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Abstract. One barrier in introducing autonomous vehicle technology is the li-
ability issue when these vehicles are involved in an accident. To overcome this,
autonomous vehicle manufacturers should ensure that their vehicles always com-
ply with traffic rules. This paper focusses on the safe distance traffic rule from
the Vienna Convention on Road Traffic. Ensuring autonomous vehicles to com-
ply with this safe distance rule is problematic because the Vienna Convention
does not clearly define how large a safe distance is. We provide a formally proved
prescriptive definition of how large this safe distance must be, and correct check-
ers for the compliance of this traffic rule. The prescriptive definition is obtained
by: 1) identifying all possible relative positions of stopping (braking) distances;
2) selecting those positions from which a collision freedom can be deduced; and
3) reformulating these relative positions such that lower bounds of the safe dis-
tance can be obtained. These lower bounds are then the prescriptive definition
of the safe distance, and we combine them into a checker which we prove to
be sound and complete. Not only does our work serve as a specification for au-
tonomous vehicle manufacturers, but it could also be used to determine who is
liable in court cases and for online verification of autonomous vehicles’ trajectory
planner.

1 Introduction

Liability is an important but rarely studied area in autonomous vehicle technology. For
example, who should be held liable when a collision involving an autonomous vehicle
occurs? In our previous paper [23], we proposed to solve this issue by formalising
vehicles’ behaviours and traffic rules in higher-order logic (HOL). This formalisation
allows us to check formally whether an autonomous vehicle complies with traffic rules.
If autonomous vehicles always comply with traffic rules, then they should not be held
liable for any accident.

One of the most important traffic rules is to maintain a safe distance between a
vehicle and the vehicle in front of it. This notion of safe distance is crucial for traffic
simulation, automatic cruise controller (ACC), and safe intersections. Traffic simula-
tion [1] relies on this notion to update the speed and acceleration of each vehicle such
that a collision will not occur in the simulation, even when the front vehicle brakes
abruptly. ACC [26] and safe intersection systems [16,14] rely on this notion to control
the engine and brake module such that a rear-end collision can be avoided.
? Supported by the DFG Graduiertenkolleg 1480 (PUMA)
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Fig. 1: Scenario for safe distance problem.

The Vienna Convention on Road Traffic defines a ‘safe distance’ as the distance
such that a collision between vehicles can be avoided if the vehicle in front performs
an emergency brake [24]. Note that this rule states the requirement for safe distance
descriptively; there is no prescriptive expression against which a distance can be com-
pared. This makes the process of formally checking the compliance of an autonomous
vehicle’s behaviour with the safe distance rule problematic.

We follow our previous design decision [23] to use Isabelle/HOL [18] for three
reasons. Firstly, it has rich libraries of formalised real analysis which is required to turn
the descriptive definition of safe distance into the prescriptive one. Secondly, it allows
us to generate code, which we use to evaluate a real data set. Finally, as a theorem
prover, Isabelle checks every reasoning step formally and, hence, one only has to trust
how we specify the notion of safe distance. Our contributions are as follows:1

• We formalise a descriptive notion of safe distance from the Vienna Convention on
Road Traffic (Sec. 2).

• We turn this formalised descriptive definition of safe distance into a prescriptive
one through logical analysis (Sec. 3).

• We generate executable and formally verified checkers in SML for validating the
safe distance rule (Sec. 4).

• We evaluate the US Highway 101 data set from the Next Generation SIMulation
(NGSIM) project as benchmark for our checkers (Sec. 5).

• We argue that our prescriptive definition of safe distance generalises all definitions
of safe distance in the literature (Sec. 6).

We conclude and outline the possible extension of our work in Sec. 7.

2 Formalising Safe Distance from the Vienna Convention

Figure 1 illustrates the scenario for the safe distance problem as defined in the Vienna
Convention on Road Traffic. The scenario consists of two vehicles: the ego vehicle

1 Our formalisation is available at http://home.in.tum.de/~immler/safedistance/
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and the closest vehicle in front of it—which we term other vehicle2. This scenario
is uniquely characterised by six constants: s0,e, ve, ae ∈ R from the ego vehicle and
s0,o, vo, ao ∈ R from the other vehicle. Constants s0, v, a denote the initial position,
initial speed, and maximum deceleration value, respectively, of a vehicle. Note that
s0,e denotes the frontmost position of the ego vehicle, while s0,o denotes the rearmost
position of the other vehicle. Additionally, we also make the following assumptions:

Assumption 1 The values of ve and vo are non-negative: 0 ≤ ve ∧ 0 ≤ vo.

