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Abstract

The community-based generation of content has
been tremendously successful in the World Wide
Web – people help each other by providing in-
formation that could be useful to others. We are
trying to transfer this approach to robotics in or-
der to help robots acquire the vast amounts of
knowledge needed to competently perform every-
day tasks. RoboEarth is intended to be a web com-
munity by robots for robots to autonomously share
descriptions of tasks they have learned, object mod-
els they have created, and environments they have
explored. In this paper, we report on the formal lan-
guage we developed for encoding this information
and present our approaches to solve the inference
problems related to finding information, to deter-
mining if information is usable by a robot, and to
grounding it on the robot platform.

1 Introduction
In the Web 2.0, content is now often generated by the users
of a web site that form a community of people helping each
other by providing information they consider useful to oth-
ers. Wikipedia grew up to millions of articles, sites like cook-
ing.com or epicurious.com provide tens of thousands of cook-
ing recipes, and ehow.com and wikihow.com contain instruc-
tions for all kinds of everyday tasks. “Crowdsourcing” the
generation of web content made it possible to create large
web sites in shorter time with shared effort. In our research,
we are investigating how this approach can be transferred
to robotics. On the one hand, we aim at enabling robots to
use information that can already be found on the Web, for
instance by translating written instructions from web pages
into robot plans [Tenorth et al., 2011]. On the other hand, we
are working towards a “World Wide Web for Robots”, called
ROBOEARTH (Figure 1), that is to be a web-based commu-
nity in which robots can exchange knowledge among each

∗The paper on which this extended abstract is based was the
recipient of the Best Cognitive Robotics Paper Award of the
2012 IEEE International Conference on Robotics and Automation
(ICRA) [Tenorth et al., 2012].

others. Understanding instructions that were made for hu-
mans is still difficult, but once the information is made avail-
able in a robot-compatible formal language, it should be pos-
sible to share it with other robots. These other robots then do
not have to go through the difficult conversion process again.
We thereby hope to speed up the time-consuming knowl-
edge acquisition process by enabling robots to profit from
tasks other robots have already learned, from object mod-
els they have created, and from maps of environments they
have explored. If information is to be used by robots without
human intervention, it has to be represented in a machine-
understandable format. In this respect, our system has much
in common with the Semantic Web [Lee, Hendler, and Las-
sila, 2001] that also aims at creating machine-readable web
content. An explicit representation of the semantics is impor-
tant to enable robots to understand the content, i.e. to set sin-
gle pieces of information into relation. Only if they know the
semantics of the exchanged information, robots can decide if
an object model will be useful to perform a given task, or de-
termine if all required sensors are available. In particular, the
representation language provides techniques for describing:

• Actions and their parameters, object poses in the envi-
ronment, and object recognition models

• Meta-information about the exchanged data, e.g. types,
file formats, units of measure, coordinate frames

• Requirements on components a robot needs to have in
order to make use of a piece of information

• Self-models of a robot’s components and capability con-
figuration

• Methods for matching requirement specifications to a
robot’s capabilities to identify missing components

In this paper, we describe our approach to creating a se-
mantic representation language for the ROBOEARTH sys-
tem. It is an extended abstract of a paper presented at ICRA
2012 [Tenorth et al., 2012]. A journal version of this paper,
with a more in-depth description of the language constructs
is to appear [Tenorth et al., 2013]. The main contributions are
(1) a semantic representation language for actions, objects,
and environments; (2) the infrastructure for using this repre-
sentation to reason about the applicability of information in
a given context and to check if all required robot capabili-
ties are available; and (3) mechanisms for creating and up-
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Figure 1: Overview of the ROBOEARTH system: A central database provides information about actions, objects, and envi-
ronments. The robot can up- and download information and determine if it can use it based on a semantic model of its own
capabilities.

loading shared knowledge. These technical contributions are
validated by an experiment including two physical robots per-
forming a serving task in two different environments based on
information retrieved from and shared via ROBOEARTH.

