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Zusammenfassung

Sowohl Roboter als auch Personal Computer haben neue Märkte generiert und wurden Mitte der

1970er Jahre zu Massenprodukten. Sie wurden zu Schlüsseltechnologien in der Automation und

Informationstechnik. Während man jedoch Personal Computer heutzutage in fast jedem Haushalt

findet, werden Roboter hauptsächlich im industriellen Umfeld eingesetzt. Aufgrund der physikalis-

chen Wirkungsmöglichkeiten eines Roboters, ist ein sicheres Design essentiell, das den meisten

heutzutage hergestellten Manipulatoren immer noch fehlt und so deren Einsatz für den persönlichen

Gebrauch verhindert. Es ist jedoch ein neuer Trend feststellbar. Immer mehr Roboter werden für die

Ausführung spezieller Dienste in mit Menschen geteilten Umgebungen entwickelt. Diese Art Roboter

wird gemeinhin als Service Roboter bezeichnet.

Die Entwicklung der am Lehrstuhl für Echtzeitsysteme und Robotik der Technischen Universität

München entstandenen Service Roboter ist durch verschiedene reale Anwendungsszenarien für au-

tonome mobile Roboter in Biotechnologielaboren, veränderlichen Fabriken, TV Studios und für den

ausbildungs- als auch den persönlichen Gebrauch motiviert. Im Gegensatz zu industriellen Manipula-

toren, sind die meisten Service Roboter mit weitaus mehr Sensorik und Rechenkraft ausgestattet, um

ihre Umwelt wahrzunehmen und die ermittelten Sensordaten für autonomes Verhalten auszuwerten.

Die Vielfalt der verwendeten Hardware und die sehr unterschiedlichen Anwendungsfälle für Service

Roboter machen aus ihnen komplexe, heterogene und verteilte IT Systeme. Um die Neuentwicklung

von systemspezifischen Softwarearchitekturen für jede neue Service Roboter Variante zu vermeiden,

ist es notwendig Softwarekomponenten und ihre Schnittstellen zu standardisieren.

Diese Dissertation stellt daher ein neuartiges Modell vor, um die Hard- und Softwarekomponenten

autonomer Service Roboter zu klassifizieren und diskutiert ihre Schnittstellen, Generalisierungen

und Spezialisierungen. Ein großer Teil dieser Arbeit ist dem Design und der Implementierung ver-

schiedener Wahrnehmungsmodule gewidmet, da diese für Service Roboter essentiell sind. Zusam-

mengefasst umschließt das Modell Sensoren, Aktuatoren, die entsprechenden Busse und Netzwerke

sowie die darüberliegenden Software Gegenstücke für Kommunikation, Geräteklassen und die Soft-

warekomponenten für Wahrnehmung, Planung und Applikationen. Der Ergebnisteil präsentiert die er-

folgreiche Anwendung des entwickelten Modells in realen Service Roboter Projekten die an unserem

Lehrstuhl entwickelt worden und Stand der Technik sind.
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Abstract

Both Robots and Personal Computers established new markets and became mass-products in the

mid-1970s. They were enabling factors in Automation and Information Technology respectively. How-

ever, while you can see Personal Computers in almost every home nowadays, the domain of Robots

is mostly restricted to industrial automation. Due to the physical impact of robots, a safe design is es-

sential which most manipulators still lack of today and therefore prevent their application for personal

use. A slow transition can be noticed however by the introduction of dedicated robots for specific tasks

in environments shared with humans. These are classified as service robots.

TUM’s Department for Robotics and Embedded Systems approach to service robotics was driven

by several real world application scenarios for autonomous mobile robots in life science laboratories,

changeable factories, TV studios and educational as well as domestic application domains. Opposed

to manipulators for industrial automation, most service robots carry much more sensor equipment

and computing power to perceive their environment and to process the acquired sensor data for au-

tonomous behaviour. The variety of utilised hardware and the versatile use cases for service robots

turn them into complex, heterogeneous, and distributed IT systems. To avoid inventing custom soft-

ware architectures for every newly created service robot, standardisation of software components and

interfaces is key for their development.

This thesis proposes a novel model to classify the hard- and software components of autonomous

service robots and discusses their interfaces, generalisations, and specialisations. A large part of

this work is dedicated to the design and implementation of perception modules as they are essential

for service robots. In summary, the model covers the sensors, the actuators and the corresponding

busses and networks as well as the overlying software counterparts for the communication chan-

nels, device classes, and the software components for perception, task planning, and applications.

The result section discusses its successful application in state of the art projects developed at our

department.
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Chapter 1

Introduction

Personal Computers and Robots both have revolutionised our modern lives since they became mass-

products in the mid-1970s. Personal Computers dramatically changed the way and speed of how we

process information, be it at work or at home. Robots on the other hand revolutionised the production

of mass products along conveyor belts in big factories and allow quick program controlled customisa-

tion of products up to a certain extent. Yet their impact for domestic use is currently limited. Similar

to the evolution of Personal Computers from big mainframes to nearly every home and office, the

existence of robots in the daily lives of common people is on the horizon.

Service Robots are intended to carry out tasks for human beings. As opposed to industrial factories

where robots are located in dedicated work cells, service robots are commonly expected to share

their workspace with humans in homes or labs. The shared workspace however raises new chal-

lenges, since a service robot often has to deal with large and changing environments. They need to

be equipped with the necessary safety measurements for a shared workspace and sensors to ac-

quire data about their surroundings. They need to localise themselves in unknown environments and

to locate and detect every day objects for the personal use of humans. A service robot’s controlling

computer spends most of its time on the acquisition and moreover the processing and interpretation

of sensor data.

