
WS-AMUSE - Web Service Architecture for Multimedia
Services

Andreas Scholz, Christian Buckl,
Alfons Kemper, Alois Knoll

Institute of Informatics
Technische Universität München

Boltzmannstr. 3, D-85748 Garching, Germany
{scholza,buckl,kemper,knoll}@in.tum.de

Jörg Heuer, Martin Winter
Corporate Technology, Multimedia and Network

Communication
Siemens AG

D-81730 München, München, Germany
{joerg.heuer,martin.winter}@siemens.com

ABSTRACT
Recently, a move from traditional, network specific multi-
media services to IP-based solutions could be observed. Al-
though many of these applications have similar requirements
and address the same issues, individual solutions based on
specialized protocols are commonly used. This specializa-
tion prohibits the extraction and reuse of common services
and hinders the interoperability between services and the
integration with external components.

A promising approach to overcome these disadvantages is
the adoption of the service-oriented paradigm in communi-
cation protocols and a modularization into cooperating ser-
vices. In this paper, we present a generic framework for mul-
timedia applications consisting of a set of reusable Web ser-
vice components, a modeling language based on finite state
automata and a compiler. The results of a BPEL based
prototypical implementation of a Voice-over-IP application
show that the service oriented approach and the automaton
based modeling language can satisfy the above mentioned
criteria and ease application development through a higher
level of abstraction. On the other hand our benchmarks in-
dicate that current Web service technologies can lead to an
insufficient performance, depending on the application sce-
nario. Possible solutions to circumvent these deficiencies are
presented at the end of the paper.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design,Languages,Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08,May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

1. INTRODUCTION
In the last years, the available network bandwidth for both

stationary and mobile users dramatically increased. In con-
junction with reduced prices and the availability of flat-rates,
a shift in the way IP based networks are used is observable.
New services such as Video-on-Demand (VoD) are emerging
or even replacing traditional services. A prominent example
is the widespread use of Voice over IP (VoIP) applications,
like SIP[21] or SKYPE[22], which replace traditional phone
networks. As a consequence, telecommunication providers
are more and more providing mere access to the Internet,
but are excluded from the more profitable area of providing
services over the Internet. Most likely, this trend will extend
to mobile devices in the near future, due to the increasing
availability of WLAN hotspots and built-in network cards
and the availability of network technologies like UMTS.

The network providers reacted to this situation by offer-
ing services on top of network access. One such example is
Triple-Play, a bundled offer of network access combined with
VoD and VoIP solutions, which is offered by major telecom-
munication providers. A crucial observation is that these
kinds of services share a lot of common functionality, e.g.,
for finding other users, for establishing data connections, for
billing, etc. To reduce development costs and facilitate a
short time-to-market, a high degree of reusability between
applications is desirable. Nowadays, a typical value chain
involves multiple specialized companies, e.g., for billing, au-
thentication, delivery, etc. Besides reusability, high interop-
erability therefore plays an important role.

The current state-of-the-art technology for the interaction
with these external services are Web services. Interestingly,
the stack of Web service technologies already comprises all
the needed components to not only build the interaction
layer with external services, but also to build the application
itself. The contribution of this paper is twofold: Firstly we
present the requirements and basic building blocks of a ser-
vice1 oriented platform that allows to build Internet based
applications with a high degree of reusability and extensi-
bility and provides seamless integration with external com-
ponents. The platform is intended to replace the variety of
domain specific protocols used in nowadays multimedia ap-

1The term service is used differently by the telecommuni-
cation community and the service oriented computing com-
munity[16]. In this paper, we will always refer to the service
oriented notion of services, i.e., a service is an encapsulated
block of functionality that is directly executable and can be
used in complex applications.

703

Transport Plane

Signaling
Plane

External
Service

Client A Client B

WS AMUSE
Platform

Server

Client A Client B

(a) Traditional Architecture (b) WS AMUSE Architecture

Figure 1: Layered Architecture of Multimedia Services

plications. The modeling of services is based on interacting
automatons, an abstraction that resembles the state based
nature of multimedia protocols and therefore offers a fast
learning curve. To simplify the implementation, executable
code can be created directly from the model. Secondly, we
report our experience concerning the above mentioned goals
and the achievable performance for a prototypical implemen-
tation of the platform. Our primary focus are multimedia
applications, but the presented concepts can also be trans-
ferred to other Internet applications.

The rest of the paper is organized as follows. Section 2
contains an overview of the structure and functionality of
existing multimedia protocols. In Section 3, we refer to
related work and present WS-AMUSE, our Web services
architecture for multimedia services. We describe a set of
reusable core Web services, a modeling language based on
state automata to model the functionality and interaction
of the components and a compiler for the translation of the
automata into executable Web services. A prototypical im-
plementation of a VoIP application based on this platform is
presented in section 4. We report our experiences concern-
ing the performance of the used Web service technologies in
Section 5 and conclude the paper in Section 6.

