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Abstract— Driving assistance and safety systems are based
on data processing of different sensor information. The envi-
ronment of a vehicle is detected by these sensing elements for
accident avoidance or reduction of the accident severity. Due to
package size and cost reasons, only selective sensors are used for
standard-production of a vehicle. These integrated sensors have
to fulfill several tasks at once and to serve different applications.
Especially the processed data of a grayscale camera is used
for parking assistant or lane detection system. But known
from computer vision, a three-dimensional reconstruction of
feature elements is possible by analyzing image sequences. This
research considers corner detection to create point clouds in
space. But the dominant elements of an urban environment,
more precisely buildings, are characterized by edges. With this
paper we focus on the robust tracking and three-dimensional
reconstruction of line-based features. In this context we present
our algorithm, defining and analyzing edge tolerances, which
is called Tube Principle. The accuracy of this approach is
determined by comparing the three-dimensional lines with
landmarks of high-precise maps.

I. I NTRODUCTION

The analysis and description of the vehicle environment
are based on sensor data. Especially the aim of autonomous
driving requires a reliable sensorial covering of the entire
area around the vehicle. There are two possibilities to achieve
a dense observation of the vehicle’s environment: Increase
the number of sensors or improve the sensitivity of available
sensors. We take the second fact into account and analyze
the possibilities of a grayscale camera to extract information
about the surrounding urban area.

Known from computer vision the camera delivers more
than two-dimensional image information. The pose of the
camera can be estimated by comparing 3D model informa-
tion with the image view, see [5] and [7]. This approach
requires a certain edge extraction method.
Furthermore, the three-dimensional structure of an objectcan
be found by analyzing image sequences over time, called
structure from motion. The motion of an object, which
is described by corner points, is tracked from one image
to the next. The observed feature trajectories are used to
reconstruct their three-dimensional position and the camera
motion, compare [6]. In [13] one method of tracking and
detection of point features is described. Tissainayagam etal.
in [12] analyze the performance of different corner detectors

and tracking applications. The examples of pose estimation
and 3D reconstruction show the potential of a single camera.
Urban scenes show a complex traffic behavior and it is the
challenge to evaluate such situations by driving assistance
and safety systems. The classification of static and non-static
objects like pedestrians is required. On closer examination of
urban scenes, the line-based elements like buildings are very
dominant. With our approach we focus on the detection and
tracking of these line-based features for subsequent three-
dimensional reconstruction.

As described in [11] and [1] existing literature distin-
guishes between two different types of tracking methods:

1) The tracking of edges based on their similarity between
two images, i.e. edges are tracked by comparison of
their attributes such as length, orientation and sur-
rounding information.

2) The tracking of edges based on the analysis of the
structure of all detected edges or a subset of those. For
this kind of edge tracking considerably more geometric
and topological information about the edges and their
situation are necessary.

The last mentioned method is for multiple reasons not
applicable. Some of those methods rely on intersection points
of the edges, i.e. corner of objects to identify the structure of
the edges. But due to occlusions like parking cars we only
take vertical edges into account, which do not intersect by
definition. Therefore, the developed tracking process fits into
the first type of tracking method.

Fig. 1 gives an overview of our method which is handled
by this paper. The innovative steps for more robustness and
higher performance are gray highlighted. For evaluation, we
compare the 3D reconstructed information with high-precise
maps (GIS1).

II. FEATURE DETECTION

There are several reasons to choose edges as features
that are extracted from the images and tracked over an
image sequence to eventually reconstruct them into the three-
dimensional space. In the first place, they are easily identified
in the images due to their change in contrast. Secondly, the
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Fig. 1. Overview of robust line tracking and 3D reconstruction

images are taken by a camera which is mainly moving in
the ground plane. Therefore, the limitation on vertical edge
features has the advantage that the tracking direction is ver-
tical to the characteristical contrast change. And eventually,
edges allow a considerably denser description of the observed
environment than for instance points do. Furthermore, in
urban areas where a lot of man-made objects are located ideal
conditions exist for an image processing algorithm working
with nearly vertical edges.

A. Edge Extraction

For a reliable extraction of the line features different
methods were investigated. The best solution for the edge
extraction problem is a combination of Canny and Sobel
operator. In a first step the Canny operator is used to extract
all edges out of the grayscale image. Subsequently, the Sobel
operator is applied to the grayscale image so that the slope
direction can be received from the resulting Sobel image.
Thus, every edge which slope is within a certain limited
range is passed to the tracking algorithm which is described
in the following section. Fig. 2 shows the reliable found
image edges of an outdoor scene which illustrate a complex
urban environment.

