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Abstract— Driving assistance and safety systems are based and tracking applications. The examples of pose estimation
on data processing of different sensor information. The envi- and 3D reconstruction show the potential of a single camera.
ronment of a vehicle is detected by these sensing elements forUrban scenes show a complex traffic behavior and it is the

accident avoidance or reduction of the accident severity. Due to hall ¢ luat h situati by drivi it
package size and cost reasons, only selective sensors are used f challenge to evaluate such situations by driving assistanc

standard-production of a vehicle. These integrated sensors hav and safety systems. The classification of static and ndie-sta
to fulfill several tasks at once and to serve different applications objects like pedestrians is required. On closer examinatfo
Especially the processed data of a grayscale camera is usedyrban scenes, the line-based elements like buildings aye ve
for parking assistant or lane detection system. But known qominant. With our approach we focus on the detection and

from computer vision, a three-dimensional reconstruction of tracki fth line-based feat f b t-th
feature elements is possible by analyzing image sequences. This racking or these line-based features for subsequent-three

research considers corner detection to create point clouds in dimensiona! reco-nstruction. o . o
space. But the dominant elements of an urban environment,  As described in [11] and [1] existing literature distin-

more precisely buildings, are characterized by edges. With this guishes between two different types of tracking methods:

paper we focus on the robust tracking and three-dimensional . L
reconstruction of line-based features. In this context we prese 1) The tracking of edges based on their similarity between

our algorithm, defining and analyzing edge tolerances, which two images, i.e. edges are tracked by comparison of
is called Tube Principle. The accuracy of this approach is their attributes such as length, orientation and sur-
determined by comparing the three-dimensional lines with rounding information.

landmarks of high-precise maps. 2) The tracking of edges based on the analysis of the

structure of all detected edges or a subset of those. For
this kind of edge tracking considerably more geometric

The ana|ySiS and description Of the Vehicle enVironment and topo'ogica| information about the edges and their
are based on sensor data. Especially the aim of autonomous  sjtyation are necessary.

driving requires a r_eliable sensorial COVG”_”Q_‘?f the ent_irThe last mentioned method is for multiple reasons not
area around the vehicle. There are two possibilities toesehi applicable. Some of those methods rely on intersectiontgoin

a dense observation of the vehicle’s environment: Increage o edges, i.e. corner of objects to identify the struetir
the number of sensors or improve the sensitivity of avzafizlablthe edges. But due to occlusions like parking cars we only
sensors. We take the second fact into account and anal%ﬁe vertical edges into account, which do not intersect by

the possibilities of a grayscale camera to extract infoipnat definition. Therefore, the developed tracking processits i
about the surrounding urban area. the first type of tracking method.

Known from computer vision the camera delivers more Fig. 1 gives an overview of our method which is handled

than two-dimensional image information. The pose of thgy s paper. The innovative steps for more robustness and
camera can be estimated by comparing 3D model 'nformﬂigher performance are gray highlighted. For evaluatiom, w

tion with the image view, see [5] and [7]. This approact,gmnare the 3D reconstructed information with high-precis
requires a certain edge extraction method. maps (GI3$)

Furthermore, the three-dimensional structure of an olgjaat
be found by analyzing image sequences over time, called Il. FEATURE DETECTION

structure from motion. The motion of an object, which There are several reasons to choose edges as features
is described by corner points, is tracked from one imag@at are extracted from the images and tracked over an
to the next. The observed feature trajectories are used jljage sequence to eventually reconstruct them into the-thre
reconstruct their three-dimensional position and the camegimensional space. In the first place, they are easily ifiedti

motion, compare [6]. In [13] one method of tracking andy, the images due to their change in contrast. Secondly, the
detection of point features is described. Tissainayagaah et

in [12] analyze the performance of different corner detexto !Global Information System

I. INTRODUCTION
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Fig. 1. Overview of robust line tracking and 3D reconstroicti

images are taken by a camera which is mainly moving i
the ground plane. Therefore, the limitation on vertical edg
features has the advantage that the tracking directionris V(%J
tical to the characteristical contrast change. And evéiytua
edges allow a considerably denser description of the obder
environment than for instance points do. Furthermore,
urban areas where a lot of man-made objects are located idea
conditions exist for an image processing algorithm workinéJr

with nearly vertical edges.

A. Edge Extraction

\i/ﬁy distribution of a sufficient number of points on the edge
It

that an object edge can be detected as several edge parts due
to insufficient lighting or a slight tilt. That is why the line
tracking algorithm does not only have to find associations
between edges of different images but also has to associate
edge parts within a single image.