2. MULTIMEDIA APPLICATIONS
A typical multimedia application can be separated into

two logical planes, as illustrated in Figure 1(a). The Sig-
naling Plane is used to negotiate service parameters and
to control the state and the state transitions of the clients.
Typically, the signaling plane is composed of one or more
servers that perform user lookup, exchange presence infor-
mation, establish the underlying transport connection, etc.
The Transport Plane, on the other hand, transmits the raw
payload between the individual clients of the service. The
transmission is almost always performed directly between
the corresponding partners, except for firewall traversal or
codec translation, which may require an intermediate node.
Nowadays, the Real-Time Transport Protocol (RTP)[18] is
used at the transport plane in most multimedia applications.
At the signaling plane domain-specific protocols like the Ses-
sion Initiation Protocol (SIP)[21] and the Real Time Stream-
ing Protocol (RTSP)[19] realize the application logic.

A crucial observation is that the two different planes have
different requirements concerning the performance and reli-
ability of data exchange. Normally, messages from the sig-
naling plane have to be transferred reliably, i.e., the loss of
messages or the duplication of messages is not acceptable.
On the other hand, these messages do not have critical tim-
ing constraints, as long as the response time stays below a
certain threshold. E.g., during call establishment, a delay
below one second may not even be noticed by users, be-

cause the called person will need longer to pick up the call
anyway. Due to the low frequency and small size of the ex-
changed messages, the bandwidth requirements for the sig-
naling plane are relatively low. Quite the opposite holds for
the transport plane, because a constant bandwidth with low
jitter is decisive for the quality of the connection.

Note that there is a clear separation between the two
planes. The signaling plane will typically only try to ex-
change the current IP-address with the communication part-
ner and try to achieve a consensus concerning session pa-
rameters like used codecs, bandwidth limitations, etc. The
actual data transport is done in a black-box way by the
transport plane, the signaling plane only supplies the basic
parameters like communication endpoints, required Quality-
of-Service, etc. The only two contact points between the
planes therefore are configuration options sent by the sig-
naling plane during setup or reconfiguration or error notifi-
cations sent by the transport plane, if the given requirements
cannot be fulfilled. In this work, we will concentrate on the
design and implementation of the service logic, thus the sig-
naling plane, and analyze the requirements and challenges
it poses to an application developer.

Although tailored for specific applications, most of the
signaling plane protocols have to solve common tasks, e.g.,
finding other users, storing user sessions, establishing con-
nections between users, etc. Ideally, the developer of a new
application should be able to obtain all this basic function-
ality by combining existing services, which may in fact be
offered by specialized providers, and be free to focus on the
implementation of the core functionality of the new applica-
tion. To support this kind of sharing between multiple appli-
cations a modular design, which decomposes the protocols in
reusable services, is necessary. Another aspect that encour-
ages modularity is the increasing convergence between the
various fields of multimedia applications. A typical exam-
ple are instant messaging services, which started with sim-
ple text based chat and messaging systems. Over the time,
additional functionality like document sharing, conferenc-
ing features, speech conversation, etc were added. Having
a modular design for individual applications dramatically
eases this kind of evolution, because extensions are clearly
separated from basic building blocks and because the indi-
vidual modules offer starting points for future extensions.

The signaling plane protocols themselves reveal a very
similar structure and purpose: The definition of possible
states for both, client and server, and the transitions be-
tween these states via the exchange of messages. The RTSP
protocol, which is used in Video-on-Demand solutions, is a
good example for this kind of protocol. It basically defines a
set of messages that allow the user to create a RTSP stream,
start or pause playback and finally close the stream. A main
task of a RTSP server therefore is to store the state of all

704

sessions, i.e., all created streams, and update these states
upon the arrival of the corresponding messages. At first
glance, the state management for a phone call established
via the SIP protocol is rather simple, as phone calls cannot
be paused for example. However, the message exchange in
the SIP protocol requires a lot of state management. The
invitation of another user for example is based on a three-
way handshake, which may involve multiple intermediate
servers, and therefore requires every participating party to
keep track of timeouts and to store which messages were
sent and which replies are still missing. Considering a more
advanced telephone solution, the session management for
the SIP protocol can also become quite complex. Support-
ing functionality like holding calls and switching between
concurrent calls, requires to coordinate the state transitions
between multiple telephone sessions. An important require-
ment for a modern multimedia platform therefore is to pro-
vide a generic modeling and execution platform for this kind
of state focused protocols.

The paper will demonstrate that a state automaton is a
suited model to specify the behavior of a single component.
To design a whole application, interacting automatons have
to be used. In this case, a state transition in one automa-
ton can be triggered by incoming external events or state
transitions in other, interacting, automatons.

The presented signaling plane protocols alone are not suf-
ficient for building a complete multimedia application. They
require additional functionality, e.g., for billing, user man-
agement, searching, advertising, etc. This functionality is
nowadays often provided by external, specialized providers
through Web service based interfaces. To allow an easy in-
tegration with these services, the platform has to offer an
easy way to access and incorporate external Web services
into internal control flows.

Summing up, we identified the following three compo-
nents, a flexible platform for multimedia applications should
comprise:

• A modular design to allow reuse of components be-
tween multiple applications

• A toolkit to support the development of state-centric
applications

• A Web service based interface for communication with
services outside the platform

3. MIDDLEWARE FORMULTIMEDIA
COMMUNICATION APPLICATIONS

As mentioned in the previous chapter, modern middle-
ware platforms for communication oriented multimedia ap-
plications have to accommodate two major requirements:
First, they have to provide a Web service based interface for
the interaction with external services. Second, they have to
reduce the development overhead and the required time-to-
market for new applications as much as possible to allow the
rapid development of new applications and services. There is
some previous work dealing with the integration of SIP with
external services and the unification of the various signaling
plane protocols for call control. However, these approaches
focus on the development of VoIP like applications and only
provide limited functionality for the reuse of components.

