
Optimal Control of Sets of Solutions to Formally Guarantee

Constraints of Disturbed Linear Systems

Bastian Schürmann and Matthias Althoff

Abstract— Optimal control finds an optimal input trajectory
which steers an initial state to a desired final state while
satisfying given state and input constraints. However, most
efficient approaches are restricted to a single initial state.
In this paper, we present a new approach, which combines
reachability analysis with optimal control. This enables us to
solve the optimal control problem for a whole set of initial
states by optimizing over the set of all possible solutions. At
the same time, we are able to provide formal guarantees for
the satisfaction of state and input constraints. Taking the effects
of sets of disturbances into account ensures that the resulting
controller is robust against them, which is a big advantage
over many existing approaches. We show the applicability of
our approach with a vehicle-platoon example.

I. INTRODUCTION

Reach-avoid problems are an important yet challenging

control task. Many modern control scenarios can be viewed

as reach-avoid problems, in which the system must be

controlled close to a given final state at a fixed final time

while avoiding unsafe regions, both in the state and input

spaces. One example is autonomous vehicles, which must

drive to given positions while meeting input constraints. They

must also avoid other traffic participants and leave no road

boundaries. Another example is the collaboration between

robots and humans: the robots must move or handle objects

at exact positions without hitting the humans or surrounding

objects.

In control theory it is common to use linear systems

to model a wide variety of real-world systems. While the

systems are nonlinear, in many cases linear models capture

the real behavior quite well. However, if one actually wants

to ensure constraint satisfaction for real systems, one has to

account for the model mismatch as well as for disturbances

and sensor noise. Therefore, disturbed linear systems are a

very useful class of systems when considering safety-critical

reach-avoid problems, in which the disturbances take all

previously mentioned errors into account.

In order to solve a reach-avoid problem, many different

methods exist. The fastest methods involve computing opti-

mal open-loop trajectories for a single initial state and not

considering disturbances. To solve this problem for a whole

set of initial states, one would have to solve infinitely many

optimal control problems, as there are infinitely many states

in a continuous set, which is infeasible. However, one often

has to consider a whole set of states to either account for

sensor inaccuracies or to make use of offline computations

The authors are with the Department of Informatics, Technis-
che Universität München, Boltzmannstr. 3, 85748 Garching, Germany.
bastian.schuermann@tum.de, althoff@in.tum.de

when the initial state is not exactly known. Moreover, it is not

enough to find an optimal solution of the nominal case, since

disturbances might lead to constraint violations or final states

far from the planned solution. To solve this problem, we

consider a novel optimal control approach, where we directly

optimize over a reachable set instead of a single trajectory.

Therefore we also do not optimize the input trajectory for a

single state, but for a whole initial set. This new approach is

formally correct and guarantees that the final state is reached

in a fixed time while satisfying input and state constraints

despite disturbances.

Many existing approaches either become too complex for

larger dimensional systems or do not provide optimality or

guarantees. For simple systems, one can try to solve the

Hamilton-Jacobi-Bellman (HJB) equation or use dynamic

programming [4], [6], [20], [17] to obtain an optimal con-

troller which takes constraints into account. However, an

analytic solution of the HJB equation is only possible for

relatively simple and small dimensional systems, and it

becomes difficult to use for more complex and disturbed

systems. For linear systems in particular, there exist several

methods [7], [8] to systematically compute the optimal

feedback control law for different regions in the state space

depending on the goal region and the convex state and input

constraints. These techniques are often used for explicit

model predictive control (MPC) [7], [8]. However, since

they have to divide the state space in different regions, this

can easily become computationally intractable if the number

of dimensions and constraints grows. It can often lead to

combinatorial and computational explosions, especially if

disturbance effects have to be taken into account. This curse

of dimensionality is a common problem for techniques which

rely on discretizing the state and input spaces, such as most

abstraction-based control approaches [19], [16], [28], which

are able to take complex specifications into account.

Other approaches optimize a single trajectory and control

all states from an initial set around this trajectory. This can

be achieved by using linear quadratic regulators (LQR) [18];

however, they cannot take state or input constraints into

account. To overcome this problem, more complex methods

are developed in [29], [21], where the authors use sums-of-

squares techniques to find special LQR tracking controllers.

These controllers are then used to compute so-called LQR

trees. Other methods which stabilize a system around a

trajectory include tube-based MPC [23], [24] which also uses

an additional feedback controller, and the approach shown in

[15], which relies on so-called trajectory robustness. While

the latter technique only works for undisturbed systems,



tube-based MPC loses optimality by using a fixed feedback

controller, which is not optimized further, even though some

approaches allow adapting the tube size during optimization

[25].

In previous works [26], [27], we considered the same

problem as in this paper and solved it by repeatedly inter-

polating optimal open-loop inputs. In [26] this was done for

the extreme points using convex combinations and for better

scalability for the generators of a parallelotope in [27]. While

[26], [27] work even for nonlinear systems, in contrast to

the approach in this paper, they do not provide a continuous

feedback law.