Assumption 2 The values of ae and ao are negative: ae < 0 ∧ ao < 0.

Assumption 3 The other vehicle is located in front of the ego vehicle: s0,e < s0,o.

Continuous dynamics. As specified by the Vienna Convention on Road Traffic, the ego
vehicle needs to avoid collision with the other vehicle when both vehicles are braking.
To do so, the ego vehicle needs to predict its own braking movement and that of the
other vehicle over time. We formalise the prediction of this braking movement p with a
second-order ordinary differential equation (ODE) 3 p′′(t) = a and initial value condi-
tions p(0) = s0 and p′(0) = v. The closed-form solution to this ODE is as follows:

p(t) := s0 + vt+
1

2
at2 . (1)

Hybrid dynamics. Since Eq. (1) is a quadratic equation, it has the shape of a parabola
when a 6= 0. This implies that a vehicle would move backward after it stops. Hence,
Eq. (1) is only valid for the interval [0, tstop] where tstop is the stopping time. The stop-
ping time tstop is the time when the first derivative of p is zero, that is, p′(tstop) = 0.
Substituting t with tstop in the derivative of Eq. (1) results into the following expression
for tstop:

tstop := −v
a
. (2)

Thus, we can extend the movement p of Eq. (1) by introducing discrete jumps (the
deceleration makes a jump from a < 0 to a = 0) into the overall movement s as
follows.

s(t) :=


s0 if t ≤ 0

p(t) if 0 ≤ t ≤ tstop

p(tstop) if tstop ≤ t

(3)

Two-vehicle scenario. In Fig. 1, we assume that the other vehicle performs an emer-
gency brake with maximum deceleration ao, as specified in the Vienna Convention on
Road Traffic. As soon as the other vehicle brakes, the ego vehicle reacts by performing
an emergency brake too with maximum deceleration ae. Since an autonomous vehicle
can react almost instantly, we assume the reaction time to be zero.

In order to determine whether the distance s0,o − s0,e is safe or not, we first use
Eq. (3) to predict the movement of the ego vehicle se(t) and the other vehicle so(t) over

2 NGSIM has identified the other vehicle for each ego vehicle in the US-101 Highway data set.
3 We use Lagrange’s notation f ′ and f ′′ to denote the first and the second derivative of f .



Table 1: Four cases of stopping times and the corresponding equations of se(t) = so(t).

0 ≤ t ≤ tstop,e tstop,e < t

0 ≤ t ≤ tstop,o
a pe(t) = po(t)

b pe(tstop,e) = po(t)

tstop,o < t c pe(t) = po(tstop,o)
d pe(tstop,e) = po(tstop,o)

time. Then, a collision will occur if we can find future time t such that se(t) = so(t).
To generalise this predicate, we define collision over a set of real numbers T ⊆ R as
follows:

collision(T ) := (∃t ∈ T. se(t) = so(t)) . (4)

Equations (1) to (3), assumptions 1 to 3, and the definition in (4) above are our for-
malisation of the safe distance rule from the Vienna Convention on Road Traffic. The
remaining results presented in this paper are deduced from there. The deductions are
also formally checked by Isabelle theorem prover.

3 Logical Analysis of the Safe Distance Problem

This section analyses the safe distance problem by performing two case distinctions
based on stopping times and stopping distances. The first case distinction (Sec. 3.1) is
more suitable for checking whether there will be a collision or not. The second case dis-
tinction (Sec. 3.2) meanwhile is about eliminating the existential quantifier in Eq. (4)
and rearranging the resulting formula such that one can obtain lower bounds for the ini-
tial distance s0,o − s0,e that is still safe. In principle, after resolving the discrete jumps,
this quantifier elimination for real arithmetic could be achieved by automatic proce-
dures as implemented in modern computer algebra systems (CASs). There is even a
proof-producing procedure implemented in the HOL-Light theorem prover [17]. How-
ever, our seven-variable formula appears to be too complex for HOL-Light’s quantifier
elimination procedure. Therefore, manually finding this lower bound with an interactive
theorem prover is necessary. This makes our results more robust against changes in the
formalisation and more readable compared to those from CASs’.

