local Discovery Services with
Multicast Extension (LDS-ME). In the following Section IV
requirements for the four operational phases — Discovery,
Configuration, Production, and Reconfiguration — of an in-
telligent I4.0 component are analyzed. Section V describes
the basic concept of the OPC UA Discovery specification,
followed by a comparison of different open source C/C++ and
Java OPC UA Stacks and an overview on how we implemented
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automatic discovery using OPC UA in Section VI. In the last
Section VII we evaluate our proposed architecture, including
its advantages and disadvantages.

II. RELATED WORK

The need to achieve competitive advantages of manufactur-
ing for fast changing customer requirements using agile and
flexible manufacturing was already identified nearly 20 years
ago [3]. Especially cost consideration, increased customer
choice, and easy integration of new devices were seen as
one of the most important drivers of agility and evolvable
production systems.

The concept of Plug & Play in IT systems was introduced
by Microsoft in Windows 95. It was the first operating system
which provided automatic device discovery for USB based
device classes and generic drivers for these classes.

In home and office networks, Universal Plug and Play
(UPnP) allows to detect specific services on the network auto-
matically. The Devices Profile for Web Services (DPWS) [4]
can be seen as the successor of UPnP, which was especially
developed for embedded devices. It defines a client/server
architecture, where servers provide several services. Such a
service can be invoked by the clients using Web Services
technology. These services also include the Web Services-
Discovery (WS-Discovery) service, which allows automatic
detection of DPWS-enabled devices within the network. The
service interface is described using the Web Services Descrip-
tion Language (WSDL), thus this description must be known
to the client to call a specific function. DPWS uses XML-
based SOAP messages encapsulated in HTTP and transproted
via UDP or TCP. A possible solution for Ad-hoc field device
integration using DPWS is shown in [5].

The comparison of DPWS with OPC UA shows that OPC
UA is more suitable for limited hardware due to its flexibility
in implementing small OPC UA applications with a specific
purpose: It requires less memory by a factor of more than
90% [6], even if those applications do not entirely fulfill the
requirements of device-level SOA [7]. For example OPC UA
can be implemented on resource limited embedded devices
(ARM9, 100Mhz, 64KB) using the Nano Embedded Device
Server Profile [8]. Additionally, OPC UA has a well-defined
meta model compared to the open approach of DPWS which
offers greater extensibility.

In [9] OPC UA is used for autoconfiguration of real-time
ethernet systems. The authors’ approach is to use a previously
defined OPC UA server where the device has to register itself.
The specification for automatic discovery of OPC UA devices
was released two years later in 2015 [10]. Additionally the
focus is on specific real-time ethernet devices. OPC UA is
currently in the process of integrating Time Sensitive Net-
working (TSN) and thus configuration of real time ethernet in
combination with automatic device discovery can be simplified
to non-real-time ethernet [11].

Since automatic discovery in OPC UA is a fairly new
standard and there are not many OPC UA stacks that already
support the full discovery service set, most of recent research

focused on predefined register servers which implies that
devices need to be pre-configured. In our research we also
eliminate this additional need of pre-configuration by adding
multicast discovery.

III. ARCHITECTURE

Our proposed architecture for automatic device discovery
using OPC UA Local Discovery Servers with Multicast Ex-
tension (LDS-ME) consists of an intelligent Manufacturing
Service Bus (MSB) which is responsible of detecting other
I4.0 components on the network, and to configure the com-
ponent when it is plugged in. Such a component may be an
intelligent workstation which is embodied by an administration
shell to provide the needed services for discovery. This work-
station also contains an OPC UA Server which is responsible
for discovering newly plugged-in devices on the workstation
itself, and provide this information to the MSB. The general
architecture is shown in Figure 2.

The MSB acts as the centralized communication mean,
which makes it possible to move from the automation pyramid
to a more vertically and horizontally integrated automation
platform. Its responsibility is also to tell a requesting work-
station which other workstations are currently available so
that the two workstations can directly communicate with each
other. To detect other components on the network, the MSB
has to implement LDS-ME.