One application area which can benefit from our new al-

gorithm is the design of maneuver automata [11], [14], [21],

where trajectory pieces, or so-called motion primitives, are

computed offline, stored in a maneuver automaton, and then

combined online. Classical maneuver automata approaches

[11] do not provide formal guarantees, whereas other ap-

proaches provide such guarantees either by using reachability

analysis [14] or sums-of-squares programming [21]. The

method of [14] is illustrated in Fig. 1: The motion primitives

are computed and verified offline ➀ before they are combined

as states in a maneuver automaton. There exists a transition

from one motion primitive to another if the reachable set

after a fixed time of the first motion primitive is completely

contained in the initial set of the second motion primitive

➁. In order to have highly connected maneuver automata,

new controller design techniques are required which steer

an initial set into a small final set while satisfying the

constraints. The proposed optimal control strategy provides

a solution to this problem. The offline computed and verified

motion primitives are then combined in a planning algorithm

online ➂-➅.

The remainder of this paper is organized as follows: We

start with a formal problem formulation in Sec. II. This is

followed by Sec. III, the main section of this paper, which

contains the novel set-based optimal control method. Its

applicability is shown in a numerical example in Sec. IV. The

paper concludes with a summary and an outlook in Sec. V.

II. PROBLEM FORMULATION

We consider a disturbed, linear, time-invariant (LTI) sys-

tem of the form

ẋ(t) = Ax(t) +Bu(t) + w(t), (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the vector

of controllable inputs, and w(t) ∈ W ⊂ R
n is the vector of

uncontrollable inputs, i.e., additive disturbances. The system

dynamics are defined by the matrices A ∈ R
n×n and B ∈

R
n×m. We do not require any stochastic properties for the

disturbances nor that it can be measured, only that the set W
is compact, i.e., closed and bounded. Before we formulate

the problem statement, let us define the solution of (1) as:

Definition 1 (Solution) A continuous curve ξ : Rn ×R
m ×

R
n×R

+
0 → R

n is called a solution of system (1) for a given

initial state x(0) ∈ R
n, a given input function u : R+

0 →

Offline

Online

➀ Compute motion primitives using

the new optimal control approach

➁ Connectivity check and com-

bination in maneuver automaton

➂ Occupancy

of other traffic
participants

➃ Discrete
trajectory

planning

➄ Collision
checking

➅ Trajectory

following

co
n

tr
o

ll
er

· · ·· · ·

Fig. 1. Overview of robust maneuver automata design for an example in
automated driving using our optimal control approach.

R
m, and disturbances w : R+

0 → W ⊂ R
n, if the following

two properties hold:

1) ξ(x(0), u(·), w(·), 0) = x(0)
2) ξ̇(x(0), u(·), w(·), t) = Aξ(x(0), u(·), w(·), t) +

Bu(t) + w(t), ∀t ∈ R
+
0 .

For a trajectory x : R
+
0 → R

n we refer by x(·) to the

whole trajectory and by x(t) to the value of the trajectory at

time t. Moreover, we use the shorthand notation x(·) ∈ X
for x(t) ∈ X , ∀t ∈ [0, tf ], where tf ∈ R

+
0 is the final

time. We use the same shorthand for input trajectories and

disturbances. Sometimes, when we consider undisturbed LTI

systems, we use ξ(x(0), u(·), 0, ·) to denote the solution

without disturbances, i.e., W = 0.

Problem 1 The task is to find a control algorithm

ucontrol(x, t) for system (1) which guarantees that all states

in an initial set Sinit ⊂ R
n are steered into a final set

Sf ⊂ R
n as close as possible to a given end state x(f)

after time tf , despite the disturbance set W . With “as close

as possible”, we refer to the solution of

min
ucontrol

ρ(Sf , x
(f)),

where ρ(Sf , x
(f)) → R

+
0 is a cost function measuring the

distance of the states in Sf to x(f). Furthermore, we consider

convex constraints on the states and inputs, i.e.,

ξ(x(0), u(·), w(·), ·) ∈ X ⊆ R
n,

u(·) ∈ U ⊆ R
m,

where X and U are convex sets.



The proposed method also works with minor adaptations for

other cost functions. Moreover, if it is necessary to end in a

given set, i.e., if the reach-avoid problem contains ending in

a pre-specified set Sf,desired rather than in a final set which

is as small as possible, we can easily take this into account

by adding the constraint

Sf ⊆ Sf,desired. (2)

Clearly, a bad choice of constraints and final time may make

it impossible to satisfy all constraints at the same time.

We consider convex state constraints, since most static

constraints, such as speed limits and street boundaries (in

Frenet coordinates) in the previous car example, can be

expressed as convex state constraints. Nonconvex constraints

mostly appear as dynamical constraints, such as other traffic

participants in automatic driving, which are only known

during runtime. Therefore, we cannot take them into account

during the offline computation of motion primitives, which

is considered in this paper, but rather during online planning.

The proposed methods also work for nonconvex constraints;

however, checking the constraints becomes much harder to

compute.

III. OPTIMAL, ROBUST CONTROLLER SYNTHESIS USING

REACHABILITY ANALYSIS

In practice, reach-avoid problems are often solved by

combining optimal open-loop control with tracking control.

