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Abstract

In this paper the use of a B-spline neuro-fuzzy
model for different tasks such as vision-based fine-
positioning and force control is presented. It is shown
that neuro-fuzzy controllers can be used not only for
low-dimensional problems like force control but also
for high-dimensional problems like vision-based senso-
rimotor control. Controllers of this type can be modu-
larly combined to solve a given assembly problem.

1 Multivariate Problems in Modelling
and Control

It is well-known that general fuzzy rule descriptions
of systems with a large number of input variables suf-
fer from the problem of the “curse of dimensionality.”
In many real-world applications it is difficult to iden-
tify the decisive input parameters and thus to reduce
the number of input variables to the minimum. A
general solution to building fuzzy models is not only
interesting from a theoretical point, it may also extend
the range of applications of fuzzy control to more com-
plex intelligent control problems.

In our research work on sensor-based robot con-
trol [4], we are faced with many high-dimensional
problems concerning a large number of input vari-
ables whose importance and inter-dependence are not
clearly known.

1.1 Vision-Guided Robot Motion

The classical approaches to robot vision frequently
fail in industrial environments for the following rea-
sons:

e The image processing procedures, such as seg-
mentation, feature extraction and classification
are not robust enough.

e The algorithms are computationally expensive
and hence too slow to meet the usual real-time
requirements.

It is one of our long-term research goals to find a
general model which transforms raw image data di-
rectly into “action values.” QOur grey-scale images
have 111 x 103 pixels. If no image processing is per-
formed then a control system with about 12, 000 input
variables (i.e. one for each pixel) needs to be modelled;
the system output would be the motion values for the
robot(s).

A special case of vision-action transformation is
camera-supported fine-motion control. Affine Visual
Servoing [9] may be applied to such tasks. The
changes in the shape of image contours are the in-
put of a feed-forward controller. Another interesting
approach was proposed in [12]: visual servoing for po-
sitioning with an uncalibrated camera system. It re-
quires, however, special test motions for performing
well.

CMAC neural networks may tackle the problem of
dimensionality; in [10] 12 inputs represent four joint
positions of the robot, four image parameters and their
desired changes. The outputs are the control signals
for the four robot joints.

In [11] learning of vision-based positioning based on
visual appearance information was introduced. The
image data set is compressed using principal compo-
nent analysis to obtain a low-dimensional input space.
A parametric eigenspace representation is used for de-
scribing the different objects as well as object loca-
tions. The positioning problem is thus transformed
into finding the minimum distance between a point
and a manifold in the eigenspace.

1.2 Existing Solutions to Multivariate
Problems

The two main methods to solve the problem of in-
put dimension reduction are input selection and hier-



archy. Input selection [5, 6] is an experimental method
to find the most important input variable in a large set
of input variables. With this approach, all the com-
binatorial possibilities of the low-dimensional fuzzy
model are considered and approximately tested. The
inputs which result in the best outputs are viewed as
the most important ones to build an exact neuro-fuzzy
model. The problems with this method are the loss
of information and the number of combinations that
must be tested.

Hierarchical structuring assumes that the input in-
formation can be classified into groups, see [7] for an
example. There is, however, no general approach to
realise such a grouping.

2 Problem Description
2.1 Experiment Setup

In the problem scenario (see Fig. 1), two cooperat-
ing robots are to insert a screw (5) into a wooden ledge
(4). The manipulators are installed overhead and can
grasp the required assembly components from the as-
sembly table. Each robot is equipped with a force
sensor (2,2’) on which a pneumatic parallel-jaw grip-
per (3,3’) is mounted. A small camera (1,1%), which
observes the scene, is mounted over the gripper at an
angle of approximately 30°. The manipulators are two
Puma 260. The host computer is a Sun SPARC 5.

2.2 Problem of Finding a Hole Without
Vision

Detecting the contact between screw and ledge, e.g.
only through force measurements, is not sufficient to
ensure that the screw is in the hole. If there is no
support from a camera, the hole has to be searched
for by making test movements. In our case, a spiral
movement within the vicinity of the hole in the ledge is
made. As the ledge presses onto the screw, the screw
slides in by traversing the hole.