At our department the development of Service Robotics was driven by several application scenarios.

After an introduction to these scenarios in chapter 2, related work is presented in chapter 3. Chapter 4

– Systems Design addresses the complex task of developing sustainable software components for

Service Robots. For this reason I discuss important design principles in Software Engineering and

propose a new model for the classification of robotic hard- and software components. The model

is applied to mobile service robots, that I have personally worked on and that we developed with

our industrial partners. Afterwards I present several methods to overcome different challenges in the

context of mobile service robots – from collaboration in developer teams and cross platform aspects

1



CHAPTER 1. INTRODUCTION 2

to robotic perception algorithms for changing environments. Finally, in the Results chapter I present

solutions that address the given application scenarios and that have been implemented in real world

applications.



Chapter 2

Requirements

Requirements analysis is the task of determining the needs and conditions for a new or altered prod-

uct. Requirement analysis is critical to the success of a development process and must be related

to identified business needs or opportunities and defined to a level of detail sufficient for systems

design. The following application scenarios demonstrate common challenges and requirements for

mobile service robots. These scenarios are not and are not supposed to be complete and to cover

the entire field of mobile service robotics. However they represent frequently addressed applications,

that I personally came across during his work.

2.1 Biotech Lab Scenario

Biotech laboratories are a very dynamic working environment, although several of the tasks in a life

science lab are simple and repetitive and could hence be carried out by a mobile service robot freeing

up highly paid scientists for more important work and experiments.

Sample management for example is an inevitable and time-consuming part during the development

and production of biopharmaceuticals to keep track of growth parameters and to adjust these as it

becomes necessary. Sampling and maintenance of cell culture processes are labor intensive and

especially continuous perfusion operations require constant monitoring on a 24/7 basis. Production

setups in this kind of labs are very large and a robot would has to travel long distances between

distinct bioreactors and analysis devices. This challenge implies a mobile robot platform, as long as

the given processes can not be optimised for short distances.

To support human lab personnel, the robot needs to be able to carry out the same tasks as a human

and to serve the same or at least similar devices, without changing the entire lab equipment. Thus a

robot for this application should be an autonomous, mobile platform capable of localising, navigating

3



CHAPTER 2. REQUIREMENTS 4

and avoiding dynamic obstacles. The robot should be powered by batteries to make it independent of

any power supply for a certain period of time. It should have a manipulator to enable the robot to pick

up, carry and place different sizes of sample vials even in close-packed areas. Precise interaction with

lab devices should be possible without damaging them by physical contact.

Figure 2.1 shows a typical life science laboratory for cell culture development. Noticeable are in par-

ticular the numerous moveable obstacles. Their positions can change several times a day, asking for

highly adaptive robots.

Figure 2.1: Typical environment in a life science laboratory with many moveable obstacles.

2.2 Blood Analysis Scenario

Blood analysis laboratories get blood samples at unpredictable time intervals – even at night. However

hospitals can usually not afford nightshift coverage for possibly arriving blood samples. Therefore the

blood analysis labs are often shut down at night. Based on previous work in a biotech laboratory, the

idea came up, to utilise an autonomous mobile manipulator to carry out the blood analysis process in

an institute for clinical chemistry. This way, blood samples could potentially be processed on a 24/7

basis.
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Figure 2.2: Typical blood analysis laboratory. Figure 2.3: Another room in a typical blood anal-
ysis laboratory.

The requirements in the blood sample laboratory are very similar to the biotech laboratory: the robot

should be able to perform the same tasks as humans and should serve the same or at least similar

devices, without the need for changing the whole infrastructure in the laboratory. The robot should

be autonomous and mobile and capable of localising itself within its environment. It should navigate

safely and avoid dynamic obstacles and should work independently for a certain period of time from

any power supply. It would require a manipulator with the necessary sensor equipment to precisely

pick and place different sizes of sample vials without causing any damage by physical interaction.

In contrast to the biotech laboratory scenario however, where samples can potentially be retaken

within a short time frame in case something goes wrong during the analysis process, blood samples

are often delivered over far distances by couriers and repetition of the sampling process would be

cumbersome and require a certified doctor or nurse to see the patient again. Therefore the blood

samples require special care.

Figures 2.2 and 2.3 show pictures of a representative clinical analysis laboratory, Figure 2.4 shows

a typical blood sample container and its content – a variety of barcoded vials in a plastic bag and a

sample submission form. Figure 2.5 depicts one of many analysis devices in the laboratory.

2.3 Surveillance Scenario

Most surveillance robots, that are currently on the market, are remotely controlled by a human opera-

tor. Autonomous or semi-autonomous surveillance robots, patrolling a defined area by themselves on

a 24/7 basis and analysing its environment with dedicated algorithms would be a dramatic progress.

In addition to that, mobile indoor robots for laboratories or households would allow remote users to

keep an eye on their experiments or equipment on demand.
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Figure 2.4: Blood sample container, barcoded
sample vials, and sample submission form.

Figure 2.5: One of many blood analysis devices
in the lab.

To define the requirements for surveillance robots, it is important to know its intended application

domain, whether the surveillance tasks are carried out indoors, outdoors, submarine, aerial or above

ground. The application domain predetermines the actuation and drives of the vehicle. Submarine

robots most likely require propeller screws and rudders, aerial robots require airscrews or artificial

wings while ground vehicles need artificial legs, caterpillar drives or wheels with the proper dimensions

to cope with the environmental conditions. Combinations of GPS, laser range finders or ultrasonic

sensors help surveillance robots to localise and navigate, cameras for visible and infrared light can

record and monitor objects of interest.