3.1 Case Distinction Based on Stopping Times

To check for collisions, we need to find the solution of Eq. (4). However, finding the
solution is problematic due to the occurrences of the if-construct in the definition of
the overall movement in Eq. (3). Therefore, we perform case distinction based on two
stopping times conditions: 0 ≤ t ≤ tstop and tstop < t for both vehicles. This produces
four cases in total (see Tab. 1). Each case is the equation where se(t) = so(t) with
functions se(t) and so(t) are substituted as in Eq. (3), depending on which stopping
time condition holds. Since each case is a pure quadratic equation, we can use a decision
procedure for finding roots of univariate polynomials for each case. A checker based on
such a decision procedure is described in Sec. 4.1.
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Fig. 2: Three cases obtained from case distinction based on stopping distances.

3.2 Case Distinction Based on Stopping Distances

Figure 2 illustrates the case distinction based on stopping distances. It plots an example
of overall movement for the other vehicle so(t) and divides this movement into three
regions (cases) where a stopping distance of the ego vehicle sstop,e := se(tstop,e) could
be located:

1 . sstop,e < s0,o;
2 . sstop,o ≤ sstop,e.
3 . s0,o ≤ sstop,e < sstop,o.

These stopping distances can be obtained by substituting tstop in Eq. (2) to s in Eq. (3)
for the ego and the other vehicle as follows:

sstop,e = s0,e −
v2e

2 · ae
and sstop,o = s0,o −

v2o
2 · ao

. (5)

For any case in which collision freedom can be deduced, we rearrange the terms and
the deduction into the following pattern:

s0,o − s0,e > safe-distance (ae, ve, ao, vo) =⇒ precondition (ae, ve, ao, vo) =⇒
¬ collision [0;∞) . (6)

This pattern has the interpretation that if the initial distance s0,o − s0,e is bigger than
the expression safe-distance (ae, ve, ao, vo) and the precondition (ae, ve, ao, vo) holds,
too, then we can guarantee that there will be no collision. We claim that the expres-
sion safe-distance (ae, ve, ao, vo) defines the notion of safe distance prescriptively; one
can easily check whether a collision exists by comparing the initial distance with this
expression.



In the rest of this section, we prove three theorems—one for each of these three
cases—which determine whether there is a collision or not. As an overview, colli-
sion freedom can be deduced in case 1 while collision can be deduced in case 2 . In
case 3 , collision depends on further conditions than just the premise s0,o ≤ sstop,e <
sstop,o.

Background formalisation. Consider the quadratic equations of the form p(x) := ax2+
bx+cwith the discriminantD := b2−4ac. The analysis of the movement can be carried
out with the following well-known mathematical facts about quadratic forms.

– Solution of quadratic equation:

D ≥ 0 =⇒ x1,2 :=
−b±

√
D

2a
(7)

a 6= 0 =⇒ p(x) = 0 ⇐⇒ (D ≥ 0 ∧ (x = x1 ∨ x = x2)) (8)

– Condition for convexity:

x < y < z ∧ p(x) > p(y) ≤ p(z) =⇒ a > 0 (9)

– Monotonicity:

(t ≤ u =⇒ s(t) ≤ s(u)) ∧ (t < u ∧ u ≤ tstop =⇒ s(t) < s(u)) (10)

– Maximum at the stopping time:

p(t) ≤ p(tstop) ∧ s(t) ≤ s(tstop) (11)

Because these are all basic, well-known facts, one can expect that the overhead of using
a theorem prover be kept within limits. Indeed, all of the facts in Eq. (7) to (11) can
be proved automatically with one of Isabelle’s automatic provers: the sum-of-squares
methods (ported from Harrison [11]) or rewriting of arithmetic expressions combined
with classical reasoning.

Theorems We start with the first theorem for case 1 which states that this case implies
collision freedom. Intuitively speaking, there will be no collision in this case because
the ego vehicle is located so far that it stops before the initial position of the other
vehicle.