A workstation can be seen as a super component which
encompasses other components in logical terms, to act as a
unit and to abstract the underlying components for a higher
level. As shown in Figure 1 and described in RAMI 4.0 [2],
nestability of I4.0 components requires such components to
have more than one communication interface on different
abstraction levels and a component management for subcom-
ponents. The interface on the upper level is connected to
the MSB and is used for registering the workstation, and to
receive corresponding configuration data from the MSB. The
component management is implemented as an OPC UA Server
which can receive control commands from the MSB, and if
necessary forward these commands to the subcomponents, i.e.,
devices. To be detectable by devices which belong to the
workstation, the workstation also needs to implement its own
LDS-ME server that listens on the lower level interface for
new device announcements.
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Fig. 2. Proposed architecture for hierarchical Plug&Produce. The Manufac-
turing Service Bus is able to discover workstations. Each workstation provides
discovery functionality for devices within the workstation.
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A device can be a single actor, like a motor, or a sensor
which delivers specific measurement data for the higher level
or other devices on the same workstation. In a more com-
plex system structure a device could be a workstation with
subcomponents. In this paper we focus on the case where
a device is an actor or a sensor without subcomponents. As
soon as the device is plugged in, it is registered through the
network on layer 2 with its workstation and receives additional
configuration from the workstation or MSB which is notified
about the new registration through multicast.

IV. REQUIREMENTS

We differentiate the operation of intelligent I4.0 components
(workstations, devices) by four different phases: Discovery,
Configuration, Production, and Reconfiguration. To ensure that
each phase can be easily controlled by the MSB, the phases
have to meet specific requirements. In this section we will
list different requirements for each phase, whereas we mainly
focus on the discovery phase.

A. Discovery

An intelligent Industry 4.0 component has to be able to
communicate with other components or the MSB. Standard
ethernet based communication is the most recommended com-
munication method in RAMI 4.0 [2]. To be able to call
services on other components, the component itself has to
know the IP address and port of the other component. One
way to achieve this is to pre-configure all the components (i.e.,
machines, devices, sensors) for a specific factory floor and its
specific network setup. Using this approach, new components
can not be easily integrated into the factory, as not only new
components need to be configured, but also the configuration
of existing components needs to be adjusted to accommodate
the change, which is an error prone process.

To achieve a more Plug&Produce friendly setup without any
factory-specific pre-configuration, the components need to be
able to discover other components in an automatic manner.
This discovery process can be further subdivided into four
stages: Plug-in, Register, Operating, and Plug-out. One of the
middlewares which is able to handle these stages is the OPC
Unified Architecture (UA). More technical details on OPC UA
can be found in Section V.

The Plug-in stage is the first phase, in which the component
needs to set up its communication stack and get a list of all
available components in the network, to be able to register
itself with the correct component. In ethernet-based commu-
nication this means that a device needs to get an IP address via
Dynamic Host Configuration Protocol (DHCP), and then send
out a multicast message to all network devices in the current
subnet, e.g., using Zero-configuration networking (zeroconf).
Other devices should then respond with a corresponding mes-
sage, which contains information on how the network device
can be contacted.

After the list of all the network devices is available, the
I4.0 component has to select the correct device to Register
itself and by that telling other components that it is ready

for production. If the component has a virtual representation
located somewhere in the overall system or in the cloud,
this virtual representation has to be connected to the physical
instance. The virtual representation is the administration shell
and can be seen as an abstraction adapter. The major issue in
this stage is to understand the topological structure to register
with the correct supervising register server. The task of this
component managing server is to keep track of all the available
devices and to connect different I4.0 components with each
other. To be able to know the type of the component, each Plug
& Produce device should have embedded information about
its capabilities, skills, data input and output, and different key
performance indicators (KPI) it provides.

After registering, the component is in the Operating stage,
which is the normal running mode where the component
should periodically check the current network status and re-
register with the register server to indicate that it is still alive.
This avoids polling from the register server and ensures that
the list of available devices is consistent, e.g., if the network
connection is broken or the device itself is not available
anymore.

During the Plug-out stage the I4.0 component is unregis-
tered from the MSB. Unregistering may occur in a graceful
way, where the device is shut down normally, or in an abrupt
way, where the network connection is broken. In the latter case
the component itself has no way to notify the register server
about its plugged out state, therefore the periodic re-register in
the operating phase is a mean to detect the broken connection.
If the device is shut down in a normal mode, it first issues an
unregister service call and with this immediately notifies the
server that it is shutting down.