To make this procedure work, it must be guaran-
teed that the contact between the ledge and the screw
not disappear; especially, when the screw is over the
hole. Also the pressure between the ledge and the
screw must not become too high because frictional
forces that result from search movements might signal
the finding of the hole. Force control in the approach
direction is therefore inevitable. Otherwise the screw
would move over the hole or the force in N- and O-
direction may grow too large without the screw being
in the hole. In [3] we gave an unsupervised learning

Figure 1: The experimental setup for assembly. 1,1’
hand-camera; 2,2": force/torque sensor; 3,3”: parallel
jaw-gripper; 4: ledge; 5: screw-head.

approach to building a force controller for this pur-
pose.

2.3 Vision-Based Search

The above method is slow and can fail. A sup-
plementary approach consists in monitoring the scene
through the hole with a camera. The screw (or the
ledge) may thus be guided to the correct position.

Fig. 2 shows a sequence of typical views of the scene.
It is obviously difficult to recognise unambiguous fea-
tures in the images for the following reasons:

e The background changes permanently. Depend-
ing on the orientation of the opposite robot’s grip-
per, different parts of the gripper may be seen
apart from the screw.

e Variable illumination. In our setup only daylight
and no artifical lighting is used. Especially the
lower part of the hole can often hardly be seen.
A rotation of the gripper holding the ledge also
changes the illumination.

¢ Different forms of the screw. We use screws with
round heads and screws with hexagonal heads.



Figure 2: Typical images taken by the hand-camera
(Image size: 111 x 103 pixels).

The geometry of the head therefore cannot be
used to detect the position of the screw.

We employed the method that extracts features
from the whole grey-scale image. It solves this par-
tial problem of vision-guided motion but is in no way
limited to this narrow application.

3 B-Spline Neuro-Fuzzy Model
3.1 Basic Principle

The controller for force control can be efficiently re-
alised using the B-spline fuzzy controllers proposed in
our earlier work [2, 3]. This type of controller may be
characterised by the following features distinguishing
it from standard fuzzy controllers:

e B-spline basis functions are employed for spec-
ifying the linguistic terms (labels) of the input
variables. By choosing the order n of the basis
functions, the output is C™ 2 continuous.

e Each controller output is defined by a set of fuzzy
singletons (control vertices). The number of con-
trol vertices is equal to the number of the rules
and their optimal values can be iteratively found
through learning. This adaptation procedure is
equivalent to weight adjustment in an Associated
Memory Neural Network.

e One problem with learning in conventional fuzzy
controllers is that too many parameters must be
adjusted. With B-spline fuzzy controllers, a sim-
ple modification of control vertices causes the
change on the control surface. For supervised
learning, if the square error is selected as the
quality measure, the partial differential with re-
spect to each control vertex is a convex function.
For unsupervised learning, if the error of the cost
function is approximately piecewise proportional
to the error of the control values, the learning-
process descent will also show stable asymptotic
behaviour [1].

In [3] we showed the advantages of this learning
controller approach. Here, the robot controller learns
actively and on-line to control the compensation mo-
tion according to measured forces and is quite simple
to design. The learning process converges rapidly, the
output is smooth if B-spline functions of order 3 or
higher are used and the controller performs well.

3.2 Dimension Reduction

If the dimension of the input space is small enough,
the input variables can be directly covered by fuzzy
sets. Each item of the rule is human readable and
may be interpreted as describing a special instance of
a general situation. If, however, the image of a cam-
era is regarded as a vector, then this high-dimensional
sensor image is too large to build a corresponding rule
base. Fortunately, sensor images are often observed
in a local context: the complete situation is not of
particular interest and a subspace can be found that
contains all necessary information for determining the
action values.

3.3 Projection into Eigenspace

A well-known technique for dealing with multivari-
ate problems in statistics is the principal component
analysis (PCA). As shown in [11], this technique is
also suitable for reducing the dimension of the input
space of a general control problem.