Theorem 1 (Obvious collision freedom in case 1 ).

sstop,e < s0,o =⇒ ¬ collision [0;∞) (12)

Proof. This is true because se(t) < so(t) holds for every time t ≥ 0: se(t) ≤ se(tstop,e) =
sstop,e < s0,o = so(0) ≤ so(t) due to transitivity, the assumption, and monotonicity of s
in Eq. (10), and the maximum at the stopping time in Eq. (11). ut



Since this case implies absence of collision, we can unfold the definition of sstop,e in
Eq. (5) and rearrange Theorem 1 according to the pattern in Eq. (6) into the following
safe distance expression:

safe-distance1 := − v2e
2 · ae

(13)

For case 2 , we first give the following lemma which provides a sufficient condition
for a collision in a bounded interval. It follows directly from the continuity of s and an
application of the intermediate value theorem for so − se between 0 and t.

Lemma 1 (Upper bounds on collision time).

(se(t) ≥ so(t) =⇒ collision [0; t]) ∧ (se(t) > so(t) =⇒ collision [0; t))

Then, the following theorem states that case 2 necessarily implies a collision.

Theorem 2 (Obvious collision in case 2 ).

sstop,e ≥ sstop,o =⇒ collision [0;∞)

Proof. Since by definition sstop,e = se(tstop,e) and sstop,o = so(tstop,o), setting t :=
max {tstop,e, tstop,o} in Lemma 1 above proves that this case implies a collision. ut

Since case 2 implies collision, no safe distance expression is produced from the logical
analysis of case 2 .

We now consider case 3 , where the ego vehicle stops behind the other vehicle.
There can still be a collision, i.e. the movement of the ego vehicle can intersect the
movement of the other vehicle and still stop behind the other vehicle (see Fig. 2). The
following lemma states that a collision (if any) in case 3 must occur while both cars are
still moving. This lemma therefore allows us to reduce the reasoning to the continuous
part p of the movement s.

Lemma 2 (Collision within stopping times in case 3 ).

s0,o ≤ sstop,e < sstop,o =⇒
collision [0;∞) ⇐⇒ collision (0;min {tstop,e, tstop,o}) (14)

Proof. The “⇐=”-part is obvious and we only prove the “=⇒”-part. If a collision hap-
pens at time t while one of the vehicles has already stopped, then it must be the ego
vehicle which has stopped (tstop,e < t). Also, we have se(tstop,e) > so(tstop,e) because
according to Eq. (10), so is strictly increasing in [tstop,e; t] (see Fig. 2). Then, Lemma 1
yields a suitable witness for an earlier collision t′ < tstop,e. The whole proof takes just
about 80 lines in the formalisation. ut

Then, the following theorem characterises the conditions for ensuring a collision in
case 3 .

Theorem 3 (Conditional collision in case 3 ).

s0,o ≤ sstop,e < sstop,o =⇒ collision [0;∞) ⇐⇒

ao > ae ∧ vo < ve ∧ s0,o − s0,e ≤
(vo − ve)

2

2 · (ao − ae)
∧ tstop,e < tstop,o (15)



Proof. (“⇐=”.) Case 3 and Eqs. (7), (8), and (15) yield a root of po − pe, which
is contained in the interval (0;min{tstop,e, tstop,o}). The root is therefore also a root of
so − se and therefore witnesses collision [0;∞).

Only if (“=⇒”)-part of the conclusion. From collision [0;∞), we obtain a root t with
so(t) − se(t) = 0. Then, Lemma 2 allows us to deduce po(t) − pe(t) = 0 and condi-
tion (9) for convexity (for po − pe at times 0 < t < min{tstop,e, tstop,o}) yields ao > ae.
This gives, together with the fact that the discriminant of po−pe is nonnegative accord-
ing to Eq. (8), the remaining conjuncts of Eq. (15) after some arithmetic manipulations
and reasoning. The whole proof takes about 130 lines in the formalisation. ut

In order to unify this theorem with the pattern in (6), we negate the logical equivalence
in (15) and rearrange the theorem as follows.

s0,o−s0,e >
v2o

2 · ao
− v2e
2 · ae

=⇒ s0,o−s0,e >
(vo − ve)

2

2 · (ao − ae)
=⇒ s0,o ≤ sstop,e =⇒

(ao > ae ∧ vo < ve ∧ tstop,e < tstop,o) =⇒ ¬ collision [0;∞) (16)

This reformulation fits the pattern in (6) and now we have two possible safe distance
expressions and one for precondition:

safe-distance2 :=
v2o

2 · ao
− v2e

2 · ae
safe-distance3 :=

(vo − ve)
2

2 · (ao − ae)
,

precondition := s0,o ≤ sstop,e ∧ (ao > ae ∧ vo < ve ∧ tstop,e < tstop,o) (17)

To choose between these two expressions, we use the following lemma which deter-
mines their relative position.