B. Configuration

After the communication channel for the I4.0 component is
set up and it is connected to the corresponding control entities,
it needs to be configured to perform its designated task. The
component should be able to do a basic pre-configuration
and it should provide services for self-configuration such
that it can perform product-specific tasks. To bridge this gap
between product requirements and machine configuration, the
product configuration has to be compiled in a predefined
semantic description (e.g., AutomationML1), and then the
machine configuration can be created out of this description.
This concept of configuration using AutomationML is further
described in our research conducted at the same time as this
paper [12].

Automatic configuration is currently one of the major chal-
lenges and a highly researched topic, e.g., in the “Plattform
Industrie 4.0”2 project. Semantic reasoning has to be per-
formed to get from complex product and system requirements
to the machine configuration. Additionally the question has
to be answered, how a single configuration for a product can
be split and deployed to different components or machines.

1https://www.automationml.org/
2http://www.plattform-i40.de/
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Academic experiments such as MGSyn [13] or F++ [14] have
applied game-based reasoning or search-based techniques to
create distributed recipes or orchestration plans, based on
a predefined skill library of every machine and high-level
specification.

C. Production & Reconfiguration

After the component is configured and all required infor-
mation is gathered, it should provide the services to start
the execution and to accomplish its task. Each such service,
i.e., a basic action of the device, can be defined as a skill.
Depending on the complexity of the component, multiple skills
or combination of atomic skills may be presented to the upper
control component.

The physical entity may also be represented by a virtual
agent on a higher level. Implementing an OPC UA server on
a simple temperature sensor which delivers a digital signal for
the current temperature may be not affordable. This sensor
can have its virtual representation added as an agent to the
workstation, which handles the communication between the
physical and virtual entity through a proprietary communica-
tion channel.

During execution of a skill, the component has to cope with
different events, e.g., if a new job is started, while the old
job is still running. Additionally, the component has to be
able to handle errors which may occur on the device itself
during execution of the skill, on the upper level, or if another
collaborating component fails to execute its task.

If a new component is inserted and discovered in the system
and there is currently a production running, all involved com-
ponents need to be able to handle reconfiguration during run-
time. Therefore an intelligent I4.0 component has to handle
switching jobs when a new production task arrives, including
the case where the hardware is altered or a collaborating device
changes. Additionally the communication channel may change
and thus needs to be updated accordingly. Moreover in the
reconfiguration phase the I4.0 component can receive new
parameters for executing its existing skills, e.g., for optimizing
the execution speed or power consumption, and new product
variants can be also introduced to the system.

V. OPC UA DISCOVERY SERVICES

For our research we are using OPC Unified Architecture
(UA), as it already solves and handles many of the re-
quirements described in Section IV. It is a service-oriented
machine-to-machine communication protocol mainly used in
industrial automation and defined in the IEC 62541 specifica-
tion. The main goals are to provide an open, freely available
cross-platform implementation, while using an information
model to describe the data. The various features and com-
ponents of OPC UA are described in different specification
parts released and publicly available by the OPC Foundation3.

Part 12 and partially Part 4 of the specification describe
how OPC UA applications can be discovered on a computer or

3https://opcfoundation.org/developer-tools/specifications-unified-architecture/

network [10]. It includes the general discovery process, Local
Discovery Server (LDS) and Global Discovery Server (GDS)
concepts, including certificate management within GDS.

In this section we mainly focus on the discovery process
and LDS functionality, and summarize the concept of appli-
cation discovery in OPC UA. This summary provides a basic
understanding on what OPC UA Discovery can do, and which
additional functionalities are required to fulfill our use-cases.
A more detailed technical explanation of the concepts can be
found in the aforementioned specification.

The discovery process defines how OPC UA Clients can
find OPC UA Servers on the network and then discover how
to connect to the Server. Therefore the mechanisms can be
separated into two parts: how can clients discover servers and
how can servers make themselves discoverable.