Thereby, a reference trajectory is computed for a single

initial point using efficient numerical tools, e.g., linear pro-

gramming or quadratic programming algorithms [9]. To take

advantage of these efficient algorithms, one has to consider

discrete-time systems, i.e., one has to restrict the inputs to

piecewise-constant input trajectories. While these algorithms

are able to take constraints and final times into account, they

are only able to compute the solution for a single initial state.

Therefore, if we want to control a whole set of initial states,

we would have to solve infinitely many optimal control

problems, which is not possible. At the same time, open-

loop optimal control is not robust against disturbances.

Therefore one often combines the optimized reference

trajectory with a tracking controller, which should drive the

error between the actual state and the desired state along the

reference trajectory to zero. An often used controller type is

LQR [18], which computes for an undisturbed linear system

a feedback matrix K, which minimizes a quadratic cost

function on inputs and states. While the feedback controllers

are able to control all states starting in an initial set and can

also react to disturbances, they are not able to take input or

state constraints into account.

In this section, we present a way to overcome the previ-

ously described problems by including reachability analysis

in the controller synthesis. Our method optimizes the ref-

erence trajectory and feedback matrices such that they take

state and input constraints into account, despite disturbances,

and directly minimize the reachable set at the final time.

Let us first illustrate the main idea of our new concept.

In Fig. 2(a), we show a classic optimal control approach,

in which an optimal input trajectory u(·) for a single initial

state x(0) is computed. This input trajectory minimizes the

difference between the final state of the center trajectory

ξ(x(0, u(·), 0, tf )) and the desired final state x(f). Our new

approach is shown in Fig. 2(b), where we consider a whole

set of initial states for which we compute the tracking

controller

utrack(x(t), t) = uref(t) +K(t)(x(t) − xref (t)), (3)

with

xref (t) = ξ(xref (0), uref (·), 0, t), (4)

combining the open-loop reference input uref(t) and the

time-varying feedback matrix K(t). By solving the optimal

control problem for the entire reachable set, we obtain opti-

mal inputs for all initial states. For a simpler demonstration

and notation, we restrict our consideration to piecewise-

constant control inputs and feedback matrices. All pre-

sented methods can be easily adapted to general piecewise-

continuous input functions.

0 1 2

-0.8

-0.4

0

0.4

0.8

t

ξ
(x

(0
),
0
,
u
,
·)
,
u

input

state

(a) Classical, open-loop optimization

0 1 2

-1

-0.5

0

0.5

t

R
(S

in
it
,
u
,
K
),
u
,
K

input

K(t)

reachable set

(b) Novel, set-based closed-loop optimization

Fig. 2. Illustration of our control approach: While classical optimal open-
loop control optimizes a single input trajectory for a single initial state
(a), our new approach optimizes a reference input and a feedback matrix to
minimize the solutions of a whole set of initial states (b). To better illustrate
the approach, the plots do not show the same optimization problem.

Before we present our new optimization technique, let us

formally introduce reachable sets.

Definition 2 (Reachable Set) For system (1), the reachable

set Rt,u,W(S) ⊂ R
n for a time t, an input function u :

R
+
0 → R

m, disturbances w(·) ∈ W , and an initial set S ⊂
R

n is the set of final states of trajectories starting in S after

time t, i.e.,

Rt,u,W(S) = {x(t) ∈ R
n|∃x(0) ∈ S, ∃w(·) ∈ W :

ξ(x(0), u(·), w(·), t) = x(t)}.



The reachable set over a time interval [t1, t2] is the union of

all reachable sets for these points in time, i.e.,

R[t1,t2],u,W(S) =
⋃

t∈[t1,t2]

Rt,u,W(S).

For an easier presentation and without loss of generality,

we divide the time interval [0, tf ] into N intervals of length

∆t =
tf
N
. Within each time interval, uref (·) and K(·) are

constant. Let us denote with ti = i∆t, i ∈ {0, . . . , N − 1}
and therefore uref(ti) and K(ti) the (i+1)− th piecewise

constant input and matrix, respectively.

We solve Problem 1 by optimizing these piecewise con-

stant reference inputs uref (·) and feedback matrices K(·) in

the following optimization problem:

min
utrack

ρ(Rtf ,utrack,W(Sinit), x
(f)) (5)

w.r.t.

R[0,tf ],utrack,W(Sinit) ⊆ X , (6)

utrack

(
R[0,tf ],utrack,W(Sinit)

)
⊆ U . (7)

with

ρ(R(·), x(f)) =
1

2
‖R(·)‖1 + ‖x(f) − center(R(·))‖1.

Therein, we use utrack (R(·)) as a shorthand for the set of

inputs which result if we evaluate utrack for each point in

the set R(·), i.e.

utrack(R(·)) = {utrack(x)|x ∈ R(·)}.