B. Edge Tracking by Points

A reliable detection of vertical edges in the two di-
mensional images is the first step to a three dimensional
architectural model of the surrounding area. In a second
step the detected lines have to be tracked between several
images. These associations are essential for the latemshow
3D reconstruction which uses the temporal associations to
add a third dimension to the given two-dimensional images.

The line tracking algorithm of Tian et al. [11] does not
track the edge itself but good trackable points on the edge.
Feature points with a high probability of recognition in the
next image are tracked and attached to the closest edge
if their distances are less than one pixel. In this paper
the approach of Tian et al. is extended so that points are
Birectly distributed on the edge. The advantage is, that onl
oints, which are already associated with an edge, have to be
racked. Moreover, these features are good to observe due to
the contrast change in the orthogonal direction to the edge.

Is possible to avoid a negative influence of the aperture
oblem on the edge tracking.
A 2D-edgex is defined by a start point

kstart - [xstartv ystart] (1)

For a reliable extraction of the line features differentyng an end point
methods were investigated. The best solution for the edge

extraction problem is a combination of Canny and Sobel

Kena = [xendv yend} . (2)

operator. In a first step the Canny operator is used to extract

all edges out of the grayscale image. Subsequently, thel So
operator is applied to the grayscale image so that the sl

ope

pdditionally, every edgex! has a detection time¢ and
namen, which is an element of the set of namB.

direction can be received from the resulting Sobel imagg.vith the help of this name the edges can be explicitly

Thus, every edge which slope is within a certain limite
range is passed to the tracking algorithm which is describ

Slistinguished from each other and associated with edges fro
&Qjher time steps. Moreover, the start point is always defined

in the following section. Fig. 2 shows the reliable found®?Y Smaller y-value, i.eysiare < Yena- _
image edges of an outdoor scene which illustrate a comple>§T0 track the edges from one image to the other, points

urban environment.
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Ph,.n, are equidistantly distributed on the edge as shown
in Figure 3. At timet the gray points are scattered on the
detected edges in an arbitrary distaacé&uch a point on an
edge is defined as

Pr,n, = [PrsDy] ®3)

at timet¢ and can be distinguished from other points by its
namen,, € N}, € INp (set of all point names) and the edge
namen,, € IN%. which allows a mapping of the point to an

edgex!, .

[ The parametes is a free selectable distance between the
. _ distributed points on the edges. In the developed algorithm
Fig. 2. Extracted edges of an outdoor scene by using CannySabel . .
operator amaz 1S provided to calculate the parametens

a = lﬁ S Amaz (4)

The only drawback of the described extraction method is s
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Fig. 3. Distribution of points that have to be tracked on edge ) ) )
Fig. 4. Schematic demonstration of a tube

with the edge’s length, = |kena — kstart| @nd the point

stepss = sup(—=—) with s € IN. In the presented algorithm gaps or occlusions can lead to a detection of several

Le
Amag i 1
a point is set at the start and at the end of the edge and the edge parts instead of an entlrg edge. Due to the
claim for edges as long as possible for the later 3D

remaining points are distributed in between. X
At the beginning of the edge tracking the edg® is reconstruction, a method has to be found to merge the
= edge parts of the sdKk! into a smaller set with

mapped to a set of poini8  with the help of the difference parts
" complete edge:

vector between the start and end point of the edge extract .
P g 2) The second case results from the edge tracking method

kpirr = kend — Kstart (5) explained before. From the second image on, both ex-
W0 PO tracted edge¥? ,,.,., and tracked edgdg*~1)—* are
. T e (6) provided. The primary intention is to find the relation
Pr.n, = Kstart +7-a-Kpisy between the (tracked) edges from the previous image

and the (extracted) edges from the current image. With
an ideal calculation of the optical flow this would
be possible by a simple comparison of the two sets.
However, neither the given scene, the edge extraction
nor the calculation of the optical flow are ideal so that
the edges in the sefs! ,, .. andK(*~1)=* belonging

to the same edge in the three-dimensional space are not

with i = 0,1,2,...,s = |P% | — 1. Subsequently, the set
of points is tracked by a pyramidal Lucas-Kanade algorithm
that is described in [2]. This optical flow calculation medho
has the advantage that its tracking width is increased by the
pyramidal implementation. In Fig. 3 the optical flod to

the next image for each point is shown as an arrow so that
the point set of an edg, maps to a point seP’"!