Our approach is to project the grey-scale image into
the eigenspace. An eigenvector, denoted as EV;, is
computed as [a1,i,a2,...,ami]T. The eigenvectors
form an orthogonal basis for representing the original
individual sensor patterns. Assume that the eigen-
vectors EV;, EV,,... are sorted according to their
eigenvalues in a descending order. An eigenspace
with a reduced dimension n can be formed with the
first n eigenvectors. FEV; defines the ith dimension



in the eigenspace. The projection of an input vector
X = [21,79, -+ ,2m]T onto eigenvector EV;, called
the ith principal component, p; = a1 ;21 + a2 ;x> +
“+++ Qm iTm. The complete projection can be repre-
sented as:

[EVi,... EV)T X =p1,....pa]T

All projections of the sample data sequence form a
manifold in the eigenspace. Such a projection can be
viewed as a layer of neural network, see the connection
layer of the two left parts of Fig. 3.

input eigenspace output
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Figure 3: The structure of a fuzzy controller based on
eigenspace projection.

We partition the eigenvector with the largest eigen-
value with the finest resolution because the projection
on this eigenvector contains the largest variance. If the
eigenvectors EVy,...,EV,, are sorted in a descending
order according to their eigenvalues, then EV; is the
first eigenvector. The second eigenvector EVy is cov-
ered with fewer linguistic terms, and so on.

4 Implementation
4.1 Sampling Training Data

For training, the input data and desired output val-
ues have to be recorded. It is desirable that all typical
input data be generated.

As outlined above there are the different positions
of the screw around the hole (see Fig. 2). For record-
ing, the robot moves to the ideal position for screw
insertion. Subsequently, it moves to several other po-
sitions. For each of the latter the deviations from the
ideal positions are recorded.

4.2 Calculating Eigenvalues and Eigen-
vectors

After the input data are sampled, the following
steps are necessary:

1. The input data are normalised so that the energy
of each image becomes 1. As an option the aver-
age image can be subtracted.

2. The input variables are stacked into vectors.

3. The covariance matrix of the input vectors is cal-
culated.

4. The eigenvectors and eigenvalues are calculated.

5. Each image is projected into the eigenspace.
4.3 Training the Fuzzy Controller

For the B-spline controller the training procedure
is as follows:

1. Select the n eigenvectors with the largest n eigen-
values denoted as EVy,...,EV,,.
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2. Select the order of the B-spline basis function for
each eigenvector.

3. Determine the knots of the B-spline basis func-
tions for partitioning each eigenvector.

4. Initialise the control vertices for the output.

5. Learn the control vertices with the selected eigen-
values from the images using the gradient descent
method.

6. If the result are satisfied, terminate.

7. Modify the knots for eigenvectors, go to 4.

For training the fuzzy controller, the eigenvalues of
each of the selected eigenvectors EV; j =1,...,n are
covered by B-spline basis functions denoted as ij’kj.
The rule for determining the relative location of the
screw to the hole can be written as:

IF (EV; IS X/

i1,k1

THEN (z IS X, 4,

)and ... and (EV, IS X} )

Each rule corresponds to a supporting point for the
interpolation in the reduced eigenspace.

It is important to determine the right parameters
for the fuzzy set. If too few eigenvectors are used, then
the fuzzy controller cannot differentiate all situations.
If too many eigenvectors are used, then the memory
usage of the fuzzy set is not manageable. Similarly
important is the right partition. If the partition is too
fine, the fuzzy controller generalises insufficiently.
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(a) Control vertices on the plane of the first two
eigenvalues.
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(b) Control surface with the first two eigenvalues
as input and the robot displacement as output.

Figure 4: Control vertices and surface.

5 Numerical Results

Fig. 4(a) shows the learned control vertices for the
first two eigenvectors and 4(b) the resulting control
surface. Fig. 5 shows the sorted eigenvalues of the
covariance-matrix.

Table 1 shows the average number of the required
correction steps in O-direction depending on the con-
troller parameters for some typical displacements. An
empty field indicates that the controller cannot man-
age this situation. A zero means that no correction is
made, so that the result for “below” is correct. In this
case only a correction in N-direction is necessary.

Our experiment shows that with an increasing num-
ber of the eigenvectors fewer steps for correcting the
position of the ledge are required. With three and five
eigenvectors not all situations can be separated. If, for
example, the screw is to the left of the hole, the con-
troller cannot correct the displacement. In this case
the motion was made into the wrong direction. Fig. 6
shows a sequence of movements generated by the fuzzy
controller.
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Figure 5: Sorted eigenvalues of covariance-matrix.