Fig. 2. Extracted edges of an outdoor scene by using Canny andSobel
operator

The only drawback of the described extraction method is

that an object edge can be detected as several edge parts due
to insufficient lighting or a slight tilt. That is why the line
tracking algorithm does not only have to find associations
between edges of different images but also has to associate
edge parts within a single image.

B. Edge Tracking by Points

A reliable detection of vertical edges in the two di-
mensional images is the first step to a three dimensional
architectural model of the surrounding area. In a second
step the detected lines have to be tracked between several
images. These associations are essential for the later shown
3D reconstruction which uses the temporal associations to
add a third dimension to the given two-dimensional images.

The line tracking algorithm of Tian et al. [11] does not
track the edge itself but good trackable points on the edge.
Feature points with a high probability of recognition in the
next image are tracked and attached to the closest edge
if their distances are less than one pixel. In this paper
the approach of Tian et al. is extended so that points are
directly distributed on the edge. The advantage is, that only
points, which are already associated with an edge, have to be
tracked. Moreover, these features are good to observe due to
the contrast change in the orthogonal direction to the edge.
By distribution of a sufficient number of points on the edge
it is possible to avoid a negative influence of the aperture
problem on the edge tracking.

A 2D-edgeκ is defined by a start point

kstart = [xstart, ystart] (1)

and an end point

kend = [xend, yend] . (2)

Additionally, every edgeκt
nκ

has a detection timet and
a namenκ which is an element of the set of namesNK .
With the help of this name the edges can be explicitly
distinguished from each other and associated with edges from
other time steps. Moreover, the start point is always defined
by smaller y-value, i.e.ystart < yend.

To track the edges from one image to the other, points
pt

nκnp
are equidistantly distributed on the edge as shown

in Figure 3. At timet the gray points are scattered on the
detected edges in an arbitrary distancea. Such a point on an
edge is defined as

pt
nκnp

= [px, py] (3)

at time t and can be distinguished from other points by its
namenp ∈ N

t
P ∈ NP (set of all point names) and the edge

namenκ ∈ N
t
K which allows a mapping of the point to an

edgeκ
t
nκ

.
The parametera is a free selectable distance between the

distributed points on the edges. In the developed algorithm
amax is provided to calculate the parametera as

a =
lκ

s
≤ amax (4)
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Fig. 3. Distribution of points that have to be tracked on edges

with the edge’s lengthlκ = |kend − kstart| and the point
stepss = sup( lκ

amax
) with s ∈ N. In the presented algorithm

a point is set at the start and at the end of the edge and the
remaining points are distributed in between.

At the beginning of the edge tracking the edgeκ
0
nκ

is
mapped to a set of pointsP0

nκ
with the help of the difference

vector between the start and end point of the edge

kDiff = kend − kstart (5)

κ
0
nκ

7→ P
0
nκ

:

pt
nκnp

= kstart + i · a · kDiff

(6)

with i = 0, 1, 2, ..., s =
∣

∣P
0
nκ

∣

∣ − 1. Subsequently, the set
of points is tracked by a pyramidal Lucas-Kanade algorithm
that is described in [2]. This optical flow calculation method
has the advantage that its tracking width is increased by the
pyramidal implementation. In Fig. 3 the optical flowd to
the next image for each point is shown as an arrow so that
the point set of an edgePt

nκ
maps to a point setPt+1

nκ

P
t
nκ

7→ P
t+1
nκ

:

pt+1
nκnp

= pt
nκnp

+ dt
nκnp

=

(

px

py

)t

nκnp

+

(

dx

dy

)t

nκnp

.
(7)

Finally, the point setsPt+1
nκ

⊆ P
t+1, i.e. all points that

belong to an edge with the namenκ, are mapped again with
the RANSAC2 [4] method to an edge

P
t+1
nκ

7→ κ
t+1
nκ

:

dist(pt+1
nκnp

, κt+1
nκ

) ≤ ǫ ∀pt+1
nκnp

∈ P
t+1
RANSACnκ

⊆ P
t+1
nκ

.

(8)

From the second image on there are already points on the
edges from former time steps. Those points can be shifted
on the edge by the aperture problem so that new points have
to be added. They are added if a part longer thanamax is
not covered by the existing points.