Lemma 3 (Relative position of safe distance expressions).

ao > ae =⇒ safe-distance2 ≤ safe-distance3

Proof. We prove this lemma by multiplying both sides with the multiplier 2 · (a0 − ae)
which is positive. Then, we reason backwards by performing arithmetical reasoning
which eventually leads to 0 ≤ (tstop,e − tstop,o)

2 which is always true. ut

With this lemma, we choose safe-distance3 when the precondition holds. Otherwise,
it must be the case that ¬ (ao > ae ∧ vo < ve ∧ tstop,e < tstop,o)—since we assume
case 3 . Then, Theorem 3 ensures that safe-distance2 is indeed a prescriptive definition
of safe distance.

Overall definition. To sum up our logical analysis, safe-distance1 always holds as a
prescriptive definition of the safe distance. Expression safe-distance3 holds when it is
case 3 and precondition holds, while safe-distance2 is valid when it is still case 3 but
precondition does not hold.



4 Designing Sound Checkers for the Safe Distance Rule

We use the analyses from Sec. 3 to guide the design of sound and complete abstract
checkers in Sec. 4.1; these checkers are defined in terms of real numbers and other
non-executable constructs. We then show how to turn them into executable checkers by
using exact rational arithmetic, symbolic decision procedures, or interval arithmetic in
Sec. 4.2.

4.1 Abstract Checkers

We design two checkers here: a descriptive and a prescriptive version. Both checkers
are derived from the case distinction in Sec. 3.1 and Sec. 3.2, respectively.

Descriptive Checker From the case distinction based on stopping times in Sec. 3.1, we
conclude that the problem of detecting collision is reduced into the problem of finding
solutions for each entry in Tab. 1 in the corresponding time interval. This is formalised
with the predicate has-root-in, defined as f(t) has-root-in T ←→ ∃t ∈ T. f(t) = 0.
A checker based on this approach can then be defined as follows.

checkerd := ¬


pe(t)− po(t) has-root-in [0;min {tstop,e, tstop,o}] ∨

pe(tstop,e)− po(t) has-root-in [tstop,e; tstop,o] ∨
po(tstop,o)− pe(t) has-root-in [tstop,o; tstop,e] ∨

pe(tstop,e)− po(tstop,o) has-root-in [max {tstop,e, tstop,e};∞)


The following theorem ensures that the checker is both sound and complete. It follows
immediately from the definitions of braking movement p, stopping time tstop, predicate
has-root-in, and predicate collision:

Theorem 4 (Correctness of abstract descriptive checker).

checkerd ⇐⇒ ¬collision [0;∞)

Prescriptive Checker From the case distinction based on stopping distances in Sec. 3.2,
we have defined three expressions of safe distances. Each expression has associated
preconditions for which the expression is valid. We can design the prescriptive checker
from these expressions as follows:

checkerp := let dist = s0,o − s0,e in
if dist > safe-distance1 then True

else if a0 > ae ∧ vo < ve ∧ tstop,e < tstop,o then dist > safe-distance3
else dist > safe-distance2

The following theorem states that the prescriptive checker is also sound and complete.

Theorem 5 (Correctness of abstract prescriptive checker).

checkerp ⇐⇒ ¬collision [0;∞)

Proof. The soundness follows from the Theorem 1, 2, and 3 in Sec. 3 while the com-
pleteness comes from the fact that case 1 , 2 , and 3 cover all possible cases. ut



4.2 Executable Checkers

A fragment of HOL can be seen as a functional programming language. When we talk
about executable specifications, we talk about specifications within that fragment. In
principle, such specifications could be evaluated inside Isabelle’s kernel. For a more
efficient evaluation, Isabelle/HOL comes with a code generator [10], which translates
executable specifications to code for (functional) programming languages like SML,
OCaml, Scala, or Haskell. We will generated the code for SML to evaluate the US-101
Highway data set in Sec. 5.