While a manipulator is not imperatively necessary for surveillance tasks, a camera that is mounted

on a robot arm provides additional flexibility and degrees of freedom. In addition to that a possibly

attached gripper tool allows an autonomous robot or a remote user basic interaction with the environ-

ment. Autonomous surveillance vehicles are commonly driven by electronic motors and batteries or

by combustion engines with gas tanks for energy storage.

2.4 Changeable Factory Scenario

Many optimised production facilities have a static layout along conveyor belts and robotic work cells

nowadays and are specified for a predetermined throughput. These static production facilities how-

ever don’t reflect possible market fluctuations or only up to a certain extent. A possible modular and

changeable factory could rearrange its workstations and storages itself to minimise transportation

distances, to move required resources to the consuming machines and to adapt to changing storage

requirements. Mobile service robots could be the transportation link between self organising worksta-

tions and storage areas.
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Figure 2.6: Changeable Factory consisting of several Festo Modular Production System workstations.
Photograph: Festo Didactic.

The institute for industrial manufacturing and factory management of the university of Stuttgart (Insti-

tut für Industrielle Fertigung und Fabrikbetrieb der Universität Stuttgart)1 is researching on digital and

virtual tools for factory planning that are coupled to a physical changeable model factory to demon-

strate the virtual planning in the real world. The physical model factory is implemented through the

production system "iTRAME" manufactured by Festo Didactic GmbH2. The modules can be con-

nected by conveyor belts, however as an alternative transportation method, an autonomous mobile

robot platform is requested in the context of this project to dynamically overcome larger transportation

distances in the changeable factory [23, 24].

A mobile platform for transportation tasks in a factory environment needs to meet similar requirements

as in a laboratory in terms of autonomous localisation and navigation. When handing over factory

goods from or to the mobile platform, an attached manipulator can increase the flexibility and reduce

the necessary precision for docking a platform onto a factory station. If the platform is not equipped

with a manipulator, the handover procedure demands a much higher precision of the localisation and

navigation module.

2.5 Housekeeping Scenario

Housekeeping is a versatile application domain for service robots. There are many cumbersome and

repetitive activities that people are willing to pay staff for. Research and development addresses these

kind of tasks with service robots from two sides. Some teams work on dedicated service robots,

designed to carry out a a single specific task. Other research teams work on versatile, more complex,

and human-like robotic assistants, for one single machine to carry out all desired tasks.
1http://www.iff.uni-stuttgart.de/
2http://www.festo-didactic.com/

http://www.iff.uni-stuttgart.de/
http://www.festo-didactic.com/
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Figure 2.7: Possible applications for domestic service robots are manifold and cover outdoor and
indoor tasks. Robots for domestic utilisation can be dedicated devices such as lawn-mowing,
surveillance-, vacuum-cleaning, dish-washing or laundry-folding robots, or by far more complex, ver-
satile and multipurpose human-like assistants. Image source: [25].
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Dedicated service robots have been developed to clean floors, to mow the lawn, to clean windows

or pools and to carry out surveillance activities. In addition to that experimental prototypes address

laundry-folding and dish washing. Moreover there is a number of multipurpose robot prototypes in-

tended to become human-like assistants, that are usually equipped with one or more manipulators

similar to arms and something like a head. These human-like assistants would ideally be capable of

understanding natural speech and gestures and carry out the desired task in the present context, just

like a human assistant would.

Service robots for domestic use need to fulfil similar requirements as the previously mentioned lab

robots. They have to be able to localise and navigate within an unknown and changing environment

and to carry out the tasks, that they were designed for. While the environment in an industrial setup

can at least be controlled to a certain extent, the customer of a housekeeping robot doesn’t want to

be restricted in his individuality and creativity when it comes to furniture, decoration, and utensils. In

addition to that the price, the usability, and the reliability are important factors for domestic use, too. A

domestic robot makes no sense if it is more expensive than human staff, that would do the same job

more efficiently or if it requires a highly skilled technician for set up or for frequent repairs.

2.6 TV Studio Scenario

Virtual TV Studio sets for documentaries, news, and live productions commonly consist of a static

set of furniture in a room with green walls, studio lights, and manually controlled TV cameras. The

moderator of the TV production interacts within the static set and to the best of his knowledge within

the virtual set. The quality of the Virtual Reality production highly depends on precise camera control,

accurate determination of camera position and orientation, and virtual reality rendering. Figures 2.8

and 2.9 show a typical virtual reality TV studio and commonly utilised camera.

For decades, TV cameras have been mounted on movable stands such as ones produced by

Shotoku3, which allow the camera controller to bring cameras into position and enable direct con-

trol of parameters such as zoom and focus. These classical camera stands however also limit the

directors’ creativity for camera motions to the degrees of freedom of the utilised stands. The ger-

man company Robotics Technology Leaders GmbH (RTLeaders)4 has addressed these limitations by

introducing TV cameras mounted on mobile manipulators.

Opposed to the other mentioned application scenarios, the requirements for TV robots differ to a

certain extent. For virtual reality productions and for high quality recordings the self localisation and

localisation of the attached camera needs to be highly precise to enable accurate virtual reality ren-

dering. Moreover the motions have to be very smooth, to avoid jitter in the movie records. In addition

3http://www.shotoku.co.jp/worldwide/
4http://www.rtleaders.com

http://www.shotoku.co.jp/worldwide/
http://www.rtleaders.com
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Figure 2.8: Virtual reality TV studio with static furniture, studio
lights, TV camera and green walls.