For a set S ⊂ R
n we denote by ‖S‖1 the sum of the edges

of the axis-aligned bounding box, i.e.,

‖S‖1 =

n∑

i=1

(sup
x∈S

xi − inf
x∈S

xi),

and by center(S) its center. Therein, xi refers to the i−th

entry of vector x. The cost function ρ(R(·), x(f)) penalizes

the size of the final set in every dimension and the distance

from the center of the final set to the desired final state. This

is equivalent to the cost function

ρ(R(·), x(f)) =

n∑

i=1

sup
(

|xi − x
(f)
i |

∣
∣x ∈ R(·)

)

.

The advantage of this choice of cost function is that the axis-

aligned bounding box is easy to compute in contrast to e.g.,

a cost function based on extreme points, as we see later.

The optimal control problem in (5) can be written in the

standard form of nonlinear programming problems:

min
utrack

Costs(utrack(·), A,B,W ,Sinit, x
(f), tf ) (8)

w.r.t. Constraints(utrack(·), A,B,X ,U ,W ,Sinit, tf ) ≤ 0,
(9)

where Costs and Constraints represent the cost and con-

straint functions, which we describe later. This allows us

to use nonlinear programming tools [5] to efficiently solve

the problem. Let us describe in the following how our

problem can be transformed into such a problem and how the

different functions can be implemented. Each optimization

step consists of three major parts: the reachability analysis,

the cost function, and the constraint function. To improve

the optimization, we obtain an initial guess for the reference

input uref(·) by solving a standard optimal control problem

starting at the center of the initial set and with the nomi-

nal system, i.e., without considering the disturbances. The

solution KLQR of the Riccati equation for the infinite time-

horizon case is used as the initial guess for all feedback

matrices K(ti) = KLQR, ∀i ∈ {0, . . . , N − 1}.

1) Reachability Analysis: For linear systems, the compu-

tation of overapproximative reachable sets is well understood

(see [1, Sec. 3.2], [10], [13], [3]), and there exist efficient

tools, e.g., the Matlab toolbox CORA [2] and SpaceEx

[12]. The algorithms in [1] and [2] use zonotopes as set

representation for reachability computation:

Definition 3 (Zonotope) A set is called a zonotope if it can

be written as

Z =
{

x ∈ R
n
∣
∣
∣x = c+

p
∑

i=1

αig
(i), αi ∈ [−1, 1]

}

.

Therein c ∈ R
n defines the center of the zonotope, and

g(i) ∈ R
n, i ∈ {1, . . . , p}, are p = o n generators, with

o denoting the order of the zonotope. Sometimes, we use

< c, g(1), . . . , g(p) > as a more concise notation of Z. The

generators can also be combined to the generator matrix

G ∈ R
n×p, which contains the generators as its columns.

A zonotope with n linear independent generators is called a

parallelotope.

To enable the use of the reachability analysis as in [1],

we have to express our closed-loop dynamics in closed-

form. We obtain this by inserting (3) and (4) into (1) and

by combining the actual system state with the state of the

reference trajectory xref into an extended state x̂ :
[

ẋ(t)
ẋref (t)

]

︸ ︷︷ ︸

˙̂x

=

[
A+BK(t) −BK(t)

0n×n A

]

︸ ︷︷ ︸

Â

[
x(t)

xref (t)

]

︸ ︷︷ ︸

x̂

+

[
B 0n×m

0n×m B

]

︸ ︷︷ ︸

B̂

[
uref (t) + w(t)

uref (t)

]

︸ ︷︷ ︸

û

,

where 0n×m ∈ R
n×m is a matrix which contains only zeros.

The reachability algorithm in [1] computes the reachable sets

for time intervals with constant system dynamics. Since we

change our feedback matrices K(·) after each time step ∆t,

the extended system matrix Â changes after each step as

well. After computing the reachable sets for time interval

[ti, ti+1], we change the dynamics and reference inputs and

compute the next reachable set with the new dynamics and

reference input, using the reachable set from the last step as

the initial set. For the first step, we use the extended initial

set Ŝinit = {x̂ ∈ R
2n|x ∈ Sinit, xref = center(Sinit)}

as the starting set. Let us now summarize the reachability

analysis for each step.



t0 tNti ti+1

τ0 τMτj τj+1

∆t

∆τ

. . .

. . .. . .

. . .

Fig. 3. Illustration of the two time scales: ∆t for the control inputs and
∆τ for the reachability analysis.

The algorithm in [1] divides the time in small time

intervals [τk, τk+1] of length ∆τ . Without loss of gener-

ality, we assume that ∆t = M∆τ, M ∈ N, i.e., the

time steps are smaller than the time intervals in which

we change the reference inputs uref and feedback ma-

trices K(·). This is illustrated in Fig. 3. The algorithm

uses the superposition principle to divide the reachable set

into two parts: one with the autonomous dynamics and

the reference input, and one resulting from the disturbance

W , i.e., ξ(x(τk), uref , w(·),∆τ) = ξ(x(τk), uref , 0,∆τ) +
ξ(0, 0, w(·),∆τ). Given an initial set Ŝinit, the reachable

set of a time interval R[0,t1],u,W(Ŝinit) is computed in four

steps (see Fig. 4 for the first three steps). These steps involve

the addition of sets (A ⊕ B := {a + b|a ∈ A, b ∈ B}) and

the multiplication of sets (A⊗ B := {a b|a ∈ A, b ∈ B}):

(i) Compute the reachable set for the first interval [0, τ1]
neglecting the disturbances:

Rh
τ1

= R∆τ,uref ,0(Ŝinit) = eÂ∆τ ⊗ Ŝinit ⊕
∫ ∆τ

0
eÂ(∆τ−r) dr B̂

[
uref

uref

]

.