3.1 Related Work
A possible approach for providing an increased extensi-

bility and connectivity for the SIP protocol is WSIP [13],
an intermediate Web service layer that hides the details of
SIP communication from the client application and provides
a Web service interface for the SIP protocol, which allows
an easy integration with external services. On the other
hand, the actual communication on the signaling plane is
still based on the SIP standard which necessitates a con-
version between SOAP and SIP messages and hinders the
reuse of components in other multimedia applications. Ad-
ditionally, WSIP requires a Web service host on every client
device. This imposes a serious overhead, especially for re-
source constrained devices like PDAs.

The Venice[7] project proposes a Web services based frame-
work for VoIP applications. By using a service oriented
architecture, the authors aim at easing the integration of
supplementary services, the compatibility between different
signaling layer protocols for call control and the installation
of software updates on client devices. However, the Venice
project is specifically tailored to a VoIP scenario, i.e., the
authors do not address reusability between different multi-
media applications nor provide a generic platform for the
development of these.

Based on a distributed messaging middleware, the Global
Multimedia Collaboration System (Global-MMCS)[24][26]
provides a framework for an audio/video collaboration sys-
tem, which bridges the gaps between nowadays multimedia
applications by providing a common signaling protocol with
gateways to existing protocols like SIP or H.323[6]. How-
ever, the authors do not address other multimedia applica-
tions and the reuse of components between these.

The Parlay X[14] project provides a Web services based
interface for telephony systems. The aim is to provide an
easy to use interface for functionality like call control, mes-
saging, etc. This interface abstracts from the details of un-
derlying implementation and allows a broader range of users
to develop applications that incorporate telecommunication
features. The actual implementation of the features is based
on well known standards like SIP etc. In contrast to this,
we aim at pushing the Web service approach down to this
implementation layer, what removes the necessity for inter-
mediate gateway layers and improves the interoperability
between different application protocols.

3.2 WS-AMUSE Architecture
The need for reliable communication and high reusabil-

ity at the signaling plane makes Web service technologies
a promising foundation for building a service platform, as
these already offer the needed functionality in a standard-
ized way. Web services possess an inherent overhead due
to the XML based nature of communication. But because
of the relaxed performance requirements for the signaling
plane, the benefits of a Web service based approach promise
to outweigh possible losses in performance. The decomposi-
tion into Web services promises great advantages concerning
the scalability of the system, as Web services technologies
were specifically built to support a distributed execution
out of the box. Additionally, Web services allow a seam-
less integration with external services, which are more and
more often offered through Web service based interfaces. Us-
ing one single unified communication technology with both,
components inside and services outside the platform, avoids

705

Authentication
Service

User Management

State Manager

Session
Manager

Client
Manager

Connection
Manager

Transport Layer

Monitoring

Client

Directory Service

Notification
Service

Automaton
Models

Figure 2: Components of the WS-AMUSE Platform

unnecessary breaks in communication and reduces mainte-
nance and development costs, as there are fewer sources for
errors and less technologies to master.

In this section, we will present the overall architecture and
outline the most important components of WS-AMUSE, our
Web service based platform designed to replace the function-
ality of the signaling plane protocols of nowadays multime-
dia applications. The actual components, i.e., Web services,
may vary from application to application, but there is a
common set of components that is almost always suitable.

Figure 2 gives an overview of the basic building blocks
our platform currently offers. The State Manager is a gen-
eral purpose state engine that stores and alters the state of
the multimedia application and controls the interaction be-
tween the different components of the platform. In a VoIP
scenario it will manage the state of individual calls and al-
low the client to handle multiple calls at the same time by
putting calls on hold etc. With the help of the Notifica-
tion Service, the State Manager and other components of
the platform can send notifications back to the client, e.g.
if an incoming call is detected. A detailed description of
the State Manager and the Notification service is presented
in the following sections. The User Management allows an
application to store application specific data for every single
client, e.g. the address of an in-network answering machine
in a VoIP scenario. The Authentication Service issues se-
curity tokens that allow authenticated users to access the
services on the platform. Additionally, these tokens can be
used to trace the service usage of every user, and therefore
build the foundation for a fine-grained billing system. The
Directory Service provides some kind of ”yellow-pages” func-
tionality, i.e., it lists all available services on the platform
and their technical characteristics, such as server addresses,
etc. Note that in contrast to a UDDI-Registry, which stores
information about individual Web services, the Directory
Service stores information about application level services,
e.g., a VoD service, a VoIP service, a chat application and
so on. The Transport Layer itself is not directly part of the
platform, as the actual data transmission is conducted by
common transport protocols. However the signaling layer
can use available monitoring information to deal with in-
sufficient Quality of Service or communication failures, for
example by downgrading the used audio/video codecs.

Note that the presented components only represent a ba-
sic subset of the components a productive implementation

of the platform will possess. The advantages of a truly ser-
vice oriented architecture will increase with every additional
service in the platform. This is due to the fact that all ap-
plications developed by combining individual components
of the platform can be treated as services themselves and
therefore can subsequently be used to build even more so-
phisticated solutions. A news station, for example, could
reuse an existing VoD service to distribute news broadcasts.