Figure 2.9: Commonly used
TV Camera on a movable
stand for virtual reality produc-
tions.

to that, the noise level has to be kept to a minimum, to enable synchronous live recording of the audio

material as well. Since the manipulator is sharing the TV Studio with the moderator and behind the

scenes staff, safety sensors are imperative to provide emergency stops whenever people enter the

current work radius of manipulators.

2.7 Robotic Education Scenario

As robots are appearing more and more not only in industrial automation but also in emerging mar-

kets, educational institutions need to provide didactic resources to teach robotics, which in turn is a

very interdisciplinary field covering at least informatics, electrical engineering and mechanical engi-

neering (see Figure 2.10) and can possibly extend to any arbitrary field like medicine, aerospace,

psychology or agriculture, just to mention a few – depending on the concrete application for robotics.

Furthermore students should be aware of the physical impact, that robots can have on their environ-

ment and about safety regulations and standards such as ISO 10218-1:2006 – "Robots for industrial

environments" and in particular section 5.10. – "Collaborative operation requirements" as elementary

guides of how to design safe robots [26].

In the field of Informatics, robotic education systems and training material should at least teach basic

knowledge in sensor interfacing, data acquisition, and -processing, to be able to use the attached

hardware components on a robot, such as laser rangefinders, force-/torque sensors and cameras, just
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Robotics

Informatics

Mechanical
Engineering

Electrical
Engineering

Figure 2.10: Robotics is a very interdisciplinary field and requires knowledge in Informatics, Electrical-
and Mechanical Engineering among other disciplines depending on the concrete application.

to mention a few. Furthermore computer vision and image understanding became a very important

field in service robotics, to enable robots to visually perceive the environment and changes herein.

As service robots are often mobile and share the workspace with humans in an often cluttered and

changeable environment, algorithms for autonomous behaviour such as collision-free path planning

became imperative for navigating mobile robots, for moving manipulators, and for safely grasping

objects with the attached tools. Moreover as service robots often consist of numerous microcontroller

driven sensors and actuators, it is important to understand the underlying network infrastructure and

communication interfaces.

With regard to Electrical Engineering, education programs should include basic knowledge about

electricity, frequently used circuits, and electrical components, because things just break, as probably

everyone has noticed, who worked on a complex service robot. The correct wiring of electrical com-

ponents and proper soldering are skills that probably every robotocist will require at some point. An

insight into the electrical control of drive units and basic knowledge in feedback control systems helps

understanding the constraints and control of drives, servos, and many sensors.

In addition to informatics and electrical engineering, Mechanical Engineering plays an important role

in robotics as every robot has a mechanical chassis and needs to carry a certain payload. Robotic

education should cover basics about materials, drives, gears and the mechanical construction of robot

systems and extension components.

Robotic education systems and training material should at least teach basic knowledge in:
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• Safety

• Informatics

– Sensor data acquisition and processing

– Computer vision and image understanding

– Communication interfaces and networks

– Algorithms for Autonomy

• Electrical Engineering

– Control of drive units

– Wiring of electrical components

– Feedback control systems

• Mechanical Engineering

– Mechanical construction of a (mobile) robot system

– Construction and mounting of robotic extensions

2.8 Summary

This chapter briefly described several different application scenarios for autonomous mobile service

robots that I was personally confronted with and which shall be addressed in the following sections.

When comparing the needs for the different scenarios, several particularities are noticeable due to

the diversity of the application domains, nevertheless there are also challenges for robots, that all the

scenarios share.

All scenarios have in common, that larger distances have to be travelled in changeable environments

– at least distances, that stationary off-the-shelf manipulators would not be able to cover just by

their workspaces. This asks for autonomous mobile robot platforms, that are able to come close

to the locations of interest. Mobility however is attended by the challenge of self-localisation and

autonomous, collision-free path planning and navigation in an unknown and changing environment.

Since the space in the discussed scenarios is potentially shared with humans the robotic platforms

need to be able to deal with dynamic obstacles as well to prevent damages and injuries.

However the scenarios also differ in some aspects. Some scenarios imply a platform with a many

degree of freedom manipulator, whereas some others don’t require a manipulator at all, in other cases
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a robotic arm is optional and can help overcome imprecise navigation. Robots for the laboratory

scenarios and versatile domestic robots call for manipulators to precisely interact with the physical

world and to safely pick and place objects. Also the precision requirements for the localisation and

navigation differ from case to case. While the TV studio robot requires a highly precise localisation,

the surveillance robot can deal with a more imprecise localisation as long as the locations of interest

are covered by the onboard cameras.



Chapter 3

Related Work

This chapter reviews previous or similar work about the utilisation of mobile service robots in the

formerly mentioned application scenarios. Since most of my work happened in the context of Lab

Automation, related work is described more in detail for this scenario, while almost all other scenarios

are well covered by established literature.

3.1 Lab Automation

Life Science laboratories are constantly being targeted by automation companies and research in-

stitutes, since every day lab work requires highly paid scientists to carry out many repetitive and

cumbersome tasks. Many of these activities involve the handling and transportation of a series of

samples or sample arrays and investigations on them through established lab devices. So far most

approaches for lab automation addressed a certain task in the series of experiments and focused

on increasing the throughput by quickly processing large arrays of uniform vials or sample arrays.

Autonomous mobile service robots for life science laboratories could be the link between these dedi-

cated lab devices and potentially free up some resources of the scientists to be able to focus on more

important work and experiments.