A client can use different methodologies to find a server.
The most basic concept is a list of predefined hard-coded
discovery URLs of other components which the client queries.
This is clearly not optimal for adaptable I4.0 components,
which are used in different environments. A more flexible
way is to contact a locally running server on the same host
with a well known port number. OPC UA specific methods
like FindServers or FindServersOnNetwork can then be called
to get a list of other running servers on the network. This
local server is listening for server announcements on the
multicast subnet, or is searching for servers on the Global
Discovery Server. The client itself can also listen for these
server announcements and thus find other servers without
calling the local server, which makes the system even more
flexible.

OPC UA servers need to make themselves discoverable
so that other clients and servers can contact them. This is
achieved by implementing one of the following server types:

The Local Discovery Server (LDS) is an OPC UA instance
running on a host. It keeps track of all the other OPC UA
servers on the same host. This means that only OPC UA
servers which are running on the same host as the LDS are
known to the LDS. These have to explicitly register with the
LDS, which is by default listening on port 4840.

The Local Discovery Server with Multicast Extension (LDS-
ME) is an extension of the LDS, and additionally keeps
track of all the servers that announce themselves on the local
multicast subnet. Servers on the same host can register them-
selves directly, whereas other LDS-ME servers are detected by
multicast announcements. This avoids the necessity to define
specific IP addresses beforehand.

The Global Discovery Server (GDS) is another type of
discovery server and can be used for discovery among multiple
subnets, and in subnets where host names can not be dis-
covered directly (for the multicast announcements hostnames
have to be discoverable). A GDS may also implement cer-
tificate management services for distribution and central trust
management of certificates for other OPC UA applications.
Certificates are used in OPC UA for encryption and authenti-
cation to ensure clients and servers are talking to the expected
entity.
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Since our goal is to avoid pre-configuration of components,
our focus lies on the case where a client uses the LDS-ME
server on the same host to find other servers and other Industry
4.0 components correspondingly so that no component needs
to be configured with specific IP adresses beforehand.

This is also the concept which we use for our evaluation
and automatic discovery for Plug & Produce. Figure 3 shows
the sequence of the discovery process: In the first step the
Server on machine A registers with its LDS. When machine
B is plugged in, its LDS issues a multicast probe on which the
LDS on machine A responds with a multicast announcement.
The LDS on machine B now knows all the available servers
on the network. Finally the client on machine B queries these
servers and selects the desired remote server on machine A.
Using this information the connection between both machines
can be established without any pre-configuration. The only
necessary piece of information is the port on which the local
LDS is running, which is normally port 4840, as defined in
the OPC specification.

The OPC UA specification already provides basic concepts
for device discovery, i.e., how the multicast messages are
handled and how the registration on the LDS-ME is done.
OPC UA does not include the concept of hierarchical LDS-
ME servers, which is one of the concepts we describe in this
paper. The next section compares different open-source OPC
UA stacks and gives an overview how we implemented LDS-
ME in C/C++ and Java.

VI. IMPLEMENTATION

To implement Plug & Produce in OPC UA a software
stack has to be selected which supports the discovery service
set. More importantly it has to support the Local Discovery
Server with Multicast Extenstion (LDS-ME). There exist many
commercial OPC UA stacks in different programming lan-
guages but unfortunately only very few already provide an
implementation for LDS-ME. There are even less open source
implementations which support LDS including multicast dis-
covery.

For evaluating the discovery functionality (see Section VII)
and meeting different project-internal requirements like sup-

port for embedded devices or platform independability, we
were searching for open source stacks for C/C++ and Java.
There also exist other open source implementations for C#,
Python, and JavaScript.

A. Comparison of C/C++ OPC UA Stacks

In this section we compare different open source OPC
UA stacks. Commercial OPC UA stacks are not part of
this comparison since we only want to rely on open source
software. All of the following OPC UA stacks can be compiled
under Linux and Windows.
open62541 (MPL-2.0, similar to LGPL, but includes static

linking) [15]. It provides an API for server and clients,
and supports nearly all features of the different discovery
sets, except (initially) the Discovery Service Set. The
interface is compliant with the OPC Foundation Com-
pliance Test Tool (CTT). The information model can be
automatically generated out of XML files. This project
is actively developed and new features are constantly
being added. Aside of Linux and Windows many different
platforms are supported, e.g., OS X, QNX, Android and
embedded systems.
https://github.com/open62541/open62541

