
A Neuro-Fuzzy Solution for Fine-Motion Control Based onVision and Force SensorsYorck von Collani, Jianwei Zhang, Alois KnollTechnical Computer Science, Faculty of Technology,University of Bielefeld, 33501 Bielefeld, GermanyAbstractIn this paper the use of a B-spline neuro-fuzzymodel for di�erent tasks such as vision-based �ne-positioning and force control is presented. It is shownthat neuro-fuzzy controllers can be used not only forlow-dimensional problems like force control but alsofor high-dimensional problems like vision-based senso-rimotor control. Controllers of this type can be modu-larly combined to solve a given assembly problem.1 Multivariate Problems in Modellingand ControlIt is well-known that general fuzzy rule descriptionsof systems with a large number of input variables suf-fer from the problem of the \curse of dimensionality."In many real-world applications it is di�cult to iden-tify the decisive input parameters and thus to reducethe number of input variables to the minimum. Ageneral solution to building fuzzy models is not onlyinteresting from a theoretical point, it may also extendthe range of applications of fuzzy control to more com-plex intelligent control problems.In our research work on sensor-based robot con-trol [4], we are faced with many high-dimensionalproblems concerning a large number of input vari-ables whose importance and inter-dependence are notclearly known.1.1 Vision-Guided Robot MotionThe classical approaches to robot vision frequentlyfail in industrial environments for the following rea-sons:� The image processing procedures, such as seg-mentation, feature extraction and classi�cationare not robust enough.

� The algorithms are computationally expensiveand hence too slow to meet the usual real-timerequirements.It is one of our long-term research goals to �nd ageneral model which transforms raw image data di-rectly into \action values." Our grey-scale imageshave 111 � 103 pixels. If no image processing is per-formed then a control system with about 12; 000 inputvariables (i.e. one for each pixel) needs to be modelled;the system output would be the motion values for therobot(s).A special case of vision-action transformation iscamera-supported �ne-motion control. A�ne VisualServoing [9] may be applied to such tasks. Thechanges in the shape of image contours are the in-put of a feed-forward controller. Another interestingapproach was proposed in [12]: visual servoing for po-sitioning with an uncalibrated camera system. It re-quires, however, special test motions for performingwell.CMAC neural networks may tackle the problem ofdimensionality; in [10] 12 inputs represent four jointpositions of the robot, four image parameters and theirdesired changes. The outputs are the control signalsfor the four robot joints.In [11] learning of vision-based positioning based onvisual appearance information was introduced. Theimage data set is compressed using principal compo-nent analysis to obtain a low-dimensional input space.A parametric eigenspace representation is used for de-scribing the di�erent objects as well as object loca-tions. The positioning problem is thus transformedinto �nding the minimum distance between a pointand a manifold in the eigenspace.1.2 Existing Solutions to MultivariateProblemsThe two main methods to solve the problem of in-put dimension reduction are input selection and hier-



archy. Input selection [5, 6] is an experimental methodto �nd the most important input variable in a large setof input variables. With this approach, all the com-binatorial possibilities of the low-dimensional fuzzymodel are considered and approximately tested. Theinputs which result in the best outputs are viewed asthe most important ones to build an exact neuro-fuzzymodel. The problems with this method are the lossof information and the number of combinations thatmust be tested.Hierarchical structuring assumes that the input in-formation can be classi�ed into groups, see [7] for anexample. There is, however, no general approach torealise such a grouping.2 Problem Description2.1 Experiment SetupIn the problem scenario (see Fig. 1), two cooperat-ing robots are to insert a screw (5) into a wooden ledge(4). The manipulators are installed overhead and cangrasp the required assembly components from the as-sembly table. Each robot is equipped with a forcesensor (2,2') on which a pneumatic parallel-jaw grip-per (3,3') is mounted. A small camera (1,1'), whichobserves the scene, is mounted over the gripper at anangle of approximately 30�. The manipulators are twoPuma 260. The host computer is a Sun SPARC 5.2.2 Problem of Finding a Hole WithoutVisionDetecting the contact between screw and ledge, e.g.only through force measurements, is not su�cient toensure that the screw is in the hole. If there is nosupport from a camera, the hole has to be searchedfor by making test movements. In our case, a spiralmovement within the vicinity of the hole in the ledge ismade. As the ledge presses onto the screw, the screwslides in by traversing the hole.To make this procedure work, it must be guaran-teed that the contact between the ledge and the screwnot disappear; especially, when the screw is over thehole. Also the pressure between the ledge and thescrew must not become too high because frictionalforces that result from search movements might signalthe �nding of the hole. Force control in the approachdirection is therefore inevitable. Otherwise the screwwould move over the hole or the force in N- and O-direction may grow too large without the screw beingin the hole. In [3] we gave an unsupervised learning

(a)
(b)Figure 1: The experimental setup for assembly. 1,1':hand-camera; 2,2': force/torque sensor; 3,3': paralleljaw-gripper; 4: ledge; 5: screw-head.approach to building a force controller for this pur-pose.2.3 Vision-Based SearchThe above method is slow and can fail. A sup-plementary approach consists in monitoring the scenethrough the hole with a camera. The screw (or theledge) may thus be guided to the correct position.Fig. 2 shows a sequence of typical views of the scene.It is obviously di�cult to recognise unambiguous fea-tures in the images for the following reasons:� The background changes permanently. Depend-ing on the orientation of the opposite robot's grip-per, di�erent parts of the gripper may be seenapart from the screw.� Variable illumination. In our setup only daylightand no arti�cal lighting is used. Especially thelower part of the hole can often hardly be seen.A rotation of the gripper holding the ledge alsochanges the illumination.� Di�erent forms of the screw. We use screws withround heads and screws with hexagonal heads.