3.1.1 Leonardo

Leonardo is a mobile service robot intended to assist human lab personnel in life science laboratories

by taking over repetitive everyday tasks. The robot is a modular system and its tool was designed to

handle sample vials in a cell culture laboratory to carry out a complete sample management process

for a first application demonstration. Sample management is an important and time-consuming part

during the development and production of biopharmaceuticals to keep track of growth parameters

14
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and to adjust these as it becomes necessary. Sampling and maintenance of cell culture processes

are labor intensive and especially continuous perfusion operations require constant monitoring on a

24/7 basis. In 1998 this task has been addressed for the first time at the University of Bielefeld in Prof.

Lehmann’s and Prof. Knoll’s groups involving a mobile manipulator [27, 28, 29].

After initial construction and development at the University of Bielefeld, the project was transferred to

the Technische Universität München, Germany, where development continued in Prof. Knoll’s newly

formed department since 2002 [30]. The developed system is a battery driven mobile robot platform

with laser range finders for localisation and a mounted robot arm with a camera, a force-/torque

sensor, and a gripper attached to its tool for precise manipulation. Figure 3.1 shows the Leonardo

robot as it was shipped to the customer in 2005.

Figure 3.1: The Leonardo mobile robot platform as it was shipped to the customer.

3.1.1.1 Features

The software package addressed all necessary aspects for a pilot application in a biotechnology

lab: accurate localisation, collision free path planning, and precise motion execution. The localisation

is based on a known static, polygonal map and known landmarks, which are highly reflective tape

stripes attached to walls and fixed objects. Furthermore the manipulator can be controlled precisely

by a modified version of the Robot Control C Library (RCCL) to position the tool. The attached camera

allows colour vision algorithms to recognise objects and to compute position displacements for visual

servoing. The force-/torque sensor measures forces and torques applied to the gripper. This way,

damage to lab equipment can be avoided by force controlled motions even if contact is required. All
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software components were integrated into an overlying scripting language to enable easier control

of the platform, the manipulator, and the task sequences. Figure 3.2 depicts the developed software

architecture installed on the platform.

RCCL
Robot Control C Library

phd Gripper
Force-/
Torque 
Sensor

MHI
PA10

Manipulator

libtesche

Static 
Mapping

Static
Path

Planning

Computer
Vision

Laser
Range 
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Motor/
Encoder

Application
Parts/Tasks

Manipulator Control Service (robotd)

Script
Database

(infobased)

Vision 
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(imaged)

Platform 
Control 
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(mobiled)

Application
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Process
Commu-
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Figure 3.2: The previous software architecture of the Leonardo robot is consisting of two libraries:
libtesche and RCCL, which comprise the functionality and key algorithms of the platform and the
manipulator respectively. Several services and the executed applications build upon these libraries
and communicate with each other.

Central elements are the two libraries libtesche and RCCL against which every application or service

is linked. libtesche encloses the functionality of the platform hardware: the laser range finders, motors,

wheel encoders and key algorithms such as localisation, mapping, path planning, motion generation,

and computer vision. It also provides an inter process communication interface for different processes

to exchange messages with each other to carry out tasks that involve several services. The mod-

ified RCCL contains the functionality to control the manipulator, gripper, and force-/torque sensor.

Several daemons or services are built on top of these libraries. The Platform Control Service mo-

biled accesses the laser range finders and performs the accurate localisation and motion execution.

The Vision Service imaged acquires images from the camera, detects known objects and computes

position displacements. The Manipulator Control Service robotd moves the robot arm, opens and

closes the gripper, and reads the force-/torque sensor to perform force controlled motions. The Script

Database infobased contains positions of known devices, the color models for known objects, and

task sequences to execute. An application links against libtesche to use the Inter Process Commu-

nication to send messages to the corresponding services and to trigger the task sequences. This

way complex processes can be implemented. Experiments in the previously mentioned papers have
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shown good results in static laboratory environments.

3.1.1.2 Limitations

When investigating on the functionality of the software package, several limitations were encountered.

The localisation and path planning are based on a precisely known, static map with landmarks. Suf-

ficient landmarks have to be visible most of the time to ensure precise motions of the platform. If the

robot encounters dynamic objects, it would stop until the obstacle is moved out of its way. Dynamic

obstacles can potentially also cover some of the landmarks and confuse the localisation. The software

architecture and image processing relies a lot on precisely known objects. While carrying out a sam-

ple management process, the robot would approach known lab devices, move the arm into a position

where it would expect the camera to see a colour patch, the vision algorithm thereafter computes a

two dimensional position and orientation displacement to accurately place the manipulator’s tool into

a known position and afterwards a sequence of tasks is performed. If at any point of time, the platform

does not move precisely enough to put the camera into a position where a colour patch is visible, the

result is undefined. These issues can be addressed with more complex task descriptions and step by

step approaches to points of interest, which however would increase execution time to some extent.

3.1.1.3 Weaknesses

A closer look at the software architecture reveals some of its weaknesses. Although the different ser-

vices leave an impression of modularisation, they are just processes accessing the functionalities of

either of the two big libraries libtesche and RCCL resulting in an almost monolithic architecture. Appli-

cations need to link against libtesche as well to be able to access the Inter Process Communication

and to transmit messages to the different services. If a hardware or software component needs to

be replaced, changes have to be performed at multiple locations in the libraries and sometimes in

the services and the applications as well. Replacing the static mapping or path planning by a more

adaptive version would not be possible without reworking major parts of the library. Exchanging the

computer vision algorithms would produce a similar burden. If functionality shall be added due to

changes in the lab equipment, new tasks have to be defined in the script database, new message

handlers have to be implemented in libtesche and new commands have to be implemented in the

addressed services. In short, the software package performs well as long as it meets the require-

ments, however additional features or replacing key algorithms cannot be realised easily due to the

monolithic software architecture.