(ii) Compute the convex hull CH(Ŝinit,Rh
τ1
) for the ap-

proximation within [0, τ1].
(iii) Enlarge the reachable set by RW

∆τ = R∆τ,0,W(∅) to

account for the disturbances and by D for the curvature

of the trajectories (see [1] for details for D) making the

result overapproximative:

R0,τ1 = CH(Ŝinit,Rh
τ1
)⊕RW

∆τ ⊕D.

(iv) For all following time intervals [τk, τk+1] compute

R[τk,τk+1] = eÂ∆τ ⊗ R[τk−1,τk] ⊕ RW
∆τ ⊕

∫ ∆τ

0
eÂ(∆τ−r) dr B̂

[
uref

uref

]

.

We iteratively repeat this procedure over all time intervals

from t = [0, tf ], where we update the dynamics after each

time step ∆t. Note that we can also obtain the reachable sets

at single points in time Rτk with this technique.

Ŝinit

Rh
τ1

CH(Ŝinit,

Rh
τ1

)

R[0,τ1]

➀ ➁ ➂

enlargement

by RW

∆τ
⊕D

Fig. 4. Computation of the reachable set for the first time interval [0, τ1].

2) Cost Function: In the cost function (8), we compute

the reachable set for the whole time-horizon [0, tf ] with the

current controller utrack(·). We then compute the cost of the

final reachable set Rtf :

cost =
1

2
‖Rtf ‖1 + ‖x(f) − c‖1,

where c is the center of Rtf . The size of the axis-aligned

bounding box for a zonotope is easily computed by

‖Z‖1 = ‖ < c, g(1), . . . , g(p) > ‖1 = 2
n∑

i=1

p
∑

j=1

|g
(j)
i |.

Therefore, if we denote the final reachable set as

Rtf =< c, g(1), . . . , g(p) >, the cost function can be calcu-

lated by:

cost =

n∑

i=1

p
∑

j=1

|g
(j)
i |+

n∑

i=1

|ci − x
(f)
i |. (10)

3) Constraint Function: In the constraint function (9), we

check whether the overapproximation of the reachable set

is always inside the state constraints and whether the input

constraints are satisfied at all times. For each reachable set

R[tl+τk,tl+τk+1] we check whether R[tl+τk,tl+τk+1] ⊆ X .

To check the input constraints, we have to ensure that the

inputs cannot be violated for any point in R[tl+τk,tl+τk+1].

We therefore compute the overapproximation of the set of

possible inputs utrack(R[tl+τk,tl+τk+1]) in the time interval

[tl + τk, tl + τk+1] as

utrack(R[tl+τk,tl+τk+1]) ⊆uref (tl)⊕K(tl)

⊗ (Zx ⊕ (−1⊗ Zref)) ,

where Zx is the set of states in the first n coordinates of

R[tl+τk,tl+τk+1], i.e., the reachable states, and Zref the states

of n + 1 to 2n coordinates, i.e., the reference states. The

computation of the input set contains only linear maps and

set additions; both operators can be efficiently computed for

zonotopes [1].

In order to use (6) and (7) inside a solver for nonlinear

programming, we have to transform them from a set-based

representation into a system of inequalities, see (9). The

implementation for checking whether the reachable sets and

input sets are inside the constraint sets depends on the

representation of the state and input constraints. The most

common constraints in practice are box constraints, i.e.,

where a maximal xmax
i and a minimal value xmin

i for each

dimension is given. For this type of constraint, we check for

each reachable set R[tl+τk,tl+τk+1] =< c, g(1), . . . , g(p) >

whether ∀i ∈ {1, . . . , n} :

ci +

p
∑

j=1

|g
(j)
i | ≤ xmax

i

ci −

p
∑

j=1

|g
(j)
i | ≥ xmin

i



and therefore

ci +

p
∑

j=1

|g
(j)
i | − xmax

i ≤ 0 (11)

−ci +

p
∑

j=1

|g
(j)
i |+ xmin

i ≤ 0, (12)

which is a set of inequalities smaller than or equal to

zero as desired. We do the same for the input zonotopes

utrack(R[tl+τk,tl+τk+1]) with umax and umin. For other

types of constraints, there exist other similar, efficient meth-

ods, e.g., if the constraint sets are parallelotopes of the

form P = {x ∈ R
n|x = cP + GPα, αi ∈ [−1, 1]},

with cP ∈ R
n, GP ∈ R

n×n with full rank, then we

can transform the parallelotopes into axis-aligned boxes by

multiplying it with G−1
P

and use the previously described

method. Another example is polytopic constraint sets in the

form P = {x ∈ R
n|Cx ≤ d}, with C ∈ R

q×n, d ∈ R
q.