C. Edge Grouping by Collection in Tubes

In some cases the edge tracking algorithm requires a
combination of edges:

1) The chosen edge extraction method can produce a
fragmented detection of an edge. Respectively, optical

2Random Sample Consensus

r
tube

*

r
tube

k
  start

k
  end

Fig. 4. Schematic demonstration of a tube

gaps or occlusions can lead to a detection of several
edge parts instead of an entire edge. Due to the
claim for edges as long as possible for the later 3D
reconstruction, a method has to be found to merge the
edge parts of the setKt

parts into a smaller set with
complete edgesKt

extract

2) The second case results from the edge tracking method
explained before. From the second image on, both ex-
tracted edgesKt

extract and tracked edgesK(t−1)→t are
provided. The primary intention is to find the relation
between the (tracked) edges from the previous image
and the (extracted) edges from the current image. With
an ideal calculation of the optical flow this would
be possible by a simple comparison of the two sets.
However, neither the given scene, the edge extraction
nor the calculation of the optical flow are ideal so that
the edges in the setsKt

extract andK(t−1)→t belonging
to the same edge in the three-dimensional space are not
identical.

For these reasons thetube principlewas developed to find
associations between extracted edges of different time steps.

The edge segments are presorted in so-calledtubes, which
is an area placed around an already processed edge. If the
next processed edge segment lies within such a tube it is
grouped with the origin edge segment of the tube in a first
step. The schematic description of a tube around an edge
κ is shown in Fig. 4. It has to be mentioned that the roll
movement of the vehicle can be compensated by using a
gyro cluster.

For the origin edge segment with start and end point
kstart = [xstart, ystart] and kend = [xend, yend] the two
tube boundariesgl andgr are determined with the distance
of rtube on the left and right side of the edge. So that the
two limiting lines are defined each with two points:

kl
start =

(

xstart − rtube

ystart

)

, kr
end =

(

xend − rtube

yend

)

∈ gl

(9)

kr
start =

(

xstart + rtube

ystart

)

, kr
end =

(

xend + rtube

yend

)

∈ gr

(10)
For a reduction of computing time the horizontal distance
r∗tube is used instead of the vertical to the edgertube. This
simplification can be made because all input edges are nearly



vertical so thatr∗tube ≈ rtube. The situation of the other edge
segmentκ̂ to the origin edge segmentκ is calculated by
extending the edge to a linêg and intersecting it with the
tube limits:

sl =

(

xl

yl

)

= ĝ∩ gl (11)

sr =

(

xr

yr

)

= ĝ∩ gr (12)

For the position of the two intersection pointssl andsr the
following possibilities exist:

• The edge is within the tube left tilted:

(yl < ŷstart) ∧ (yr > ŷend) (13)

• The edge is within the tube right tilted:

(yr < ŷstart) ∧ (yl > ŷend) (14)

• The edge is not entirely within the tube for all other
combinations of the intersection points.

• For the case that there are no intersection points the two
edge segments are parallel. In this case the distance
between the two segments is calculated to determine
whether the other edge segment is within the tube or
not.

After all edge information are received and pre-sorted in edge
groups like Fig. 5, we decide whether the edges are combined
or partioned as described in the following sections.

D. Combination of Extracted Edge Segments

If a new incoming edgêκ2 is located within a tube range
of a previously received edgêκ1 a combination is done.
The lowest y-value is chosen as the new start point and the
highest y-value marks the new end point of the combined
edge described with

k12
start =

(

x1
start

y1
start

)

, if y1
start < y2

start (15)

k12
start =

(

x2
start

y2
Start

)

, if y2
start < y1

start (16)

k12
end =

(

x1
end

y1
end

)

, if y1
end > y2

end (17)

k12
end =

(

x2
end

y2
end

)

, if y2
end > y1

end (18)

Additionally, a tolerance factor can be used to allow small
gaps in between the segments, which then lead to combined
edges, shown as combination case in Fig. 5.