3.1.2 LiSA

Noteworthy in the context of Lab Automation involving mobile service robots is LiSA – a Life Science

Assistant, recently developed by the Fraunhofer Institute for Factory Operation and Automation IFF
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in Magdeburg, Germany since 2007. LiSA is "a mobile service robot that assists users in biological

and pharmaceutical laboratories by carrying out routine jobs such as filling and transportation of mi-

croplates. The LiSA project is focused on integrating the latest research findings in a feasible service

robot that meets the high level of safety demanded in real world human-robot collaboration" [31].

Figure 3.3 shows a picture of LiSA in a life science laboratory.

Figure 3.3: LiSA – Life Science Assistant. Photograph: Fraunhofer IFF.

3.1.2.1 Features

"Optical sensors identify and recognize the exchange positions and the microplates. To reliably po-

sition the gripper vis-à-vis objects being picked up, two digital cameras sample the immediate envi-

ronment [...] The determination of exact 3-D position and orientation is based on a photogrammetric
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approach. Therefore, both digital cameras are used. Their positions and orientations are predeter-

mined in a prior calibration step [...] A thermographic component is employed to ensure the safety of

the manipulation process. This infrared component is part of a third combined camera device [and]

is utilized to detect human interaction in front of the robotic arm and its gripper [...] The camera is

mounted on a rotating stage and moves adaptively as the robotic arm moves."

"LiSA is designed to receive instructions directly from laboratory assistants. Their interaction with

LiSA has to be intuitive, fast and easy. Interaction with LiSA is multimodal, i.e. spoken and touchpad

input are possible. Speech recognition is speaker-independent. The commercial dialog engine used

for LiSA supports mixed-initiative, natural language dialogs and conversation in full sentences."

"The main priority of [all project] objectives is safety, i.e. the robot may not harm any people or dam-

age its environment." Therefore the "manipulator is covered by a pressure-sensitive artificial skin for

collision detection. The skin’s design enables localizing the collision area." Several laser scanners

are combined to a 360◦scanner, that serves two purposes: "localization in a prior map [... and] safety

sensor [...] for constant avoidance of collisions with humans".

3.1.2.2 Limitations

Since I had no chance to personally experience the LiSA robot and its software package, little can

be said about the robot’s limitations and its behaviour in the real world. The utilisation of a classical

SCARA manipulator however restricts the degrees of freedom and hence the versatility of the robot.

The tool is designed to pick and place micro plates from and on to a planar surface like a table.

Also it would be interesting to see, how task sequences are recorded and realised and how new lab

processes can be implemented.

3.1.2.3 Weaknesses

Despite the safety features and the vision system, the given literature also points out a weakness of

the implemented system: "The LiSA project does not include the autonomous exploration of the envi-

ronment. In fact a prior navigation map of the environment is built for path planning and localization.

Therefore, the environment is scanned in all three dimensions using the mobile robot Kurt3D [...] This

robot is equipped with a 3-D laser scanner enabling it to obtain a three dimensional point cloud of

the environment [...] This is achieved by iteratively taking 3-D scans and registering these scans to a

consistent point cloud using a 6-D SLAM algorithm based on ’iterative closest points’. The point cloud

is semi-automatically converted into a map for the USARSim robot simulation environment [...] The

simulated environment is used to build a 2-D map for navigation (as a 2-D slice of the simulation re-

fined manually) and is additionally integrated in the graphical user interface." While this separate and

semi-automatical mapping process may perform well in static setups, real world experiments with the
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Leonardo platform (see section 3.1.1) have shown, that a lot can change in an industrial life science

lab during a single business day.

3.2 Surveillance

Surveillance has probably been among one of the first application scenarios for mobile service robots,

either realised as simple remote controlled devices or as autonomous platforms. Mobile surveillance

robots can be utilised in hazardous environments such as nuclear power plants or chemical production

facilities, without exposing any humans to dangerous work spaces. Autonomous mobile surveillance

robots can patrol predefined routes indoors or outdoors at certain periodic or unpredictable time in-

tervals and provide a remote and mobile eye to home owners. Mobile surveillance robots have been

developed by iRobot, Hitachi and others, however almost any mobile platform with cameras attached

to it can be utilised as a surveillance platform.

3.3 Changeable Factory

Although autonomous mobile transportation vehicles have been in use in some modern car factories

such as BMW in Dingolfing, Germany, their motions are restricted to follow installed inductor coils in

the floor, which therefore prohibit their flexibility to adapt to a changeable factory layout as mentioned

in the Changeable Factory Scenario (see section 2.4). To my knowledge, there has not been any pre-

vious development of mobile service robots in this field, that are capable of adapting to a changeable

factory.

3.4 Housekeeping

Housekeeping with mobile robots has been addressed by several companies. Most efforts resulted in

relatively cheap mobile cleaning robots, such as the: iRobot Roomba, Electrolux Trilobyte 2.0, Zuc-

chetti Orazio Plus, Friendly Robotics Friendly Vac, RoboMop International RoboMop, Hanool Robotics

Ottoro, LG Roboking, Samsung/Hauzen VC-R560, Yunjin Iclebo. Besides vacuum cleaners, also pool

cleaning robots have been developed, such as the: Aqua Products Aquabot, Aquavac TigerShark

Pool Cleaner, Maytronics Dolphin Diagnostic 2001, iRobot Verro. Outside the house, basic gardening

tasks like lawn mowing have also been subject to robot development. In fact the first commercial lawn

mowing robot was introduced to the mass market in 1995 – earlier than any vacuum cleaning robot.

The Springer Handbook of Robotics contains a detailed survey of domestic service robots [32, pp.