Since we can compute the potential extreme points x̂(i) of a

zonotope as the 2p combinations of

{x̂(1), . . . , x̂(2p)} = c± g(1) ± · · · ± g(p),

we can check if ∀i = 1, . . . , 2p, Cx̂(i) ≤ d, which can also

be expressed in one large system of inequalities, if needed.

Due to the special structure of zonotopes, the computation

of the extreme points is numerically robust in contrast to

computing the extreme points of a polytope defined by a

system of inequalities, for example.

Clearly, we can apply the described methods in the same

way if we have constraints on the final set (2) by checking

the constraints on Rtf .

Complexity of the Algorithm

As mentioned before, we use nonlinear programming tools

to efficiently solve the optimization problem. Due to the

structure of nonlinear programs, it is not possible to give

bounds on the complexity for the optimization program.

Since the optimization problem is nonconvex, we can only

expect it to converge to local minima, and even this cannot be

guaranteed. However, these are general problems one faces

when using nonlinear programming to compute controllers

for disturbed systems. As mentioned before, there are ap-

proaches which use convex methods like multi-parametric

linear programming. However, the exponential complexity

of these approaches due to dividing the state space often re-

stricts their applicability to rather small dimensional systems.

What we can do, however, is discuss the complexity of

one optimization step, i.e., to evaluate the cost function and

the constraint function. In this case, we have the complexity

for the reachability analysis, which scales with O(n3) for the

number of dimensions n, if we use the method described in

[1]. After the reachability analysis, we compute the costs in

(10), which scales with O(n2) for a fixed zonotope order

o. Lastly, we have to check the constraints. The complexity

depends on the type of constraints. Box constraints as shown

in (11)-(12) scale with O(n2) if we have constraints in

all dimensions. For parallelotope constraints, we must also

multiply the inverse of a matrix which has complexity

O(n3). This is therefore also the resulting complexity for

parallelotope constraints. For polytopic constraints however,

we have to compute all extreme points of the zonotope.

While this is numerically stable to compute, the number of

potential extreme points, and therefore also the complexity,

grows exponentially with the dimension n if we still assume

a constant zonotope order o.

Therefore, for box and parallelotope constraints, the over-

all complexity for one step of our algorithm is bounded by

O(n3), while for polytopic constraints it becomes exponen-

tial.

If we wanted to optimize trajectories for the extreme points

only, instead of using reachability analysis, we would be able

to use more efficient algorithms, such as linear or quadratic

programming; however, we would have to do it for 2n

extreme points, for the simple case of boxes, while not being

able to consider disturbances. As mentioned in the beginning,

other techniques which do consider disturbances often rely

on dividing the state space into different sets, where the

complexity also grows exponentially with the number of

dimensions.

IV. NUMERICAL EXAMPLE

In this section, we show the applicability of the presented

approach with a platooning example. In this example, ve-

hicles on a highway are supposed to drive in a platoon

behind each other. By driving close to the vehicle in front

of them, they can save fuel and reduce driving time for

human drivers. However, in this scenario there are important

safety constraints which must be satisfied at all times, despite

the effects of external disturbances. We consider vehicle-

to-vehicle communication which allows a central controller

design. This example is inspired by the benchmark example

proposed in [22].

We consider a platoon with four vehicles, where the

dynamics of each vehicle i ∈ {1, 2, 3, 4} is given by

ṗ(i) = v(i), v̇(i) = a(i) + w(i),

where p(i) denotes the position of the i−th vehicle, v(i)

its velocity, and a(i) its acceleration, i.e., the controllable

input. The disturbances, i.e., the uncontrollable inputs, are

denoted by w(i). To model the whole platoon, we use the

absolute states of the first vehicle and the relative states of the

second, third, and fourth vehicle, i.e., we consider the eight-

dimensional state vector x = [p(1), v(1), p(1)−p(2)−cs, v
(1)−

v(2), p(2)−p(3)−cs, v
(2)−v(3), p(3)−p(4)−cs, v

(3)−v(4)]T ,

the input vector u = [a(1), a(2), a(3), a(4)], and disturbance

vector w = [w(1), w(2), w(3), w(4)]. Therein cs ∈ R
+ denotes

a safety constant, defining a minimal safe distance. The

resulting dynamics are given by

ẋ1 = x2, ẋ2 = u1 + w1,

ẋ3 = x4, ẋ4 = u1 − u2 + w1 − w2,

ẋ5 = x6, ẋ6 = u2 − u3 + w2 − w3,

ẋ7 = x8, ẋ8 = u3 − u4 + w3 − w4.



0 10 20

20

21

22

23

x1[m]

x
2
[m
s
]

0 10 20

20

21

22

23

x1[m]

x
2
[m
s
]

0 10 20

20

21

22

23

x1[m]

x
2
[m
s
]

Fig. 5. Illustration of the reachable sets projected onto the (x1, x2) plane at different times during the optimization algorithm. On the left, the reachable
set for the initial guess, in the middle during the optimization, and on the right the final reachable set after the optimization. The initial sets are shown in
black and the final sets in blue.