identical.
IPZK = Pfltl : For these reasons thiebe principlewas developed to find
_ . . A% d,\" (7) associations between extracted edges of different tinpsste
Pron, = Pnon, T A0, = <py) + (dy> . The edge segments are presorted in so-callbds which

is an area placed around an already processed edge. If the
Finally, the point sets]Pfj;l C P!, j.e. all points that next processed edge segment lies within such a tube it is
belong to an edge with the nameg, are mapped again with grouped with the origin edge segment of the tube in a first
the RANSAC [4] method to an edge step. The schematic description of a tube around an edge
Pl it K is shown in Fig. 4. It has to be mentioned that the roll
e T movement of the vehicle can be compensated by using a
dist(pyt,, k') <€ VPRt € PRlinsac, SPLT gyro cluster.
(8) For the origin edge segment with start and end point

From the second image on there are already points on thetart = [mstqmlystart] f‘”d Kend = [Tend; Yena] the two
edges from former time steps. Those points can be shiftd§Pe boundarieg” andg™ are determined with the distance
on the edge by the aperture problem so that new points haQ&"«ube ON the left and right side of the edge. So that the
to be added. They are added if a part longer than, is two limiting lines are defined each with two points:

not covered by the existing points. K, = (ggstm - rtube) Ko (mend — Ttube> ¢
C. Edge Grouping by Collection in Tubes ‘ Ystart ) Yend )
In some cases the. edge tracking algorithm requires &r (xstm +rtube>’ roo_ <:L'end+rtube> cq
combination of edges: start Ystart end Yend
1) The chosen edge extraction method can produce a (10)

fragmented detection of an edge. Respectively, opticgor a reductign of computing time the horizontal dis.tance
ri.pe 1S Used instead of the vertical to the edgg.. This

2Random Sample Consensus simplification can be made because all input edges are nearly



vertical so that;,,

tube limits:

= rpe. The situation of the other edge
segmentk to the origin edge segment is calculated by
extending the edge to a ling and intersecting it with the
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Fig. 5. Partitioning and combination of edges in single frae-al and
inter-frame analysigt — 1) — ¢t

For the position of the two intersection poirisands,. the
following possibilities exist:

« The edge is within the tube left tilted:

E. Combination of Tracked and Extracted Edges

For the combination of the extracted edges out of the set

K., ... and tracked edges out of the &t~ —* also the

(Y1 < Ystart) N (Yr > Jena) (13)  tube method is used. The tolerance range is set around the

tracked ones and analyzed in a different way, see Fig. 5 at
« The edge is within the tube right tilted: time stept. Due to the fact that the extracted edgg, i qc
is more trusted than the tracked omé&'~1—? it is used

(Yr < Jstart) N (Y1 > Jena) (14)  as basis and enlarged by the tracked edge. This combination

_ _ . method is used because the edge coordinates from the image
« The edge is not entirely within the tube for all otherare more reliable than the tracked points and their regressi
combinations of the intersection points. line. Furthermore, the tracking of points added during this

« For the case that there are no intersection points the twgep is easier because they are situated exactly on the edge.
edge segments are parallel. In this case the distance

between the two segments is calculated to determirfe Tracking Results
whether the other edge segment is within the tube or

not Fig. 6 a) shows the extracted edges of the current time

stept related to their correspondences of a previous one. In
After all edge information are received and pre-sorted ieed diagram 6 b) the normalized frequency of tracked edges is
groups like Fig. 5, we decide whether the edges are combinegi$ualized in conjunction to a single frame. Only few edges
or partioned as described in the following sections. are not tracked especially why a subset of them already
moved out of the visible area. In summary more than fifty
percent of all recognized edges were tracked over at least 7
consecutive frames. The tube principle proofed to be a tobus
If a new incoming edgé. is located within a tube range tracking procedure. It was shown that the multi-purpose tub
of a previously received edgé; a combination is done. principle can be used to cope with gapped edges when
The lowest y-value is chosen as the new start point and tlalyzing single frames as well as the combination of edges
highest y-value marks the new end point of the combine&hen looking at multiple sequenced frames.
edge described with

D. Combination of Extracted Edge Segments

I1l. 3D RECONSTRUCTION

1
k2 = (x-;“"t> Ay < Yot (15) The robustness of tracking is a prerequisite step towards
start 3D reconstruction. The identification of static objectselik
buildings using prominent features is essential for the en-
K2 T2 if 12 1 16 vironmental capturing. In the following the termdge is
start = \ g2 ] Ystart < Ystart (16) transferred tdine because of changing to geometrical consid-
erations. The 3D reconstruction considers the associiaes! |
1 of image sequences and ignores the generated feature points
k2, = (%m) Jf gl > i (17) of the tracking process. The camera origin and the extracted
Yend edge of one image spans a plane, which can be obviously
used for this step. But it has to be mentioned that the 3D
K2 — (xgnd> it g2 >yl (18) reconstruction 'is very sgnsitive to roll'movements of thg ca
en yia) e en Therefore the intersection of two defined planes, relating t

different images of the sequence, generates a sloped line,

Additionally, a tolerance factor can be used to allow smallvhich is difficult to handle. For more robustness, the ciucia
gaps in between the segments, which then lead to combingaal angle can be additional determined by a gyro or an

edges, shown as combination case in Fig. 5.