Uni-Segment 
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Partition 
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Combination 
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No 
Combination

Partition 
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Combination 
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Extracted
Edge

Tracked
Edge

t-1 t

Tube

Fig. 5. Partitioning and combination of edges in single frame at t− 1 and
inter-frame analysis(t − 1) → t

E. Combination of Tracked and Extracted Edges

For the combination of the extracted edges out of the set
K

t
extract and tracked edges out of the setK

(t−1)→t also the
tube method is used. The tolerance range is set around the
tracked ones and analyzed in a different way, see Fig. 5 at
time stept. Due to the fact that the extracted edgeκextract

is more trusted than the tracked oneκ
(t−1)→t it is used

as basis and enlarged by the tracked edge. This combination
method is used because the edge coordinates from the image
are more reliable than the tracked points and their regression
line. Furthermore, the tracking of points added during this
step is easier because they are situated exactly on the edge.

F. Tracking Results

Fig. 6 a) shows the extracted edges of the current time
stept related to their correspondences of a previous one. In
diagram 6 b) the normalized frequency of tracked edges is
visualized in conjunction to a single frame. Only few edges
are not tracked especially why a subset of them already
moved out of the visible area. In summary more than fifty
percent of all recognized edges were tracked over at least 7
consecutive frames. The tube principle proofed to be a robust
tracking procedure. It was shown that the multi-purpose tube
principle can be used to cope with gapped edges when
analyzing single frames as well as the combination of edges
when looking at multiple sequenced frames.

III. 3D RECONSTRUCTION

The robustness of tracking is a prerequisite step towards
3D reconstruction. The identification of static objects like
buildings using prominent features is essential for the en-
vironmental capturing. In the following the termedge is
transferred toline because of changing to geometrical consid-
erations. The 3D reconstruction considers the associated lines
of image sequences and ignores the generated feature points
of the tracking process. The camera origin and the extracted
edge of one image spans a plane, which can be obviously
used for this step. But it has to be mentioned that the 3D
reconstruction is very sensitive to roll movements of the car.
Therefore the intersection of two defined planes, relating to
different images of the sequence, generates a sloped line,
which is difficult to handle. For more robustness, the crucial
roll angle can be additional determined by a gyro or an
inertial sensor cluster, which are available in a car, see [8].
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Fig. 6. Results of edge tracking a) Image with extracted edges(black) plus
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b) Frequency of tracked edges
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Accordingly, we reduce the defined plane to a line which is
projected to the ground.

A. Intersection of Baselines

The projection of the camera originC and the vertical
edgeL of an imageI generates base points on the ground,
compare Fig. 7. The slight angle deviation of a vertical edge
is minimized by calculating the central pointp. The defined
baselines of different images intersects at the base pointF

of the 3D reconstructed line. This method is preferred due
to performance reasons.

B. Uncertainty of 3D Reconstruction

The accuracy of 3D reconstruction depends on the tracking
accuracy and the camera distance of two positions from
which to reconstruct. The bigger the position changes of
the camera the better is the 3D reconstruction of the edges.
That means also that features with a long distance to the
camera are subjected to bigger errors. Fig. 8 shows the

3D Reconstruction

Edge TrackingOptic Flow

Fig. 8. Cascaded 3D reconstruction process of an image sequence

cascaded 3D reconstruction process of an image sequence.
Skipping images reflects the required camera motion. The
previous explanation regards to only one reconstruction step,
but the features are tracked over a longer period. With
the combination of the iterative results, the quality of the
3D reconstructions improves. Therefore, the generated lines
in 3D space are considered as noisy measurements. We
suppose a normal distribution of the measurements and use
probabilistic basics to handle them. The expected value of
one reconstructed base pointL is defined by the average over
the time periodt from tbegin till tend.

E[L] =
1

n

tend
∑

t=tbegin

Lt (19)

The variance is described by equation 20, which supposes a
continuously process.

σ =

√

√

√

√

1

n

tend
∑

t=tbegin

(L2
t ) − E[L])2 (20)

The comparison of the reconstructed results and the map
material requires a description of the uncertainty relating to
the ground. So the variance is transfered to the covariance
in the x-y-dimension.

Covxy =
1

n





tend
∑

t=tbegin

Lx · Ly



 − E[Lx] · E[Ly] (21)

The uncertainty region of a reconstructed base point is
elliptical with the major axis along the line-of-sight. The
line approximation of the ellipsis and their intersection
calculation relating to different point of views generatesan
extensive feature estimation on ground in a simple way.

IV. M AP COMPARISON

With a closer look onto an outdoor scene, vertical edges
refer basically to buildings, their windows and doors. The
precise map material, which is used for evaluation of the
3D reconstructions includes only footprints of the buildings
and no texture data. In contrast the usage of feature points
would produce an expanded data volume and their adaption
to building information is more difficulty.