In the following, we will primarily focus on the Notifica-
tion Service and the State Manager, because these two com-
ponents orchestrate the interaction between the individual
components of the platform and the connected users and
therefore constitute the core of our architecture.

3.3 Client Notification with StatelessWSCalls
The Notification Service is necessary due to the state-

less nature of HTTP based Web service interactions. Every
client can decide to use non-persistent HTTP connections
to submit calls to Web services on the platform, so there
is no feedback channel that allows a Web service to actively
send data back to its clients. One possible solution would be
the installation of a Web service engine on every client. In
this scenario, data can be submitted to clients by simply in-
voking a Web service on the corresponding client’s machine.
We do not think that this approach is feasible for resource
constrained devices, e.g. mobile phones. Therefore, we de-
veloped a pull based mechanism. Clients periodically re-
quest new messages from the Notification Service via a Web
service call. This call will block, until a new notification ar-
rives, or a timeout occurs. In case of a new notification, the
Web service call will immediately return and therefore en-
sure a fast delivery of notifications in the platform. In case of
a timeout, the client must immediately re-issue the request.
This mechanism allows to detect disconnected clients, which
can be automatically removed from the Notification Service
if no request was received for a tunable period of time.

3.4 Generic State Control forWeb Service Ar-
chitectures

We are using state automata to model the application
functionality. Finite state automata offer a concise and in-
tuitive way to model state-based applications from a de-
velopers point of view, especially because most application
engineers have a background in control theory rather than
in programming. State automatons are a familiar modeling

706

Client A

Client Manager A Client Manager B

Session Manager

Connection Manager

Client B

2: create

3: invite 4: incomingCall

7: accept

5: incomingCall

8: accept

9: accept

10: create

6: accept1: makeCall
11: getIP 11: getIP

12: sendIP 12: sendIP

(a) Interaction between Managers

Ready Active
Call

Opening
Call

Ringing Signaling
Accept

makeCall

incomingCall
accept

accept

(b) Simplified Client Manager State Automaton

Figure 3: VoIP Application

paradigm for these engineers. WS-AMUSE uses SCXML[20],
an XML based standard for state chart notations based on
Harel State Tables, with some minor extension for providing
better support for Web service architectures. In SCXML,
transitions between states can be executed spontaneously,
be time-triggered or be triggered by events stemming from
user actions or interacting automata. In either case, an op-
tional guard condition can be added, which ensures that
certain requirements are met. The states themselves may
contain optional onEntry and onExit blocks, which are exe-
cuted upon entry or exit of a state. Within these blocks, the
actual application logic can be implemented by using typical
control flow statements like branches, loops, invocations of
other Web services, etc.

Note that the automaton models are self contained, i.e.,
code generated from these models is directly executable with-
out further changes by the developer. Using an additional
abstraction layer, like the automaton model, is a well known
technique from the area of domain-specific languages (in
fact one can see the automaton model as a domain spe-
cific language for state control in multimedia applications).
As shown in [23], the elevated abstraction layer can lead to
development times that are 3-10 times faster than the de-
velopment times of standard processes, because it allows the
developer to focus on the design of a solution and hides the
complexity and details of the implementation of the models.

To support this kind of model based development, the
WS-AMUSE platform offers a generic state engine, the State
Manager already introduced in Figure 2. To distinguish be-
tween different instances of the State Manager, we will use
the name of the automaton model, i.e., the Session Manager
refers to a State Manager instance executing the automaton
for session management.

Summing up, the WS-AMUSE platform reduces develop-
ment effort by combining two approaches: The use of service
oriented principles to increase reusability, in this case a Web
service based architecture, and a state based modeling lan-
guage that hides communication details from the developer
and allows to focus on the actual application logic.

4. IMPLEMENTATION
In this section, a prototypical implementation of a VoIP

application based on our platform is described, consisting of
the State Manager, a simple version of the User Management
and the Notification Service.

4.1 Automaton Model for VoIP Applications
Figure 3(a) shows the three inter-operating automata used

to control the VoIP application: A Client Manager that
controls the state of a single participant, a Session Manager
that manages a call between two participants, and a Connec-
tion Manager that serves as an interface to the underlying
transport layer.

Figure 3(a) shows the message flow for establishing a call
between user A and B. Figure 3(b) shows the simplified state
automaton for the Client Managers used in this application.
To provide a concise example, we only present the Client
Manager, as this is the most interesting of all three au-
tomata, and do not show the edges for the transitions that
allow to abort calls or handle errors. Initially, A invokes the
makeCall(1) method on its Client Manager. This causes
Client Manager A to change its state from Ready to Open-
ing Call. In the onEntry block of the Opening Call state,
the Client Manager A creates(2) a new Session Manager in-
stance and subsequently submits an invitation(3) for user B.
The Session Manager notifies(4) the Client Manager B of the
incoming call from A, which in turn forwards(5) the notifi-
cation to Client B. The forward is done via the Notification
Service (indicated by the dotted line), as there is no possibil-
ity for Client Manager B to directly send messages to Client
B. Client B decides to take the call and submits an accept(6)
message, which is propagated(7,8) back to Client Manager
A. At Client Manager A, this will cause a state change from
Opening Call to Active Call. In the onEntry block of Active
Call, the Notification Service is used to inform(9) Client A
about the successful call establishment. Concurrently, the
Session Manager creates(10) a new Connection Manager in-
stance, which requests(11) the current IP-addresses of A and
B via the Notification Service. By calling the sendIP(12)