We assume that all inputs are constrained between ui(·) ∈
[−10, 10]m

s
, i ∈ {1, 2, 3, 4} and all disturbances vary freely

in the interval wi(·) ∈ [−1, 1]m
s
. Moreover, we have the state

constraint that the vehicles must keep the minimal safety

distance, i.e., x3, x5, x7 > 0. We consider the following sce-

nario, which can be used as a motion primitive in a platoon-

ing maneuver automaton: The vehicles start with initial states

ranging freely in the box [−0.2, 0.2]m × [19.8, 20.2]m
s
×

[0.8, 1.2]m × [−0.2, 0.2]m
s
× [0.8, 1.2]m × [−0.2, 0.2]m

s
×

[0.8, 1.2]m× [−0.2, 0.2]m
s
, i.e., the vehicles drive with dif-

ferent velocities around 20m
s

behind each other. We consider

a final state [21m, 22m
s
, 1m, 0m

s
, 1m, 0m

s
, 1m, 0m

s
]T which

should be reached after 1s, i.e., the whole platoon should

speed up to 22m
s

and align in a safe distance of cs + 1m
between each vehicle.

We use our approach to compute an optimized tracking

controller using the approaches presented in Sec. III. The

center trajectory is split in five time steps and therefore

five constant control matrices are computed. We implement

the controller in Matlab and use the CORA toolbox [2]

for the reachability computation, where the disturbances are

handled as uncontrollable inputs. For the optimization we

use Matlab’s fmincon function with the active-set

algorithm. The computations are performed on a computer

with a 3.1 GHz dual-core i7 processor with 16 GB memory.

The computation of the optimized controller takes around

five minutes. The optimization algorithm terminates after it

reaches the maximal number of iterations and finds a feasible

solution. We show the reachable sets at different times during

the algorithm in Fig. 5. We see how the reachable set changes

between different iterations, as it is directly optimized on,

and how the size of the final set is minimized. In Fig. 6, we

show the optimized final set in comparison to the initial set

for the different dimensions. For the x1 and x2 coordinates

we shifted the final reachable set by the final states x(f) for

a better comparison. We see that the shifted reachable set of

our controller (blue) lies completely in the initial set (black).

For comparison, we also compute three LQR tracking

controllers using the traditional approach of a reference

trajectory in combination with a LQR tracking controller as

described in the beginning of Sec. III. Since we value all

dimensions the same, we choose the state weighting matrix

as the identity Q = I . We obtain the first LQR controller

with an input weighting matrix R = I. We use this controller

as an initial guess for our optimization problem; therefore,

the reachable set can be seen in Fig. 5 on the left. The final

set is very large and while it satisfies the input constraints,

it violates the state constraints. To get an idea of how well a

LQR controller can solve the problem, we increase the state

weighting matrices manually while making sure that the state

and input constraints are still satisfied. We see the resulting

final set for Q = 90I and R = I in red, dashed in Fig. 6.

It is much larger than with our controller and lies outside

the initial set. We can keep increasing the state weighting

matrices until Q = 700I , for which the final reachable sets

(red, solid in Fig. 6) lie just inside the initial set; however, this

controller uses more than two times of the allowed inputs.

Even if we weight the positions and velocities in the state

weighting matrix differently, any resulting controller which

controls all final states inside the initial set uses inputs which

are much larger than allowed.

In conclusion, we are not able to find an LQR controller

which satisfies the constraints and lies in the final set. This

example shows how using the reachability analysis inside

the optimization problem leads to controllers with better

performance and guaranteed constraints satisfaction, which

is not possible with classical LQR controllers.

V. CONCLUSION AND FUTURE WORK

Reach-avoid problems are an important task in control

theory. In this paper, we provided a solution to this prob-

lem by extending existing approaches for optimal tracking

control. To the best of our knowledge, we use, for the first

time, reachability analysis inside the optimization problem

to obtain optimal control inputs, not only for a single state,

but for a whole continuous set of initial states. This new

technique allows us to take constraints and the effects of

disturbances into account. The resulting controller is robust

against disturbances, and we obtain formal guarantees for

the satisfaction of constraints and the resulting reachable

set. By computing the reachable set inside the optimization

problem, we are able to directly optimize the size of the

reachable set at a final time point. We show the applicability

of our approach for a platooning example, where we also



-0.2 0 0.2

19.8

20

20.2

x1[m]

x
2
[m
s
]

0.8 1 1.2

-0.2

0

0.2

x3[m]

x
4
[m
s
]

0.8 1 1.2

-0.2

0

0.2

x5[m]

x
6
[m
s
]

0.8 1 1.2

-0.2

0

0.2

x7[m]

x
8
[m
s
]

Fig. 6. Initial (black) and shifted final sets (blue) for our optimized controller utrack, projected onto the (x1, x2), the (x3, x4), the (x5, x6), and the
(x7, x8) planes. For comparison the final sets of two LQR controllers are shown (red).

demonstrate its advantages (minimizing the final set while

satisfying constraints) over a classical approach.