2 Related Work
As a platform for knowledge exchange between heteroge-
neous robots, ROBOEARTH requires semantic representations
that provide a robot with all information it needs to select in-
formation from the knowledge base, to adapt it, and to rea-
son about its applicability in a given situation. Earlier re-
search on knowledge representation for actions or objects
usually did not deal with this kind of meta-information, but
rather focused on the representation of the information it-
self, for example in Hierarchical Task Networks (HTN [Erol,
Hendler, and Nau, 1994]) and related languages for plan rep-
resentation [Myers and Wilkins, 1997], workflow specifica-
tions [Myers and Berry, 1998], or the Planning Domain Def-
inition Language (PDDL [Ghallab et al., 1998]). Generic
exchange formats like the Knowledge Interchange Format
KIF [Genesereth, Fikes, and others, 1992] are very expressive
and generic languages, but have limited reasoning support.
For ROBOEARTH, we chose a shared ontology as pragmatic
solution instead of completely self-contained languages. Re-
lated work on sharing knowledge among robots focused ei-
ther on sharing a common belief state in multi-robot sys-
tems [Khoo and Horswill, 2003], or on fundamental aspects
like how heterogeneous robots can autonomously acquire and
share symbols created from perceptual cues [Kira, 2010].

3 The ROBOEARTH System
The language presented in this article is part of the
ROBOEARTH system [Waibel et al., 2011] which is a
Wikipedia-like platform that robots can use for sharing
knowledge about actions, objects, and environments. Most
parts of ROBOEARTH have been released as open-source soft-
ware packages1 in the ROS robot middle-ware. In this paper,
we focus on methods for representing the exchanged knowl-
edge and reasoning about it. Figure 1 illustrates the exchange

1Available at http://www.ros.org/wiki/roboearth

of knowledge via the ROBOEARTH platform: The central
ROBOEARTH knowledge base, depicted on the left, contains
descriptions of actions (called “action recipes”), object mod-
els, and environment maps. These pieces of information have
been provided by different robots with different sensing, act-
ing and processing capabilities, and therefore have different
requirements on the capabilities a robot must possess in order
to use them. The ROBOEARTH language provides methods
for explicitly describing these required capabilities and for
matching them against the capabilities that are available on
the robot, visualized in the picture by the different shapes of
puzzle pieces. Each robot has a self-model consisting of a de-
scription of its kinematic structure, including the positions of
sensors and actuators, a semantic model of its parts (describ-
ing e.g. that a group of parts forms a gripper), and a set of
software components like object recognition systems. We ap-
ply the Semantic Robot Description Language SRDL [Kunze,
Roehm, and Beetz, 2011] to describe these components and
the capabilities they provide, and to match them against the
requirements specified for action recipes.

The representation language is realized as an extension of
the KNOWROB [Tenorth and Beetz, 2013] ontology and de-
scribed in terms of Description Logic formulas using the Web
Ontology Language (OWL). OWL distinguishes between
classes, instances of these classes, and properties that can ei-
ther be described for single instances or for whole classes of
things. Classes are arranged in a hierarchical structure, called
an ontology, allowing multiple inheritance. KNOWROB’s on-
tology is derived from the OpenCyc ontology [Lenat, 1995];
by staying compatible to this widely used system, we are
able to use various tools and interfaces to and from Cyc.
We extended the KNOWROB ontology with concepts that are
especially required for the exchange of knowledge: Meta-
information about the data to be exchanged like units, coor-
dinate systems, its resolution, algorithms that were used for
creating data, and requirements that are needed for interpret-
ing it. For the sake of clarity, we will present most of the lan-
guage constructs in terms of graphical visualizations instead
of logical statements.
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Figure 2: Representation of a “serving a drink” task, called
“action recipe” in the ROBOEARTH terminology, which is
composed of five sub-actions that themselves can be de-
scribed by another action recipe.

4 Overview of the language elements
In this section, we give a brief overview of the language el-
ements that constitute the ROBOEARTH language. Due to
space constraints, we have shortened this section and refer
to [Tenorth et al., 2013] for details.

4.1 Actions and Tasks
Actions are specified by creating a sub-class of one of the
action classes in the KNOWROB ontology and extending the
description with task-specific properties like the fromLoca-
tion, toLocation or objectActedOn. Figure 2 visualizes an ac-
tion recipe for serving a drink to a patient in bed. In this pic-
ture, action classes are represented as blocks, properties of
these classes are listed inside the block, and ordering con-
straints among the actions are shown as arrows between the
blocks. There are three levels of hierarchy: The recipe for
the ServeADrink action includes the GraspBottle action that,
by itself, is defined by an action recipe (shown on the right
side) consisting of single actions. Both recipes consist of a se-
quence of actions that are described as subclasses of generic
actions, like Reaching or Translation, with additional task-
specific parameters, like the toLocation or the objectActedOn.

The action recipe lists dependencies on components that
have to be available on the robot in order to successfully per-
form the task, in this example some object recognition mod-
els that are necessary to recognize all objects in the task. Ad-

Figure 3: Object model of a cabinet composed of several ar-
ticulated doors connected with hinges to the cabinet’s frame.

ditional dependencies are inherited from higher-level action
classes, exploiting the hierarchical structure of the action on-
tology. The dependency on an arm motion capability, for ex-
ample, is specified for all sub-classes of Reaching at once and
therefore does not have to be specified in each action recipe.
These dependencies correspond to the “puzzle pieces” in Fig-
ure 1.