The aforementioned checkers checkerd and checkerp are formally proved correct,
but are not executable, because they involve e.g., real numbers or quantifiers over real
numbers (via has-root-in). We therefore refine them towards executable formulations.
To this end, Isabelle provides a variety of techniques, and we explore the use of the
following:

1. Exact arithmetic on rational numbers.
Exact arithmetic on rational numbers can be directly used for checkerp if all param-
eters are rational numbers. It requires, however, the manual work of formalising the
analysis presented in Section 3.2.

2. Decision procedure for finding roots of univariate polynomials.
By contrast, using a decision procedure based on Sturm sequences for has-root-in
in checkerd requires almost no manual reasoning. However, it has to be used as a
black-box method and might not be easy to extend, if it is required.

3. Interval arithmetic.
With interval arithmetic, one can include uncertainties into parameters of the model
and could even address non-polynomial problems. Numerical uncertainties can,
however, cause the checkers to be incomplete.

Exact rational arithmetic. All the operations occurring in checkerp could be executed
on rational numbers. Under the assumption that all the parameters are rational num-
bers, checkerp can be executed using the standard approach of data-refinement [9] for
real numbers in Isabelle/HOL. That is, the code generator is instructed to represent real
numbers as a data type with a constructor Ratreal : Q → R. Then, operations on the
rational subset of the real numbers are defined by pattern matching on the constructor,
and performing the corresponding operation on rational numbers. For example, addi-
tion +R on Ratreal-constructed real numbers can be implemented with addition +Q
on rational numbers: Ratreal(p) +R Ratreal(q) = Ratreal(p+Q q). Therefore, as long
as the input is given as rational numbers, code generation for checkerp works without
further manual setup. Correctness follows from Theorem 5.

Sturm sequences. A different approach can be followed by looking at the prescriptive
formulation checkerd. To evaluate has-root-in, we can resort to a decision procedure
based on Sturm sequences which been formalised in Isabelle [5]. The interface to this
decision procedure is an executable function count-roots(p, I), which returns the num-
ber of roots of a given univariate polynomial p in a given interval I . It satisfies the
proposition p has-root-in T ←− (count-roots(p, I) > 0) and can therefore be used as
an executable specification for the occurrences of has-root-in in checkerd. Correctness
follows from Theorem 4.



Interval arithmetic. The previous two approaches both assume that the parameters are
given as exact rational numbers. One could argue that this is an unrealistic assumption,
because real-world data cannot be measured exactly. For this checker, we therefore al-
low intervals of parameters. Isabelle’s approximation [12] method allows us to interpret
checkerp (a formula with inequalities over real numbers) as an expression in interval
arithmetic. The resulting checker checkeri takes a Cartesian product of intervals as en-
closure for the parameters as input.

Theorem 6 (Correctness of Checker).
If (se, ve, ae, so, vo, ao) ∈ Se × Ve ×Ae × So × Vo ×Ao, then

checkeri (Se, Ve, Ae, So, Vo, Ao) =⇒ ¬collision[0;∞)

Proof. The theorem follows directly from the correctness of approximation. ut

Note that we lose completeness in this approach; the checker could fail to prove collision-
freedom because of imprecision in the approximate calculations. Such imprecision oc-
curs because of, e.g., finite precision calculations or case distinctions that cannot be
resolved. It might be that in a case distinction a < b ∨ a ≥ b, none of the two disjuncts
can be proved (consider e.g. a ∈ [0; 1], b ∈ [0; 1]) with just interval arithmetic. Track-
ing dependencies between input variables or interval constraint propagation approaches
could alleviate this problem.

5 Data Analysis of the Safe Distance Problem

The traffic data used in this evaluation are obtained from the Next Generation SIM-
ulation (NGSIM) project of the U.S. Department of Transportation Federal Highway
Administration (FHWA). We specifically focus on the data set for the US Highway 101
(US-101). The length of the study area is about 640 meters with five lanes in total and
the data was collected for 45 minutes. For every identified car, the data set provides in-
formation such as the position, speed, acceleration, length of the vehicle, and distance
to the other vehicle with a time resolution of 0.1 s.