inertial sensor cluster, which are available in a car, sée [8
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Fig. 8. Cascaded 3D reconstruction process of an image seguen

a) cascaded 3D reconstruction process of an image sequence.
Skipping images reflects the required camera motion. The
previous explanation regards to only one reconstructiep, st

but the features are tracked over a longer period. With
the combination of the iterative results, the quality of the
3D reconstructions improves. Therefore, the generatess lin

in 3D space are considered as noisy measurements. We
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detected edges of the sequence in [%]

suppose a normal distribution of the measurements and use
L I ||||||,||,|| L ol s s a I probabilistic basics to handle them. The expected value of
N L . one reconstructed base poinis defined by the average over
Seauencelength n frames] the time periodt from tycgin till teyq.
b) 1 tend
Fig. 6. Results of edge tracking a) Image with extracted e@gesk) plus E[L] = — Z L (19)
their identifier of time t and associated edges (white) of titep defore; n

t=tpegin

b) Frequency of tracked edges
The variance is described by equation 20, which supposes a
continuously process.

o=\ > (wh - Bl (20)

The comparison of the reconstructed results and the map
material requires a description of the uncertainty retptm

the ground. So the variance is transfered to the covariance
in the x-y-dimension.

tend
1
Covgy =~ > L.-L,| - E[L]-E[L,] (21)

t:tbegin

Fig. 7. 3D reconstruction by using baselines The uncertainty region of a reconstructed base point is
elliptical with the major axis along the line-of-sight. The
i i i _line approximation of the ellipsis and their intersection
Accordingly, we reduce the defined plane to a line which ig,cjation relating to different point of views generates
projected to the ground. extensive feature estimation on ground in a simple way.

A. Intersection of Baselines IV. MAP COMPARISON

The projection of the camera origii and the vertical  with a closer look onto an outdoor scene, vertical edges
edgeL of an image! generates base points on the groundiefer basically to buildings, their windows and doors. The
compare Fig. 7. The slight angle deviation of a vertical edggrecise map material, which is used for evaluation of the
is minimized by calculating the central poipt The defined 3D reconstructions includes only footprints of the buitgin
baselines of different images intersects at the base goint and no texture data. In contrast the usage of feature points
of the 3D reconstructed line. This method is preferred dU\Qoukj produce an expanded data volume and their adaption
to performance reasons. to building information is more difficulty.

B. Uncertainty of 3D Reconstruction A. Evaluation of 3D Reconstructions

The accuracy of 3D reconstruction depends on the tracking The evaluation step of the 3D reconstruction requires a
accuracy and the camera distance of two positions froprecise knowledge of the vehicle position and its orieotati
which to reconstruct. The bigger the position changes df/hereas the car pose is given in a simulation environment,
the camera the better is the 3D reconstruction of the edgeshas to be extensively determined in a real urban area by
That means also that features with a long distance to theference sensor technology. Fig. 9 shows the topview of the
camera are subjected to bigger errors. Fig. 8 shows ti3® reconstructions marked as blue crosses generated from
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Whereas, the expressian,s stands for all reconstruction
points, ng.¢ describes the amount of reconstructed base
points, where a corresponding outline of a building was
found.

The usage of the determined quality factor in the image
domain can badly handle wrong edge correspondences. But
this drawback is hopefully reduced with the transformation
onto ground plane and leads to a further improvement of
vision-based localization extending e.g. [3] or [9].

V. CONCLUSION

In this paper the potential of image edges as a tracked
and 3D reconstructed feature has been shown. The extraction

of these elements extends the description of the vehicle

Fig. 9. Evaluation of 3D reconstruction by map comparison

TABLE |
DEVIATION OF THE 3D RECONSTRUCTIONS

environment by camera. This approach as applied above
identifies the difficulties of each process step and deligers
balanced solution of performance, robustness and effigienc

We are able to generate local maps of reconstructed lines,

fNBumb?r (a0 R DevitatiO? _ DAv_erte_lge of all which are automatically evaluated by global map material.
Ol baseines| o econstruction in [m] | Deviations in [m] In reverse this gives the opportunity of analyzing differen
1 0,2506 . .
5 01973 pose hypotheses of the vehicle. Further work will handle the
3 0,1296 introduced two-dimensional map matching process in a deep
g 8%%33 way with the potential of lateral and longitudinal position
6 0.1608 0,2542 improvement.
7 0,1270
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