707

Working

Ready

StartStop

while(!terminate)
 switch(state)
 case ’Ready’:

 case ’Working’:
 ...

onEntry()
pick()
 case ’Start’:
 state = ’Working’
 case ’Terminate’:
 terminate = true
onExit()

Terminate

Figure 4: Transformation from Automaton to BPEL

method, both clients submit their current IP-address and
in turn receive the IP-address of their communication part-
ner (sendIP will block until the IP-address of the partner is
received).

4.2 Implementation of the Platform
There are several possibilities to implement the state en-

gine inside the State Manager. A straightforward approach
is to encapsulate a state engine implementation inside a
Web service. For our prototypical implementation, we chose
a different solution based on the Business Process Execu-
tion Language (BPEL)[4]. BPEL is a platform independent
state-of-the-art service composition language and widely sup-
ported by various Web service implementations. BPEL of-
fers several advantages compared to the straightforward im-
plementation. First of all, most BPEL engines already pro-
vide essential functionality that would have to be reimple-
mented otherwise: persistence of processes, addressing of
specific process instances through IDs, support for addi-
tional WS-standards like WS-Addressing, WS-Security, etc.
Additionally, most engines possess sophisticated auditing
and logging facilities that can ease debugging during devel-
opment time. Furthermore, using an execution engine based
on the standardized BPEL syntax offers the possibility to
benefit from future improvements in the engine implemen-
tations and to always use the most suitable platform, due to
vendor independence.

Note that the BPEL language itself only provides basic
programming constructs known from imperative program-
ming and therefore does not provide an intuitive way to
model state automatons. Due to this reason, we use SCXML
to specify the automatons. By transforming these automa-
tons to BPEL, we are able to use existing BPEL engines for
the execution of the automaton models.

The transformation consists of two tasks: It has to create
code comprising the application logic in BPEL syntax, and
has to map the automaton model to a Web service based
platform, i.e., convert events in the automaton model to
Web service calls in the platform. BPEL itself already of-
fers all required building blocks of a state engine: A while
loop, a switch statement and a pick statement that blocks
the process until one of a set of events occurs. Both, the
SCXML modeling language and the BPEL execution lan-
guage are based on XML, so this transformation can be real-
ized with the standardized XSL Transformations[28] (XSLT)
language. The basic structure of a transformed automaton
is illustrated in Figure 4.

The BPEL workflow for a transformed automaton consists
of an outer while loop that is executed until a terminating
state is reached. Inside this loop, a variable is used to store
the current state the automaton is in. This variable serves

as input for a switch statement, which selects a code block
for the current state. Pseudo code for this loop is shown
in the center of Figure 4. Every state of the automaton
is transformed to a block consisting of three elements: an
onEntry-block, a pick-statement and an onExit-block. The
pick statement contains another switch statement to select
the appropriate action for every possible transition. The
corresponding pseudo-code is shown on the right side of the
Figure 4. During the transformation, all events from the au-
tomaton model are transformed into WS-calls in the BPEL
engine, i.e., sending an event to the State Manager is done
by calling the respective WS-method in the BPEL engine.

To exemplify the sequence of actions during a state tran-
sition in the BPEL process, let us assume the automaton
is currently in the state Ready, i.e., the process is currently
blocked at the pick-statement of the Ready state. The user
now submits a WS-call to the Start method. The switch
statement inside the pick will use the branch for Start and
therefore set the current state to Working. After that, the
onExit block is executed. The outer switch statement will
now branch to the code for the Working state, execute the
corresponding onEntry method and finally block at the pick
statement, until a WS call to the Stop method is received
(Stop is the only valid transition from Working).

For our prototype, we implemented two different clients:
A Java based client for a traditional PC and a C++ based
client for Windows Mobile 2005 PDAs. The PC client uses
Axis2[2] to access the Web services on the control plane and
the Java Media Framework API[10] (JMF) to send and re-
ceive data on the transport plane. The PDA based solution
uses the gSOAP[5] Web service stack and the RTP stack
from the PJSIP[17] library. Both clients use the Real-Time
Transport Protocol for data transmission, as this is the de-
facto standard for the transmission of streaming multimedia
data. The server side is based on the open source BPEL En-
gine ActiveBPEL[1].

5. EVALUATION
Based on the prototypical implementation, we evaluated

the WS-AMUSE approach with regard to the achievable per-
formance, reusability and extensibility.

5.1 Performance Considerations
First of all, we measured the raw throughput of the BPEL

engine for a simple BPEL service, as this is the upper bound
for all applications build on top of the BPEL engine. On
our benchmark system (Apache Tomcat running on a Xeon
2.8 GHz Blade with 1GB RAM), ActiveBPEL was capa-
ble of executing approximately 250 invocations/s of a sim-
ple HelloWorld-style BPEL process using in-memory persis-
tence. For comparison, this throughput has the same order

708

of magnitude as the published throughput numbers of other
BPEL engines like Cape Clear ESB[9] (5100 TPM = 85 invo-
cations/s) or Intalio BPMS[8] (17M non-persistent processes
in 24h = 197 invocations/s).