The US-101 data set does not provide any information about the maximum decel-
eration of the vehicles. The maximum deceleration value can be obtain from the values
of tyre friction on dry condition. We take these values from the domain of traffic colli-
sion reconstruction [6] which has been used by lawyers in court [3]. The tyre friction
values for automobile and motorcycle are µmotor = 0.75 and µauto = 0.8, respectively.
As for truck and bus, we take the value from [19], i.e., µtruck = 0.7. By assuming
g = 9.8m s−2, these tyre friction values correspond to maximum deceleration values
of amotor = −7.35m s−2, aauto = −7.84m s−2, and atruck = −6.86m s−2.

We evaluate three executable checkers: (1) the exact rational arithmetic-based pre-
scriptive checker, (2) the Sturm sequences-based descriptive checker, and (3) the in-
terval arithmetic-based prescriptive checker. Interval arithmetic-based checker is pa-
rameterised with uncertainty u which represents the measurement error in the data.
This parameter, however, does not represent the error due to floating-point computation
which is handled internally by the approximation decision procedure in this interval



Table 2: Number of detected safe distance situations and time performance of each
checker (for N = 3,915,006 data points).

Checker u Safe dist. (%) Time

DescriptiveSturm - 99.74% 1068.32 s

Prescriptiveexact - 99.74% 168.93 s

Prescriptiveinterval 7 99.05% 352.73 s

Prescriptiveinterval 5 97.48% 323.56 s

Prescriptiveinterval 3 90.92% 324.23 s

arithmetic-based checker. Each time this checker evaluates an arithmetic expression,
the interval of each evaluated subexpression is enlarged accordingly so as to include the
error due to fixed precision of floating-point numbers.

Two aspects are measured for each checker: the number of detected safe distance
situations and the CPU time for checking the whole data set. The measurement is per-
formed with an Intel i5-4330M 2.80GHz processor and 12GB of RAM. We draw four
conclusions from the results in Tab. 2:

1. Both prescriptiveexact and descriptiveSturm checkers detect the same number of safe
distance situations. This is not surprising since we have formally proved the cor-
rectness of both checkers and they use exact arithmetic.

2. Interval arithmetic-based checkers detect fewer safe distance situations than the
other checkers do. This shows that this checker is more conservative and incom-
plete.

3. The number of safe distance scenario detected decreases as the uncertainty pa-
rameter u decreases. This is because the uncertainty parameter u corresponds to
the uncertainty value of 2−u and, hence, a decrease of uncertainty parameter u is
equivalent to an increase of the uncertainty value.

4. The prescriptive checker has a better time performance than the descriptive checker.
This is understandable because the descriptive checker is based on a more general
decision procedure (Sturm sequences), and the prescriptive checker is heavily tuned
for this safe distance problem.

5. The prescriptiveexact checker detects safe distance situations approximately two
times faster than those prescriptiveinterval checkers. This is because the critical factor
in the time performance of these two types of checkers lies in the computation of
dist in checkerp. Subtracting an interval by another interval essentially consists of
two exact arithmetic subtractions — one each for the lower bound and upper bound.

Two caveats regarding the results from Tab. 2 are worth mentioning here. First,
when the prescriptiveexact and descriptiveSturm checker return False, they do not detect
a collision but a guaranteed-to-happen collision if the ego and the other vehicles brake
with full deceleration. Second, when the prescriptiveinterval checkers return False, no
conclusion can be drawn concerning the potential collision due to violating safe distance
rule (see Thm. 6). This inconclusive answer is because either the uncertainty u for the
data is too large or the precision for the floating-point approximation is too limited.



6 Related Work

In this section, we compare our formalisation with results from the domain of trans-
portation engineering and formal verification. One notable difference between our work
with the others is that we ignore the reaction time for the ego vehicle. Hence, when
comparing our work with others, those parameters are set to zero. In general, all related
works discussed here except the work by Goodloe et al. [8] are incomplete, and those
in the domain of transportation engineering (discussed here) are not formally proved.