(a) (b) (c)
(d) (e) (f)Figure 2: Typical images taken by the hand-camera(Image size: 111� 103 pixels).The geometry of the head therefore cannot beused to detect the position of the screw.We employed the method that extracts featuresfrom the whole grey-scale image. It solves this par-tial problem of vision-guided motion but is in no waylimited to this narrow application.3 B-Spline Neuro-Fuzzy Model3.1 Basic PrincipleThe controller for force control can be e�ciently re-alised using the B-spline fuzzy controllers proposed inour earlier work [2, 3]. This type of controller may becharacterised by the following features distinguishingit from standard fuzzy controllers:� B-spline basis functions are employed for spec-ifying the linguistic terms (labels) of the inputvariables. By choosing the order n of the basisfunctions, the output is Cn�2 continuous.� Each controller output is de�ned by a set of fuzzysingletons (control vertices). The number of con-trol vertices is equal to the number of the rulesand their optimal values can be iteratively foundthrough learning. This adaptation procedure isequivalent to weight adjustment in an AssociatedMemory Neural Network.

� One problem with learning in conventional fuzzycontrollers is that too many parameters must beadjusted. With B-spline fuzzy controllers, a sim-ple modi�cation of control vertices causes thechange on the control surface. For supervisedlearning, if the square error is selected as thequality measure, the partial di�erential with re-spect to each control vertex is a convex function.For unsupervised learning, if the error of the costfunction is approximately piecewise proportionalto the error of the control values, the learning-process descent will also show stable asymptoticbehaviour [1].In [3] we showed the advantages of this learningcontroller approach. Here, the robot controller learnsactively and on-line to control the compensation mo-tion according to measured forces and is quite simpleto design. The learning process converges rapidly, theoutput is smooth if B-spline functions of order 3 orhigher are used and the controller performs well.3.2 Dimension ReductionIf the dimension of the input space is small enough,the input variables can be directly covered by fuzzysets. Each item of the rule is human readable andmay be interpreted as describing a special instance ofa general situation. If, however, the image of a cam-era is regarded as a vector, then this high-dimensionalsensor image is too large to build a corresponding rulebase. Fortunately, sensor images are often observedin a local context: the complete situation is not ofparticular interest and a subspace can be found thatcontains all necessary information for determining theaction values.3.3 Projection into EigenspaceA well-known technique for dealing with multivari-ate problems in statistics is the principal componentanalysis (PCA). As shown in [11], this technique isalso suitable for reducing the dimension of the inputspace of a general control problem.Our approach is to project the grey-scale image intothe eigenspace. An eigenvector, denoted as EVi, iscomputed as [a1;i; a2;i; : : : ; am;i]T . The eigenvectorsform an orthogonal basis for representing the originalindividual sensor patterns. Assume that the eigen-vectors EV1; EV2; : : : are sorted according to theireigenvalues in a descending order. An eigenspacewith a reduced dimension n can be formed with the�rst n eigenvectors. EVi de�nes the ith dimension



in the eigenspace. The projection of an input vectorX = [x1; x2; � � � ; xm]T onto eigenvector EVi, calledthe ith principal component, pi = a1;ix1 + a2;ix2 +� � � + am;ixm. The complete projection can be repre-sented as:[EV1; : : : ; EVn]T �X = [p1; : : : ; pn]TAll projections of the sample data sequence form amanifold in the eigenspace. Such a projection can beviewed as a layer of neural network, see the connectionlayer of the two left parts of Fig. 3.
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Figure 3: The structure of a fuzzy controller based oneigenspace projection.We partition the eigenvector with the largest eigen-value with the �nest resolution because the projectionon this eigenvector contains the largest variance. If theeigenvectors EV1; : : : ;EVn are sorted in a descendingorder according to their eigenvalues, then EV1 is the�rst eigenvector. The second eigenvector EV2 is cov-ered with fewer linguistic terms, and so on.4 Implementation4.1 Sampling Training DataFor training, the input data and desired output val-ues have to be recorded. It is desirable that all typicalinput data be generated.As outlined above there are the di�erent positionsof the screw around the hole (see Fig. 2). For record-ing, the robot moves to the ideal position for screwinsertion. Subsequently, it moves to several other po-sitions. For each of the latter the deviations from theideal positions are recorded.4.2 Calculating Eigenvalues and Eigen-vectorsAfter the input data are sampled, the followingsteps are necessary:

1. The input data are normalised so that the energyof each image becomes 1. As an option the aver-age image can be subtracted.2. The input variables are stacked into vectors.3. The covariance matrix of the input vectors is cal-culated.4. The eigenvectors and eigenvalues are calculated.5. Each image is projected into the eigenspace.4.3 Training the Fuzzy ControllerFor the B-spline controller the training procedureis as follows:1. Select the n eigenvectors with the largest n eigen-values denoted as EV1; : : : ;EVn.2. Select the order of the B-spline basis function foreach eigenvector.3. Determine the knots of the B-spline basis func-tions for partitioning each eigenvector.4. Initialise the control vertices for the output.5. Learn the control vertices with the selected eigen-values from the images using the gradient descentmethod.6. If the result are satis�ed, terminate.7. Modify the knots for eigenvectors, go to 4.For training the fuzzy controller, the eigenvalues ofeach of the selected eigenvectors EVj j = 1; : : : ; n arecovered by B-spline basis functions denoted as Xjij ;kj .The rule for determining the relative location of thescrew to the hole can be written as:IF (EV1 IS X1i1;k1) and : : : and (EVn IS X1in;kn)THEN (x IS Xi1;i2;:::;in)Each rule corresponds to a supporting point for theinterpolation in the reduced eigenspace.It is important to determine the right parametersfor the fuzzy set. If too few eigenvectors are used, thenthe fuzzy controller cannot di�erentiate all situations.If too many eigenvectors are used, then the memoryusage of the fuzzy set is not manageable. Similarlyimportant is the right partition. If the partition is too�ne, the fuzzy controller generalises insu�ciently.
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(a) Control vertices on the plane of the �rst twoeigenvalues.
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(b) Control surface with the �rst two eigenvaluesas input and the robot displacement as output.Figure 4: Control vertices and surface.5 Numerical ResultsFig. 4(a) shows the learned control vertices for the�rst two eigenvectors and 4(b) the resulting controlsurface. Fig. 5 shows the sorted eigenvalues of thecovariance-matrix.Table 1 shows the average number of the requiredcorrection steps in O-direction depending on the con-troller parameters for some typical displacements. Anempty �eld indicates that the controller cannot man-age this situation. A zero means that no correction ismade, so that the result for \below" is correct. In thiscase only a correction in N-direction is necessary.Our experiment shows that with an increasing num-ber of the eigenvectors fewer steps for correcting theposition of the ledge are required. With three and �veeigenvectors not all situations can be separated. If, forexample, the screw is to the left of the hole, the con-troller cannot correct the displacement. In this casethe motion was made into the wrong direction. Fig. 6shows a sequence of movements generated by the fuzzycontroller.
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Figure 5: Sorted eigenvalues of covariance-matrix.Number ofused EV's 3 5 7Number ofused B-Splines 11 � 7 � 7 11 � 7 � 7 �5� 5 11�5�7�7�5 � 5 � 3 � 3Robotdisplacementabove 5:0 1:4 1:09above right 6:86 2:29 1:18below { 0:2 0to the left { { 3:64above left 4:86 2:2 2:7Table 1: Required correction steps in O-direction fortwo di�erent controllers.Combining this approach with the �rst proceduredescribed in [3] results in a very robust and rapid tech-nique to �nd the hole and to insert the screw. Duringthe approach phase contact is made between the ledgeand the screw, similar to the procedure used for spiralsearch.
(a) (b) (c) (d)Figure 6: Correction sequence by using the trainedB-spline neuro-fuzzy model.



6 ConclusionsWe have shown that high-dimensional problemssuch as visually guided �ne-motion can be solved withneuro-fuzzy controllers. We have also shown that theB-spline model may be utilised for di�erent problems,not only for force control. We have implemented theapproach with a two-arm robot system and both kindsof training are used to build the controllers: unsu-pervised on-line learning for the force controller andsupervised o�-line for the vision system.The advantages of our approach are:� By projecting the high-dimensional input spaceinto a reduced eigenspace, the most signi�cantinformation for control is maintained. A limitednumber of transformed inputs can be partitionedwith the B-spline model and a su�cient precisioncan be obtained for determining the robot posi-tion correction.� To solve this special but typical problem the sta-tistical indices provide a suitable solution to de-scribe the information in images with a lot of un-certainties.� A vector in the eigenspace is directly mappedonto the controller output based on the B-splinemodel. This makes real-time computation possi-ble.� Designing the controllers is simple and identicalfor both low and high dimensional controllers.Both force and vision controllers are of the sametype. The B-spline fuzzy controller can be trainedin a straightforward manner because modi�cationof control vertices only results in local change ofthe control surface.In this approach no complex programming andknowledge about vision are needed. We have shownthat this approach is very promising for realising e�-cient robot assembly skills based on sensorimotor co-ordinations.AcknowledgementRalf Schmidt's implementation work with PCA is grate-fully acknowledged.References[1] J. Zhang and A. Knoll. Constructing fuzzy con-trollers with B-spline models { principles and
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