1253–1282].
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3.5 TV Studio

TV studio automation with a camera mounted on a robot manipulator has first been addressed by the

german company Robotics Technology Leaders GmbH. They showed a first functional prototype of

RoboKam at the IBC 2006 in Las Vegas. RoboKam is designed for live or automated control of film and

TV cameras. It can be combined with a pan/tilt unit for additional degrees of freedom and fulfils highly

precise localisation needs for virtual studio applications. Several RoboKam systems have been sold

for use at RTL’s n-tv news TV center in Cologne, and ZDF’s recent news studio N1 in Mainz, Germany.

RoboKam incorporates face and object tracking, which do not require a performer to wear dedicated

tracking sensors. A director can record and combine an unlimited number of camera positions and

motion sequences. Furthermore real-time motion control can be realised live through many degrees

of freedom input devices such as 3Dconnexion’s SpaceBall.

The GPS GmbH also developed a studio automation platform Cinneo, which is being utilised by Sat.1

Bayern in Germany since 2010.

3.6 Robot Education

Educational robot platforms fall into two categories: either expensive research platforms such as

Honda’s Asimo and Kuka’s youBot or lower-cost and mainstream robot kits, such as the Lego NXT,

Sony Aibo, or Aldebaran Nao [32, pp. 1283–1301]. Noteworthy in this context is also Festo’s Robotino

platform that evolved from Robertino, a development of Prof. Knoll’s group.

3.7 Summary

This chapter gave a brief summary about robotic products, that are available on the market to ad-

dress the application scenarios mentioned in chapter 2. While surveillance, housekeeping and robot

education have been addressed by robot developers and companies for many years and are covered

by common literature, lab automation and studiomation are more exotic application domains and only

addressed by a few researchers and companies.
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Systems Design

Systems design is the process or art of defining the hardware and software architecture, components,

modules, interfaces, and data for a system to satisfy specified requirements. Based on the require-

ments described in chapter 2 robot systems have been designed or selected and adapted to satisfy

the needs in the given scenarios. After proposing a general description model for the components of

robotic systems, the individual systems are described.

4.1 Design Principles

Different design principles used for the design specification can result in different system designs.

Therefore it is important to state which design principles were followed, when creating a system

design, to be able to eventually judge the quality of a system design.

4.1.1 Simplicity

"The simplest explanation or strategy tends to be the best one", is a common conclusion of Ockham’s

razor. Applied to software design, a software architecture should mimic the structure of the problem

domain – if possible – and the intellectual distance between the software components and the real

world problems should be minimised.

4.1.2 Modularity

Most complex problems can be broken down into smaller, manageable problems. Hence modularity is

a direct result of applying simplicity to problem descriptions. It is the degree to which software can be

understood by examining its components independently of one another. However things that belong

together should also stick together. "Everything should be made as simple as possible, but no simpler"

– Albert Einstein.

22
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4.1.3 Reduced Dependence

Software systems are often designed with the goal to solve a universal problem. Therefore more

and more features and more hardware support is included in a single software component and with

each added feature or supported hardware the dependencies among software components or to-

wards external libraries and hardware components grow stronger. The goal should be to strip down

dependencies to a minimum, so that software components can be easily exchanged, easily compiled

on a different platform and easily integrated into other projects. "Perfection is finally attained not when

there is no longer anything to add but when there is no longer anything to take away" – Antoine de

Saint Exupéry.

4.1.4 Interfaces

Software interfaces describe how the software elements communicate with each other, with other

systems, and with human users. A good interface design should reduce the complexity of connections

between modules and with the external environment. An interface should be simple, so developers or

end users can easily develop software components for it, adapt to it or just use it. "Keep it simple and

stupid" (KISS) - Clarence Leonard "Kelly" Johnson.

4.1.5 Data Models

Data model design requires at least as much attention as algorithm and interface design. Data struc-

tures represent the logical relationship among individual data elements. A good data structure should

efficiently represent the appropriate data for a class of problems or a software component. Again, the

same applies to data models like to interfaces: they should be kept as simple as possible, just like the

interfaces, that use them.

4.1.6 Reusability

The amount of projects a software engineer can handle and the amount of software packages an

engineer produces highly depends on the problems to solve, on the available time and tools and not

least on the available software components that he can reuse. Quality of software or quality of code is

often underrated and results in very customised program code, however reusability should be a major

goal when developing software. This way a library of reusable software components is established

and sustainable value is generated by the developers instead of reinventing the wheel over and over

again.
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4.1.7 Summary

Software engineering and systems design is a challenging task and should not be set equal to just

programming. Many constraints need to be kept in mind and whole books and lectures are covering

software and systems design for a good reason: software systems should be designed to create

sustainable value [33, 34, 35]. In my opinion the above mentioned design aspects and principles can

be summarised in two rules: "Keep it damn simple!" (KIDS) – so everyone can understand and use it,

or "Make it reusable!" (MIR) – so it doesn’t need to be done again. Moreover each of these two rules

is inherently fulfilled when applying the other one. If a complex problem is broken down into small

and simple components, these components are more likely to be reusable than a monolithic software

package that does not cover unforeseen requirements. Software components, that are reusable tend

to be easily adopted because they have such a simple design.

4.2 A Layer Model for Service Robots

Robotic Systems consist of a number of hardware components, such as motors, encoders, micro con-

trollers, sensors, actuators and the different bus systems and interfaces to connect them to each other.

Often enough I have personally experienced, that hardware components are randomly put together

to fulfil a task in academia. Similarly the software packages are randomly put together or hacked af-

terwards, as long as it works and as long as the deadlines are met. This code is often produced in a

more extreme way than even Extreme Programming suggests: by individuals as opposed to pairs of

developers [36].