OpenOpcUA (CECILL-C, similar to GPL with no fork op-
tion). It provides an API for server and client develop-
ment, and allows to dynamically load UA information
models from XML files. It is also tested with the CTT.
Its main disadvantage is that a one time fee is requested
to access the codebase.
http://www.openopcua.org

ASNeG OpcUaStack (Apache License, 2.0). It provides an
API for server and clients with only basic functionality,
i.e., reading, writing, and monitoring OPC UA Variables.
http://asneg.de

FreeOpcUa (LGPL). It is a server and client library with
support for most of the basic OPC UA service sets, except
the discovery service set. Since 2015 contributions to this
project rapidly decreased and only a few features have
been added.
https://github.com/FreeOpcUa/freeopcua

UAF Unified Architecture Framework (LGPL). It only im-
plements the OPC UA client side and does not support
OPC UA servers. Additionally it is based on the commer-
cial C++ OPC UA Software Developers Kit from Unified
Automation, which is required to develop applications.
https://github.com/uaf/uaf

OPC Foundation AnsiC provides an official reference im-
plementation under a dual-license, proprietary for OPC
Foundation Members and GPL for everybody else. This
stack is the most complete one. In March 2017 the
LDS-ME server implementation was released as Beta for
Windows only.
https://opcfoundation.github.io/UA-AnsiC/

When starting our project in 2016 none of the above stacks
fully supported the Discovery Service Set, especially the Local
Discovery Server with Multicast Extension. The OPC Stack
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from the OPC Foundation has now (May 2017) a beta release
of a stand-alone LDS Server with Multicast Extension, but
due to its GPL license and the requirement to disclose the
application code built upon the LDS-ME code it did not
meet our requirements. Therefore we chose open62541 for
our project. It has an open license and many of the required
features are already implemented. One of the most important
features, the LDS-ME Server, was not yet included in the stack
as it is the case for all other open source stacks. Additionally
signing and encryption is currently not yet supported by
open62541 but is currently under development and will be
supported soon.

B. Comparison of Java OPC UA Stacks

Besides the most commonly used commercial stacks from
Unified Automation, Prosys, and AscoLab there are only a
few open source implementations of OPC UA in pure Java. It
is possible to encapsulate a C stack from previous subsection
using Java Native Interface (JNI), which would result in a
less portable but more performant data serialization. Here we
compare the only two well-known open source stacks, which
use pure Java and implement a majority of the OPC UA
features.
OPC Foundation Java is the official implementation by the

OPC Foundation and released under a dual-license, pro-
prietary for OPC Foundation Members and GPL for
everybody else. It provides the basic tools to implement
OPC UA servers and clients, but currently only includes
example code for the Nano profile which does not support
the discovery service set.
https://opcfoundation.github.io/UA-Java/

Eclipse Milo is a project under the Eclipse Foundation and
therefore licensed under EPL-1.0. It includes a fully
functional stack, client, and server SDK, however it
is missing certain functionality, especially LDS-ME. It
already supports signing and encrypting messages, but is
missing the possibility to load information models from
XML files.
https://github.com/eclipse/milo

Due to the major development stage and its more open-
source friendly license we decided to use the Eclipse Milo
project for our implementation and testing of Plug & Produce
for operating system independent Industry 4.0 components.

C. Implementing LDS-ME

Since neither open62541, nor Eclipse Milo did support the
full Local Discovery Server with Multicast Extenstion (LDS-
ME), we first had to implement this feature set according to
the OPC UA Specification Part 12 [10], to be able to create
configuration-less Plug & Produce Industry 4.0 components.