Number of || 3 5 7

used EV’s

Number Of 11 X 7% 7 11 X 7 X 7 X 11X5XT7TXTX
used B-Splines 5% 5 5x5x3x3
Robot

displacement

above 5.0 1.4 1.09
above right 6.86 2.29 1.18
below - 0.2 0

to the left - - 3.64
above left 4.86 2.2 2.7

Table 1: Required correction steps in O-direction for
two different controllers.

Combining this approach with the first procedure
described in [3] results in a very robust and rapid tech-
nique to find the hole and to insert the screw. During
the approach phase contact is made between the ledge
and the screw, similar to the procedure used for spiral
search.

Figure 6: Correction sequence by using the trained
B-spline neuro-fuzzy model.



6 Conclusions

We have shown that high-dimensional problems
such as visually guided fine-motion can be solved with
neuro-fuzzy controllers. We have also shown that the
B-spline model may be utilised for different problems,
not only for force control. We have implemented the
approach with a two-arm robot system and both kinds
of training are used to build the controllers: unsu-
pervised on-line learning for the force controller and
supervised off-line for the vision system.

The advantages of our approach are:

e By projecting the high-dimensional input space
into a reduced eigenspace, the most significant
information for control is maintained. A limited
number of transformed inputs can be partitioned
with the B-spline model and a sufficient precision
can be obtained for determining the robot posi-
tion correction.

e To solve this special but typical problem the sta-
tistical indices provide a suitable solution to de-
scribe the information in images with a lot of un-
certainties.

e A vector in the eigenspace is directly mapped
onto the controller output based on the B-spline

model. This makes real-time computation possi-
ble.

e Designing the controllers is simple and identical
for both low and high dimensional controllers.
Both force and vision controllers are of the same
type. The B-spline fuzzy controller can be trained
in a straightforward manner because modification
of control vertices only results in local change of
the control surface.

In this approach no complex programming and
knowledge about vision are needed. We have shown
that this approach is very promising for realising effi-
cient robot assembly skills based on sensorimotor co-
ordinations.

Acknowledgement

Ralf Schmidt’s implementation work with PCA is grate-
fully acknowledged.

References

[1] J. Zhang and A. Knoll. Constructing fuzzy con-
trollers with B-spline models — principles and

2]

3]

[4]

[10]

applications.  International Journal of Intelli-
gent Systems , 13(2/3):257-286, February /March
1998.

J. Zhang and A. Knoll. Constructing fuzzy con-
trollers with B-spline models. In IFEFE Interna-
tional Conference on Fuzzy Systems, 1996.

J. Zhang, Y. v. Collani and A. Knoll. On-line
Learning of B-Spline Fuzzy Controller To Ac-
quire Sensor-Based Assembly Skills. In Proceed-
ings IEEE International Conference on Robotics
and Automation, 1997.

A. Knoll, B. Hildebrandt, J. Zhang. Instructing
Cooperating Assembly Robots through Situated
Dialogues in Natural Language. In Proceedings
IEEFE International Conference on Robotics and
Automation 1997.

J.S.R. Jang, C. T. Sun, and E. Mizutani. Neuro-
Fuzzy and Soft Computing. Prentice Hall, 1997.

S. L. Chiu. Selecting input variables for fuzzy
models. Journal of Intelligent and Fuzzy Systems,
4:243-256, 1996.

V. Lacrose and A. Tilti. Fusion and hierarchy can
help fuzzy logic controller designers. In IEEE In-
ternational Conference on Fuzzy Systems, 1997.

J. Zhang and A. Knoll. Constructing Fuzzy Con-
trollers for Multivariate Problems by Using Sta-
tistical Indices. Submitted to IEEE International
Conference on Fuzzy Systems, 1998.

C. Colombo, B. Allotta, and P. Dario. Affine vi-
sual servoing: A framework for relative position-
ing with a robot. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automa-
tion, pp. 464-471, 1995.

W. T. Miller. Real-time application of neural net-
works for sensor-based control of robots with vi-
sion. IEEE Transactions on System, Man and
Cybernetics, 19:825-831, 1989.

S. K. Nayar, H. Murase, and S. A. Nene. Learn-
ing, positioning, and tracking visual appearance.
In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pp. 32373244,
1994.

B. H. Yoshimi and P. K. Allen. Active, uncal-
ibrated visual servoing. In Proceedings of the
IEEE International Conference on Robotics and
Automation, pp 156-161, 1994.