Before execution, the abstract descriptions of objects and
locations need to be grounded in concrete locations using the
robot’s perception methods and its environment model as de-
scribed in Section 5. The task specification can then be trans-
formed into a robot plan that consists of calls to executable
components and parameter specifications.

4.2 Object Models
Object models in ROBOEARTH describe classes of objects
by their semantic properties, including information on how
to recognize and how to articulate them. Figure 3 exemplar-
ily shows a model of a cabinet in a mock-up hospital room.
The upper part describes an instance of an object recognition
model, including links to pictures and a CAD model as well
as information about the creation time and the algorithm that
can use the model. The recognition model instance refers to a
description of the object class IkeaExpeditShelf2x2 (depicted
in the lower part) that consists of articulated parts, namely
doors connected to its frame via hinges.

4.3 Environment Models
ROBOEARTH supports different kinds of environment maps
(Figure 4), some of which are described in the OWL-based
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Figure 4: Different types of maps are either described com-
pletely in the ROBOEARTH language, or in linked binary file.
A spatial hierarchy of room, building, street, city allows to
search for maps in ROBOEARTH.

language itself (e.g. semantic maps containing positions of
objects in the environment), others (like occupancy grid
maps) are linked as binary files. All maps are annotated with
an OWL description that specifies their types, some basic
properties, and most important the address of the environment
that is described in the map. The address is the main informa-
tion that is used for finding suitable maps in the database.

5 Execution of Action Recipes
Since action recipes are not directly executable code but
rather declarative action descriptions, they need to be inter-
preted by an execution engine in order to be executed on a
robot. A reference implementation of an execution engine [di
Marco et al., 2012] has been created that is based on the Cog-
nitive Robot Abstract Machine framework (CRAM, [Beetz,
Mösenlechner, and Tenorth, 2010]). In this implementation,
action recipes are translated into robot plans described in the
CRAM Plan Language (CPL). Compared to the OWL-based
language for action recipes, which is optimized for reasoning
and for integrating information sources, CPL specializes on
the robust execution of plans.

6 Evaluation
We evaluated how the ROBOEARTH language can enable
robots to perform tasks in previously unknown environments.
The experiment included two heterogeneous robot platforms,
a PR2 and an Amigo robot, serving a drink from inside a cab-
inet to a patient in bed at two different locations. Both envi-
ronments had a different spatial layout but shared common
pieces of furniture, which allowed sharing object-related in-
formation like the positions of the hinges of the cabinet. Their
properties have been estimated by the first robot, uploaded to
ROBOEARTH, and used by the second robot to open the door.
The upper part of Figure 5 shows the environment maps that
were downloaded from ROBOEARTH.
Both robots performed the task using the same execution en-
gine and the same action recipe (shown in Figure 2. The
capability matching determined that all required capabilities

Figure 5: Top: Semantic environment maps of the two hos-
pital rooms, downloaded from ROBOEARTH based on the
address and room number. Bottom: PR2 and Amigo robots
opening the cabinet and picking up the drink to be served.

were available, but recognition models for some of the ob-
jects mentioned in the task were missing (namely the bottle
and the bed) and had to be downloaded. The bottom two pic-
tures in Figure 5 show how both robots opened the cabinet
and grasped the drink inside.

7 Conclusions

In this paper, we discussed requirements on a formal lan-
guage for representing robot knowledge with the intention
of exchanging it, and presented our approach to realizing
such a language. The language allows to describe actions,
object recognition and articulation models, as well as seman-
tic environment maps, and provides methods to reason about
these pieces of information. Using the language, robots can
autonomously decide if they lack any capabilities that are
needed to perform an action, and if so, see whether they can
download software to acquire them. ROBOEARTH thereby
acts as a complement, not a substitute of existing control
structures: If applicable information can be found, it will help
a robot with its tasks – if not, its queries will fail and it will
be in the same situation as without ROBOEARTH.

The language and the accompanying reasoning methods
have successfully been used to exchange tasks, object models,
and environment maps among heterogeneous mobile manipu-
lation robots and to execute the abstractly described task. The
experiments showed that the presented methods enable robots
to download the information needed to perform a mobile ma-
nipulation task, including descriptions of the actions to per-
form, models of the objects to manipulate, and a description
of the environment, from the ROBOEARTH knowledge base.
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