To measure the achievable number of call establishments
per second for the VoIP scenario, we designed a benchmark
where all BPEL processes and the Notification service were
located on a single blade. Another blade is used to simulate
pairs of clients that repeatedly call each other, accept the call
and immediately hang up afterwards. Using this benchmark,
our system was capable to establish and tear down 2.3 phone
calls/s. A single call establishment between two partners in-
corporates multiple BPEL calls for the interaction between
the three state automata: For call establishment 12 BPEL
calls and 8 WS calls, including communication with the no-
tification service and exchange of IP-addresses are necessary.
A call hangup requires 5 BPEL and 2 WS calls, yielding a
total of 17 BPEL and 10 WS calls per phone call.

Taking into account the numbers form the HelloWorld ap-
plication, this shows a considerable overhead for the exe-
cution of the BPEL processes. We were able to identify
two major causes for this overhead: In contrast to the Hel-
loWorld application, the BPEL engine also has to perform
client-side parsing of SOAP messages, due to calls to other
BPEL processes. Second, the BPEL processes for the VoIP
scenario are much more complex and contain a lot of XPath
statements for variable assignment and state management.

A major benefit of the Web service based solution is the
strict encapsulation of functionality in cooperating services.
The WS-AMUSE approach promises to provide scalability
through the distribution of different managers or BPEL in-
stances over multiple hosts, without additional development
overhead. By simply allocating every manager service on a
different host, we were able to increase the throughput up to
5.9 calls/s. Because the complexity of the state automata,
and therefore the load on the corresponding machine, is not
uniform, the throughput can be further improved by allo-
cating a mix of manager instances at every host.

The throughput of 2.3 phone calls/s for the BPEL based
solution is not sufficient for building a larger scale phone or
conferencing solution with hundreds or thousands of simul-
taneous telephone calls, even taking into account a possible
replication of services and more powerful servers. On the
other hand, the performance achievable with the used tools
may already be sufficient for other application scenarios with
longer session durations, like a VoD solution for example. A
VoD application is much less complex than the VoIP appli-
cation and requires less coordination between the different
managers because there is only a single client involved in
every session. Additionally VoD sessions are changed rarely
in comparison to phone calls, simply because a typical video
session will last longer than a typical phone call.

To circumvent the current performance deficiencies, there
are two principle approaches: the development of a state
engine not based on BPEL, or the tuning of existing BPEL
engines. Due to the strict separation between the model-
ing language and the execution language, the former can
be easily achieved, e.g., by building a transformation of the
automaton model to a Java based Web service instead of a
BPEL workflow. In fact, the target of the transformation
could be any other programming language or middleware
platform too, as long as it supports some kind of message
exchange between different automaton instances and Web

service calls to remote services. However the drawback of
these solutions is that one looses the high level of abstrac-
tion the BPEL based solution offers. In these cases, special
care has to be taken that the integration with other business
processes and Web services, which BPEL offers out of the
box, is still supported by the automaton implementation.

Despite these performance issues, we think the BPEL ap-
proach can be a feasible solution even for large scale instal-
lations. The currently available engines are built to support
the coordination of business services and therefore induce a
lot of logging and auditing functionality. Although handy for
development, this functionality is not needed in a productive
environment because the individual Web service invocations
are only meaningful in a certain context and storing them
provides no benefits. E.g., the exchanged messages for a
call establishment are individually of no interest, the only
noteworthy result is the fact that the establishment of the
call was successful or not. This is not the case for busi-
ness services, as interactions between these normally have a
business related background, which makes every single call
important. Another area for optimization is process persis-
tence. In contrast to business services, multimedia applica-
tions typically have short session durations, but a relatively
high invocation rate. E.g., a VoD session will seldomly last
more than two or three hours, as most movies have a shorter
length, but it is quite likely that the user will pause the
playback at least once. In the business process scenario, the
execution of a whole workflow may take several days, espe-
cially if human interaction is necessary, but most of this time
is spent waiting for input from external sources. We think
that a BPEL engine specially tuned for these characteristics
could provide a significant performance boost.

On the messaging layer, the XML processing of SOAP
messages is a major performance bottleneck. Currently there
are several projects aiming at improving the performance of
XML message handling. One possibility is the use of binary
XML representations like BiM[3] or WBXML[25] for exam-
ple. We did some simple benchmarks with the kXML[12]
WBXML parser, which performed five times faster than the
Xerces[27] parser used by the Active BPEL engine, while
still providing a self contained representation of the SOAP
message. Another possibility is to exploit schema informa-
tion to build specific XML parsers[15] or the fact that most
SOAP invocations to a service will only differ in small parts
of the message body[11].

Summing up, we determined that the currently available
BPEL engines are not yet capable of coordinating the signal-
ing plane of large scale multimedia applications. But we are
confident that this will be the case with some optimizations
concerning persistence and auditing functionality, accompa-
nied by optimizations for the XML processing.

5.2 Extensibility and Reusability
One aim of the WS-AMUSE project was to increase the

extensibility and reusability of multimedia applications. The
extensibility can be seen at three levels: at the code synthe-
sis, the augmentation of existing services and the addition
of new services.