In the open62541 C/C++ stack, the services for LDS without
multicast were already implemented. This includes Regis-
terServer to allow other server instances to register themselves
with the LDS, FindServers to allow clients to get a list of
registered servers, and GetEndpoints which returns the list of
available connection endpoints of the LDS. The fist step was to

evaluate different open source multicast DNS (mDNS) imple-
mentations, which can be used within the open62541 project
in consensus with the MPL-2.0 license4. For easy integration
and support on embedded devices the mDNS library has to be
self contained without any external dependencies. The only
fully functional library which meets this requirement and is
less restrictive than the MPL-2.0 license is the mdnsd library,
which we adapted to be compilable under Linux, Windows
and OS X and fixed various bugs5. Based on this library we
implemented the multicast mechanism for automatic detec-
tion of other running instances within the same subnet as
shown in Figure 3. Finally the RegisterServer2 service was
implemented and added to open62541, which allows other
instances to register with additional multicast information,
and FindServersOnNetwork which returns not only explicitly
registered OPC UA servers, but also the ones detected through
multicast messages. These changes were compiled as a pull
request with more than 3000 lines of code modifications and
contributed to the base repository of open624516, where it is
now integrated into the master branch.

For the Eclipse Milo project the same amount of work
had to be performed: After extending the basic methods
RegisterServer, FindServers, and GetEndpoints, the jmDNS
library was used to add mDNS support to Java. This enables
Milo to detect other multicast enabled OPC UA instances on
the network and to keep a list of known OPC UA servers.
Additionally, the RegisterServer2 and FindServersOnNetwork
were implemented, and then again compiled into a pull request
with around 3000 lines of code modifications, to be submitted
to the Eclipse Milo project on GitHub7.

D. Discovery Process

Our overall demonstration setup for automatic discovery
functionalities is described in Section III, and consists of
the MSB and two workstations with two devices each. An
OPC UA Server can support multiple service sets at the same
time, therefore it can be a standard OPC UA Server which
provides methods and data to clients and at the same time
offer the LDS-ME functionality. This is shown in Figure 4.
Additionally, an OPC UA Server cannot call a method on
another OPC UA Server directly and thus needs to use an OPC
UA Client to call the corresponding configuration methods on
the lower-level server.

The detailed process for automatic device discovery on
plug-in is as follows:

1) When a workstation or device is plugged in, it gets as-
signed an IP address and the corresponding subnet using
DHCP. After network initialization, the OPC UA server
on the plugged in device issues a multicast probe. All
LDS-ME servers within the same subnet respond with a
multicast announcement, including information how the
LDS-ME server can be contacted. With this information

4https://github.com/open62541/open62541/issues/701
5https://github.com/pro/mdnsd
6https://github.com/open62541/open62541/pull/732
7https://github.com/eclipse/milo/pull/89
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Fig. 4. Discovery process with multiple levels of hierarchy. The Manufacturing Service Bus controls Workstations which in return control Devices.
1© The server detects the LDS-ME Server through multicast and registers itself with the LDS. 2© The LDS-ME Server creates a new client to communicate

with the OPC UA Server. 3© The Client calls the configuration method on the Server and controls its actions.

the newly plugged in OPC UA server can register itself
with the LDS-ME server. This step completes the Plug-
In and Register stages described in Section IV.

2) The new server is stored in a list and an OPC UA client
is created to be able to talk to the newly registered server.
An OPC UA server can not directly communicate to
another OPC UA server.

3) The newly instanciated client then calls a predefined
configuration method on the server with configuration
parameters, e.g., how often status updates should be sent
(Configuration pahse). This client instance is also used
in the Operating phase for controlling the workstation
or device respectively.

4) If a device or workstation is gracefully shut down, it
has to unregister itself from the upper LDS-ME server.
If it is disconnected by a network or software fault, the
controlling server either detects the downtime through
its controlling client or through the LDS-ME server
which checks if the underlying component periodically
re-registers itself.

If the network link is down or the LDS-ME server is not
running when a new component is plugged in, the multicast
probe should be sent after a short retry interval to make sure
the registering succeeds as soon as possible.

VII. EVALUATION

OPC UA defines how data should be serialized on the wire,
therefore different OPC UA stacks are able to communicate
with each other. This is also the case for the discovery
services: LDS-ME servers from different vendors should be
able to find each other and to exchange data. We evaluated the
compatibility of our implementations in open62541 and Milo
in a basic way by creating dummy workstations and devices
which need to register with the corresponding LDS-ME server.

Different combinations of open62541 and Milo are used to
show their compatibility.