In the domain of traffic engineering, there are two areas which are related to our
work: traffic simulation and collision warning. Mazda and PATHS algorithms [1]—
for collision warning—and Gipps’s model [7]—for traffic simulation—formulate the
notion of safe distance which exactly match our second definition of safe distance in
Eq. (17). Qu et al. [22] analyse the safe distance problem by applying a technique from
molecular dynamics. Unlike the case distinction in our work, they have three cases
which depend on the relationship between ve and vo. Their notion of safe distance for
case ve > vo and ve = vo matches exactly with our second definition of safe distance in
Eq. (17). However, their notion of safe distance when ve < vo does not match with any
of our definitions of safe distance due to different assumptions. A more detailed analysis
for the safe distance problem is given by Chen et al. [4]. If we consider their single
lane scenario only, their definitions of safe distance for stationary and decelerating case
exactly match our first and second definition of safe distance in Eq. (13) and Eq. (17),
respectively.

The related work described up until now always assume that the maximum decel-
eration for all vehicles is the same. Therefore, none of the works described previously
matches our third definition of safe distance. Wilson [25] performs case distinction
based on the stopping times and graphically identifies the region called “envelope of
opportunity” for each case. This envelope of opportunity divides the plot between the
reaction time and the deceleration of the ego vehicle into safe and unsafe region. The
envelope of opportunity for tstop,e > tstop,o and tstop,e < tstop,o match our second and
third definition of safe distance in Eq. (17), respectively.

Loos et al. [15] verify ACC formally in KeYmaera where, in their model of ACC,
they axiomatise that a safe distance is formalised as the second safe distance definition
in Eq. (17). This safe distance definition is then modified to take into account all pos-
sible impacts of control decisions for the future of reaction time, and then setting it as
an invariant for the controller. They then use the proof calculus for the quantified dif-
ferential dynamic logic (QdL) [21] to prove that the controller maintains this invariant,
which in turn implies the axiomatised safe distance in Eq. (17) by transitivity. Our work
completes theirs by proving that this axiomatised safe distance is indeed safe. How-
ever, their controller is safe on the assumption that all vehicles have the same braking
performance.

Although Goodloe et al. [8] formally verify programs for aerospace applications,
namely airborne conflict detection and resolution (CD&R), their approach is in general
very similar to ours. Their objective is to verify whether a checker correctly determines
that two aircraft maintain a minimum separation distance. Similar to our work, they
also define an abstract checker, prove its soundness and completeness in PVS theorem
prover, derive a concrete checker in C, and prove that the refinement from abstract to



concrete checker is correct in Frama-C. Our work differs in the step to convert from
abstract to concrete checker. Thanks to the code generation facility in Isabelle, we can
generate the concrete checker automatically in SML.

7 Conclusion and Future Work

We have formalised descriptive and prescriptive versions of the safe distance traffic rule
from the Vienna Convention on Road Traffic. For each version, we have also derived
two corresponding abstract checkers, which operate on real numbers, and proved their
soundness and completeness. The prescriptive checker is refined further into a concrete
checker in SML which operates on rational numbers. Interval arithmetic is used here
to ensure that it preserves the soundness property despite the error due to the limited
precision of floating-point numbers. We then use these two checkers together with the
Sturm sequences-based checker to evaluate the US-101 Highway data set from NGSIM.

Our work serves as an example of how one can use theorem provers, especially Is-
abelle, to turn a vague requirement from a legal text into a more precise and concrete
specification. Isabelle, as a framework, also provides us with a unified platform to prove
theorems, to design a checker, to prove the soundness of the checker, and to generate
the (functional) code automatically. From the evaluation of the data set, we found that
at least 90% of the time, each traffic participant—if we assume them to be autonomous
vehicles—obeys the safe distance rule. Our work advances the state-of-the-art by pro-
viding a unique combination of formally proved and complete safe distance definitions
which generalise all definitions in the literature, formally proved checkers without strict
assumptions on braking performance, and real data evaluation.

We wish to extend this work by considering the reaction time of the ego vehicle. It
might also be interesting to see how our third definition of safe distance can be incorpo-
rated into the controller in [15] when considering vehicles with different braking perfor-
mance. To make the reasoning easier, we would like to have more automation for real
arithmetic in Isabelle/HOL. We assume that the verification could be more organised
by following a dedicated calculus for hybrid systems [20], which could be embedded in
Isabelle/HOL. Our checker could also be extended with reachability analysis [2,13] in
order to verify a continuous trace. Lastly, aligned with our previous work in formalisa-
tion of traffic rules [23], we wish to increase the number of formalised traffic rules such
that the liability issue can be deduced automatically with our checkers.
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