Adapting Code Generation
Due to the model-based approach, it is relatively easy to
perform changes that do not change the functionality, but
rather the implementation of an application. This is for

709

(a) VoIP Client Manager with Forwarding Functionality

Ready Active
Call

Opening
Call

Ringing Signaling
Accept

prepareCall

incomingCall
accept

acceptCost
Control

okno

(b) VoIP Client Manager with Cost Control

Figure 5: Augmented Versions of the VoIP Client Manager

example very useful, when the application code must be
adapted to the used platform, or new functionality should
be added to many nodes simultaneously. To illustrate this
possibility, we added a debug mode to the code generator.

In debug mode, the state engine will report the received
event and the new state to a user defined application. We
implemented a simple tool that is able to draw an automaton
model and store the sequence of reported events, allowing a
developer to inspect the state changes and received messages
throughout the whole lifetime of a state manager. Know-
ing the sequence of state changes and exchanged messages
eases debugging and helps in finding performance bottle-
necks. Note that this adaptation was performed only by aug-
menting the code generator. The application model could
be reused without any changes.

Augmenting Existing Services
The model-based approach also simplifies the augmenta-
tion of existing services. Due to the high abstraction level,
changes of the behavior can be done very easily. As an ex-
ample, we chose to add a forwarding functionality to the
client manager. An incoming call is forwarded to a third
party (e.g. the mobile phone or an answering machine), if
the user does not respond during a specified time interval.
The extended model is illustrated in Figure 5(a). The tran-
sition to the state Forward is triggered by time. In addition,
this transition can only be triggered, if a forwarding address
is available (guarded transition). The state Forward triggers
a new event that initiates an incoming call to the third party
and informs the calling client that the call was forwarded.
Afterwards the transition to state Ready is performed im-
mediately (spontaneous transition) and the corresponding
client is ready to receive the next call.

Integrating New Services
A big benefit of the Web service based communication and
the BPEL based application logic is the possibility to seam-
lessly integrate external Web services at every location in
the control flow. For some scenarios this offers only little
benefits compared to a SIP based solution. For example
consider the integration of a billing service into the call es-
tablishment. In this case, a simple Web service interface for
the external service is sufficient, i.e., by extending a tradi-
tional SIP based application with a Web service stack this
task can be solved.

On the other hand this is not the case for all extensions
that require an interaction with the end-user. Assume we
want to extend the VoIP application described in Section 4
with a cost control service, i.e., the user should be able to see
the costs per minute of the current phone call and be able to

accept or reject the call establishment based on these costs.
To incorporate this functionality, the addition of a single
new state is sufficient, as shown in Figure 5(b). After the
user has specified the person he wants to call (prepareCall),
the Client Manager enters the Cost Control state and re-
quests the costs of the call from a billing Web service, or
some similar source. Based on the costs displayed on the
client device, the user can decide to accept the price (ok), in
which case the call establishment proceeds, or to reject the
price (no), in which case the call is aborted and the Client
Manager enters the Ready state again.

Adding this kind of functionality to a SIP based solution is
much more complex, as the developer would have to extend
the SIP protocol with new messages, build a Web service
based interface to the billing service and finally convert the
client messages to Web service calls and the responses back
to SIP again. A major contribution to the extensibility of
the WS-AMUSE platform therefore is the unified communi-
cation via SOAP, which allows to incorporate new services
at any place in an existing application, without the need to
convert messages to an internal protocol.

Increasing Reusability
Evaluating the reusability of components is always a diffi-
cult task. From our experience with the development of the
prototypical VoIP application, we see multiple sources of
reuse. First, whole blocks of functionality can be reused by
different applications, e.g., the authentication functionality,
the user management, etc. The second source of reusable
components are fine grained services, like the Connection
Manager for example. These services are no standalone com-
ponents, but provide essential functionality which is needed
in many applications, like the establishment and monitoring
of transport layer connections in the Connection Manager
for example. Both cases are well supported by the service
oriented paradigm used for the development of the applica-
tions, as it encourages the encapsulation of functionality in
small, self-contained services. The third possibility of reuse
are the state automatons developed for individual applica-
tions. A lot of control tasks are quite similar, so parts of
existing state automatons can be used to build new applica-
tions. E.g., the Session Manager of a VoIP application could
be a good starting point for the development of a conferenc-
ing application, as it already possesses the basic functional-
ity for the establishment of sessions containing two members
and should be easily extendable to multi user sessions.

6. CONCLUSION
In this paper, we presented the requirements and develop-

ment challenges of a next generation service platform, which

710

is capable of replacing traditional, network protocol ori-
ented applications like Voice-over-IP or Video-on-Demand.
The presented flexible and reusable framework fosters the
rapid development of future multimedia applications. WS-
AMUSE offers a Web service based platform that leverages
the functionality of existing multimedia applications and ad-
ditionally provides a higher flexibility, a better reusability
and a seamless integration with external services. This is
done by defining a set of default components that can be
reused by various applications, and by using a concise au-
tomaton based modeling language that allows to focus on
the development of the application logic. We developed a
BPEL-based prototypical implementation of the platform
for a VoIP scenario and reported our experiences concern-
ing the reuse of components and the extension of existing
applications. In both cases, the service oriented paradigm
and the unified Web service based communication reduce
the development costs. On the other hand, a performance
evaluation done with the prototype shows that with the cur-
rently existing technologies the BPEL based approach may
not be feasible for all applications, e.g., high throughput
applications like large scale phone solutions. We outlined
several optimization possibilities to circumvent this issue,
either by tuning the underlying BPEL engine or by speed-
ing the XML processing on the messaging layer, e.g., by
using binary XML or exploiting regularities in the structure
of SOAP messages.