A. Evaluation of 3D Reconstructions

The evaluation step of the 3D reconstruction requires a
precise knowledge of the vehicle position and its orientation.
Whereas the car pose is given in a simulation environment,
it has to be extensively determined in a real urban area by
reference sensor technology. Fig. 9 shows the topview of the
3D reconstructions marked as blue crosses generated from
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Fig. 9. Evaluation of 3D reconstruction by map comparison

TABLE I

DEVIATION OF THE 3D RECONSTRUCTIONS

Number Deviation Average of all
of Baselines of 3D Reconstruction in [m] Deviations in [m]

1 0,2506
2 0,1973
3 0,1296
4 0,2132
5 0,0872
6 0,1608 0,2542
7 0,1270
8 0,0641
9 1,1578
10 0,1504
11 0,2068
12 0,3062

different point of views. Therefore, the camera is moved
along the street as if it integrated in a car. It has to be
mentioned, that the exact analysis of the results is only
possible due to simulated data. The averaged reconstructions
(green), using the described approach above, are located near
the map outlines. In Table I the deviation values of the 3D
reconstructions relating to the associated outline are shown.
Both the figure and the table confirm the performance and
accuracy of our approach.

B. Prognosis - Evaluation of Pose Hypothesis

During a defined time period, the reconstruction process
generates a local map of the line-based features in relation
to the camera position. In reverse the direct comparison of
the local and global map can be used for evaluation of pose
hypotheses. Therefore, a quality factor, which describes the
coverage of both maps has to be defined. We adapt our
evaluation process, which is defined in [10], and transfer the
distance calculation from image domain onto ground plane.
Thus, the line of sights define the orientation of the search
area. The distance valuesl between 3D reconstructed lines
and the baselines of the global map form the quality factor
W .

W =

(

n2
gef

nges

)3

∑ngef

j=0 lj
(22)

Whereas, the expressionnges stands for all reconstruction
points, ngef describes the amount of reconstructed base
points, where a corresponding outline of a building was
found.

The usage of the determined quality factor in the image
domain can badly handle wrong edge correspondences. But
this drawback is hopefully reduced with the transformation
onto ground plane and leads to a further improvement of
vision-based localization extending e.g. [3] or [9].

V. CONCLUSION

In this paper the potential of image edges as a tracked
and 3D reconstructed feature has been shown. The extraction
of these elements extends the description of the vehicle
environment by camera. This approach as applied above
identifies the difficulties of each process step and deliversa
balanced solution of performance, robustness and efficiency.
We are able to generate local maps of reconstructed lines,
which are automatically evaluated by global map material.
In reverse this gives the opportunity of analyzing different
pose hypotheses of the vehicle. Further work will handle the
introduced two-dimensional map matching process in a deep
way with the potential of lateral and longitudinal position
improvement.

REFERENCES

[1] C. Baillard, C. Schmid, A. Zisserman, A. Fitzgibbon, and O.O.
England. Automatic line matching and 3d reconstruction of buildings
from multiple views. 1999.

[2] J.-Y. Bouguet. Pyramidal implementation of the lucas kanade feature
tracker: Description of the algorithm. Technical report, 2002.

[3] Andrew J. Davison and David W. Murray. Mobile robot localisation
using active vision. InProceedings of the 5th European Conference
on Computer Vision, pages 809–825, 1998.

[4] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysisand
automated cartography.Readings in computer vision: issues, problems,
principles, and paradigms, pages 726–740, 1987.

[5] C. Harris and C. Stennett. RAPID - a video rate object tracker. In
Proceedings of the first British Machine Vision Conference (BMVC90),
1990.

[6] R. Hartley and A. Zisserman.Multiple View Geometry in Computer
Vision. Cambridge University Press, 2003.

[7] D. G. Lowe. Fitting parameterized three-dimensional models to
images.IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13(5):441–450, May 1991.

[8] J. Ryu and J. C. Gerdes. Estimation of vehicle roll and roadbank
angle. InProc. Am. Contr. Conf., pages 2110–2115, Boston, 2004.

[9] K. Schönherr, B. Giesler, and A. Knoll. Adaption of robotic ap-
proaches for vehicle localization. InProceedings of 7th International
Workshop on Intelligent Transportation (WIT2010), Hamburg, 2010.
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