This paper is only the first step in the combination of

optimal control and reachability analysis. Therefore, there

are many future extensions possible. An important direction

is to optimize the algorithms for reachability analysis in

order to solve the optimization problems more quickly. This

is especially important for nonlinear systems, where the

current computation times of the reachability analysis prevent

their use in optimization. By improving the computation

times for linear systems, online application of this approach

might become possible, which would offer extensions to

reachability-based MPC. In addition to these extensions, we

plan to apply the algorithms to the control of real systems.

ACKNOWLEDGMENTS

The author gratefully acknowledges financial support from

the European Commission project UnCoVerCPS under grant

number 643921.

REFERENCES

[1] M. Althoff. Reachability Analysis and its Application to the Safety

Assessment of Autonomous Cars. PhD thesis, Technische Universität
München, 2010.

[2] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop

on Applied Verification for Continuous and Hybrid Systems, pages
120–151, 2015.

[3] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler.
Recent progress in continuous and hybrid reachability analysis. In
Proc. of the IEEE Conference on Computer Aided Control Systems

Design, pages 1582–1587, 2006.
[4] D. P. Bertsekas. Dynamic Programming and Optimal Control, vol-

ume 1. Athena Scientific Belmont, MA, 3rd edition, 2005.
[5] J. T. Betts. Practical Methods for Optimal Control and Estimation

Using Nonlinear Programming. Society for Industrial and Applied
Mathematics, 2010.

[6] F. Blanchini and S. Miani. Set-Theoretic Methods in Control. Springer,
2008.

[7] F. Borrelli. Constrained Optimal Control of Linear and Hybrid

Systems. Springer, 2003.
[8] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for linear

and hybrid systems. Cambridge University Press, 2011/2015.
[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, 2004.
[10] A. Chutinan and B. H. Krogh. Computational techniques for hy-

brid system verification. IEEE Transactions on Automatic Control,
48(1):64–75, 2003.

[11] E. Frazzoli, M. Dahleh, and E. Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. IEEE Transactions

on Robotics, 21(6):1077–1091, 2005.

[12] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable
verification of hybrid systems. In Proc. of the International Conference

on Computer Aided Verification, 2011.
[13] A. Girard and C. Le Guernic. Efficient reachability analysis for linear

systems using support functions. In Proc. of the 17th IFAC World

Congress, pages 8966–8971, 2008.
[14] D. Heß, M. Althoff, and T. Sattel. Formal verification of maneuver

automata for parameterized motion primitives. In Proc. of the

International Conference on Intelligent Robots and Systems, pages
1474–1481, 2014.

[15] A. A. Julius and A. K. Winn. Safety controller synthesis using human
generated trajectories: Nonlinear dynamics with feedback linearization
and differential flatness. In Proc. of the American Control Conference,
pages 709–714, 2012.

[16] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions

on Automatic Control, 53(1):287–297, 2008.
[17] A. B. Kurzhanski, I. M. Mitchell, and P. Varaiya. Optimization tech-

niques for state-constrained control and obstacle problems. Journal of

Optimization Theory and Applications, 128(3):499–521, 2006.
[18] H. Kwakernaak and R. Sivan. Linear optimal control systems. Wiley-

Interscience New York, 1972.
[19] J. Liu, U. Topcu, N. Ozay, and R. M. Murray. Reactive controllers for

differentially flat systems with temporal logic constraints. In Proc. of

the Conference on Decision and Control, pages 7664–7670, 2012.
[20] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability

specifications for hybrid systems. Automatica, 35(3):349–370, 1999.
[21] A. Majumdar and R. Tedrake. Funnel libraries for real-time robust

feedback motion planning. arXiv preprint arXiv:1601.04037, 2016.
[22] I. B. Makhlouf and S. Kowalewski. Networked cooperative platoon

of vehicles for testing methods and verification tools. In Proc. of the

Workshop on Applied Verification for Continuous and Hybrid Systems,
pages 37–42, 2014.

[23] D. Q. Mayne, M. M. Seron, and S. V. Raković. Robust model predic-
tive control of constrained linear systems with bounded disturbances.
Automatica, 41(2):219 – 224, 2005.

[24] S. V. Raković, B. Kouvaritakis, M. Cannon, C. Panos, and R. Find-
eisen. Parameterized tube model predictive control. IEEE Transactions

on Automatic Control, 57(11):2746–2761, 2012.
[25] S. V. Raković, B. Kouvaritakis, R. Findeisen, and M. Cannon. Homo-

thetic tube model predictive control. Automatica, 48(8):1631–1638,
2012.

[26] B. Schürmann and M. Althoff. Convex interpolation control with
formal guarantees for disturbed and constrained nonlinear systems. In
Proc. Hybrid Systems: Computation and Control, 2017.

[27] B. Schürmann and M. Althoff. Guaranteeing constraints of disturbed
nonlinear systems using set-based optimal control in generator space.
In Proc. of the 20th IFAC World Congress, 2017.

[28] P. Tabuada and G. J. Pappas. Linear time logic control of discrete-
time linear systems. IEEE Transactions on Automatic Control,
51(12):1862–1877, 2006.

[29] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts. LQR-
trees: Feedback motion planning via sums-of-squares verification. The

International Journal of Robotics Research, 29(8):1038–1052, 2010.