There are several directions for further research. First
of all the management of user data in service oriented ar-
chitectures has to be studied further. There already are ap-
proaches concerning federated identity management or iden-
tity management for communities heading in a similar direc-
tion, but these do not take into account the composite nature
of service oriented architectures. E.g., it might be the case
that a service is only allowed to indirectly access banking de-
tails of a user, i.e., it may be allowed to pass this data on to
a banking service, but not to read the contents. To allow the
use of a BPEL based solution in high throughput scenarios,
possible improvements for the performance of the underly-
ing Web service technologies, as outlined Section 5.1, have
to be evaluated. To provide compatibility with existing SIP
or RTSP based solutions, it would be useful to implement
gateways that translate between messages from the network
protocols and Web service calls from the WS-AMUSE plat-
form. Furthermore, the service oriented approach can be
extended to other application scenarios as well, e.g., to on-
line games or conferencing systems.

7. REFERENCES
[1] ActiveBPEL. http://activebpel.org/.

[2] Axis2. http://ws.apache.org/axis2/.

[3] Binary MPEG format for XML, ISO Reference
Number: ISO/IEC FDIS 23001-1:2006(E), Part 1.

[4] BPEL, Business Process Execution Language.
http://www-128.ibm.com/
developerworks/library/specification/ws-bpel/.

[5] gSOAP. http://gsoap2.sourceforge.net/.

[6] ITU. Recomm. H.323 (1999), Packet-base multimedia
communications systems.

[7] M. Hillenbrand, J. Götze, and P. Müller. Voice over IP
- Considerations for a Next Generation Architecture.

In EUROMICRO-SEAA, pages 386–395. IEEE
Computer Society, 2005.

[8] Intalio Inc. Intalio BPMS sets the standard for BPM
performance. http://www.intalio.com/news/press-
release/?release=20061121-Benchmark.

[9] Intel and Cape Clear. BPEL scalability and
performance testing White Paper.
http://www.capeclear.com/download/portal.php.

[10] JMF, Java Media Framework.
http://java.sun.com/products/java-media/jmf/.

[11] C.-C. Kanne and G. Moerkotte. Template Folding for
XPath. In Third International Workshop on XQuery
Implementation, Experience and Perspectives
(XIME-P 2006), 2006.

[12] kXML2. http://kxml.sourceforge.net/kxml2/.

[13] F. Liu, W. Chou, L. Li, and J. J. Li. WSIP - Web
Service SIP Endpoint for Converged
Multimedia/Multimodal Communication over IP. In
Proc. of the IEEE Int. Conf. on Web Services, pages
690–699. IEEE Computer Society, 2004.

[14] H. Lofthouse, M. J. Yates, and R. Stretch. Parlay X
Web Services. In BT Technology Journal, volume 22,
pages 81–86, 2004.

[15] W. Löwe, M. L. Noga, and T. Gaul. Foundations of
Fast Communication via XML. In Annals of Software
Engineering, volume 13(1-4), pages 357–379, 2002.

[16] T. Margaria, B. Steffen, and M. Reitenspieß.
Service-oriented design: The roots. In Proc. of the 3rd
Int. Conf. on Service Oriented Computing, volume
3826 of Lecture Notes in Computer Science, pages
450–464. Springer, 2005.

[17] PJSIP. http://www.pjsip.org/.

[18] RTP, Real-Time Transport Protocol.
http://www.ietf.org/rfc/rfc3550.txt.

[19] RTSP, Real Time Streaming Protocol.
http://www.ietf.org/rfc/rfc2326.txt.

[20] SCXML, State Chart XML.
http://www.w3.org/TR/2005/WD-scxml-20050705/.

[21] SIP, Session Initiation Protocol.
http://www.ietf.org/rfc/rfc3261.txt.

[22] SKYPE. http://www.skype.com/.

[23] J.-P. Tolvanen. Making model-based code generation
work. EmbeddedSystems Europe, pages 36–38, Aug
2004.

[24] A. Uyar, W. Wu, H. Bulut, and G. Fox.
Service-Oriented Architecture for a Scalable
Videoconferencing System. In Proc. of IEEE Int.
Conf. on Pervasive Services 2005, pages 445–448.
IEEE Computer Society, 2005.

[25] WAP Binary XML Content Format.
http://www.w3.org/TR/wbxml/.

[26] W. Wu, G. Fox, H. Bulut, A. Uyar, and T. Huang.
Service Oriented Architecture for VoIP conferencing.
In Int. Journal of Communication Systems, Special
Issue on Voice over IP - Theory and Practice,
volume 19, pages 445–462. John Wiley & Sons, 2006.

[27] XERCES. http://xerces.apache.org/xerces-j/.

[28] XSLT, XSL Transformations.
http://www.w3.org/TR/xslt.

711