Additionally, Milo is tested against the official OPC Foun-
dation reference implementation of the LDS-ME server. The
open62541 stack is currently incompatible with this server
since it requires encryption for register services, which is as
of now (June 2017) currently in final stage of development
and not yet fully supported in open62541.

For the setup we are using a standard Desktop PC with
Ubuntu Liunx where the LDS-ME server is directly started.
Additionally, two Virtual Machines are set up, which simulate
the two workstations from Figure 4. Each workstation contains
a device simulated by directly starting an application within
the virtual machine. Since the virtual machine only has a
virtual network interface, the plugging in of a component is
simulated by the starting of the application. The Device will
then query the LDS-ME server on the workstation for other
known OPC UA Servers. This query should return the OPC
UA Server from the other workstation, which provides a pass-
through method call so that the method on the other device
can be called. Additional more detailed tests on real hardware
(Festo MPS Stations and industrial robots) will be included in
a later publication.

The tests have shown that both implementations are able
to discover each other. In open62541 the discovery process
is significantly faster, as it takes less than a second for the
workstation and device to find the LDS-ME servers, register
with them and then query for known OPC UA servers, to
finally call the method on the other device. In Eclipse Milo
the multicast probe is slower and it takes up to 7 seconds
until the device or workstation detects its counterpart LDS-
ME. This is due to the fact that jmDNS is first checking if
there is already a DNS-SD service announcement with the
same name, using a hardcoded timeout value of 6 seconds.
Only afterwards the mDNS probe is sent out and the response
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from the LDS-ME server is processed. In open62541 such a
name conflict is handled my immediately announcing itself,
and if at the same time another server with the same name
exists, the mDNS implementation within open62541 detects it
and can change its name to a more unique one to retry.

If different network layers are used, as shown in Figure 4, a
device on one workstation can not simply connect to a device
on another workstation. Either the network segments have to
be connected and corresponding routing tables have to be set
up, or servers on higher level have to act as proxies, e.g., a
device has to call its parent workstation server, which calls the
server on another workstation, which then can call a method
on its underlying device. This introduces additional delays and
it is desirable to keep communication of devices isolated on
the same workstation. If additional data is required from other
workstations or subcomponents, this data should be delivered
through the MSB.

If there are multiple LDS-ME servers running within the
same subnet, additional intelligence and pre-configuration has
to be added to devices. If a device receives multiple LDS-
ME announcement messages, it has to select the correct LDS-
ME to register itself. To solve this issue, the device can be
configured to only connect to LDS-ME servers with a specific
ID, or the main LDS-ME server has some specific nodes within
its information model, which a device can query and then
decide if it is the LDS-ME it is looking for.

Due to time constraints we were not able to implement and
evaluate the use of Global Discovery Servers (GDS) in our
setup. GDS can be used as an enterprise wide Discovery Server
which is able to collect information on other OPC UA servers
even across multiple subnets.

VIII. CONCLUSION

Our research shows that it is possible to implement the
Plug & Produce concept on the network side using OPC
UA Local Discovery Servers with Multicast Extension (LDS-
ME). It allows easy integration of new devices into the
network without any network-specific pre-configuration. Using
multiple hierarchies of LDS-ME, it is possible to create
modular workstations which abstract underlying devices to
the middleware. Due to the common interface described in
the OPC UA specification, different hardware from different
vendors can be combined, which may lead to cost reduction.

This common interface is only possible if all the manufac-
turers agree on the same standard and way of implementation,
thus every device or sensor has to implement a basic OPC
UA stack. As compared in this paper there are many open
source implementations for OPC UA, whereas open62541 for
C/C++ and Eclipse Milo for Java provide a manufacturer-
friendly license with most of the OPC UA features already
implemented. In our future research we will evaluate different
OPC UA discovery implementations in more detail on separate
hardware devices. Additionally we will extend our research
on the Configuration phase as described in Section IV and
published in[12] which is another important factor to provide
a real Plug & Produce concept for flexible manufacturing.

If it is not possible to implement an OPC UA stack on
an embedded device, the corresponding Administration Shell
has to be implemented by system integrators and could be
deployed as a small App onto a central server or server
running on a workstation, which acts as an adapter between
the proprietary communication with the device and other OPC
UA instances.
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