Unfortunately also often enough, the so produced code is not maintainable. As soon as new re-

quirements raise, as soon as new features need to be implemented or new hardware needs to be

included, the dedicated software package needs to undergo major changes, if parts of the package

can be reused at all. Reusability however is one of the key goals software engineers should target at.

A software component is only of sustainable value, if it can be used for multiple projects.

Hence I am proposing a layered model to classify hardware and software components of robotic

systems to break down their complexity.

4.2.1 Hardware Layer

In this approach, the Hardware Layer consists of two sub layers: the Sensor/Actuator Layer and the

Interface Layer, which makes the hardware components available to computer software.
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Figure 4.1: A Layer Model for Service Robots dividing the hardware and software components into
functional layers. Ideally, the different layers talk to each other through standardised interfaces. This
way hard- and software components can easily be exchanged.
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4.2.1.1 Sensor/Actuator Layer

The Sensor/Actuator Layer accommodates the different kinds of hardware components available and

characteristic for a robotic system to operate, mainly sensors and actuators.

Classical sensors in the application domain of robotics are position or wheel encoders to determine

the position of a mobile platform or a manipulator. In addition to that, service robots are also often

equipped with laser range finders and gyroscopes or other positioning systems, monocular or stereo

cameras for computer vision, force-/torque sensors and microphones.

Common actuators in robotics are for example off the shelf manipulators as used for many years in

industrial automation, electrical or pneumatic grippers or motors to transport a robotic vehicle.

4.2.1.2 Hardware Interface Layer

The Hardware Interface Layer classifies device interfaces and bus systems connecting the sensors

and actuators to the controlling computer. Common examples are the Controller Area Network (CAN),

the Universal Serial Bus (USB), IEEE 1394 / Firewire, RS-232/422/485 serial interfaces, Process Field

Bus (Profibus), Profinet, or Ethernet, just to mention a few.

4.2.2 Software Layer

The Software Layer has two analogous counter parts to the Hardware Layer to reflect the hardware

interfaces and hardware components. Moreover four additional layers accommodate hardware ab-

straction, robotic perception, planning and application functionality.

4.2.2.1 Interface Abstraction Layer

The Interface Abstraction Layer is the lowest software layer communicating to the hardware inter-

faces, which in turn are connected to the hardware components. Often hardware interfaces are shared

among components on field busses or chained on serial interfaces, so the software component ab-

stracting the hardware interface often needs to handle concurrent access on hardware components.

Common examples for this layer would be the software counterparts of the hardware interface layer:

CAN Bus-, Serial-, Firewire- or USB interface libraries and so forth.
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4.2.2.2 Hardware Component Layer

The Hardware Component Layer classifies the software counterpart of the Sensor/Actuator Layer.

The software components herein provide a software interface to the hardware components’ function-

alities and can basically be regarded as device drivers. Communication to the devices is established

through standardised interfaces at the Interface Abstraction Layer. This way, hardware interfaces can

easily be exchanged, if devices support this feature.

4.2.2.3 Hardware Abstraction Layer

The purpose of the Hardware Abstraction Layer is to provide a generic interface to classes of devices

with similar features. This way certain hardware devices can easily be taken out of the system and

exchanged by a more suitable one. Typical software components for this layer would be abstract

interface libraries, to unify access to range finders, motors, cameras, manipulators and grippers for

example.

4.2.2.4 Perception Layer

According to the New Oxford American Dictionary perception is "the ability to see, hear, or become

aware of something through the senses". Robots generally, but in particular service robots need to

be aware of their environment, to act and interact properly in it without causing damage and without

being a safety hazard. Software components in the Perception Layer make robots aware of their

environment on a lower level, by reading data from the connected sensors, such as images from

cameras or distance information from laser range finders and on a higher level, by interpreting and

potentially fusioning the acquired sensor data to create or update a world model.

4.2.2.5 Planning Layer

Based on the perceived environment and the desired tasks to be carried out, a robotic system may

need to adjust its current behaviour and its path. For example, when moving in a changeable lab or in

a changeable household, the robot needs to be able to drive around obstacles which just have been

detected by the laser range finders and which haven’t been there before. When manipulating in a

cluttered environment, the path for the robot arm needs to be planned carefully, not to damage any

equipment and not to harm any people. This asks for software components on the Planning Layer,

that can plan tasks with regard to the created world model.
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4.2.2.6 Application Layer

The uppermost software layer accommodates software packages that contain the application logic.

Based on the desired tasks, different processes may ask the planning layer to create an appropriate

path or manipulation sequence. A simple application may just allow to directly control the robot system

through an appropriate input device and may provide safety features based on the acquired sensor

data. Another common application is Teleoperation, where a human expert knows about the abilities of

a robotic system and remotely controls the mobile manipulator to carry out a task. However in addition

to that, autonomous applications open up completely new future perspectives in robotics. Repetitive

and time consuming tasks, like surveillance walkthroughs or the sample management process in a

life science laboratory can just as well be carried out by a mobile manipulator.

4.2.3 Summary

This section discussed the proposed layer model for service robots. The purpose for each of the

hard- and software layers was explained and common examples were given for where components

fit. I am proposing this model, to categorise robotic hard- and software components to make devel-

opment with respect to the presented design principles (see section 4.1) easier. I am aware of the

fact, that this model also requires additional overhead for creating and complying to standardised soft-

ware interfaces, but – given my personal experience with monolithic software architectures I inherited

with previous projects – I am confident, that it is worth the effort and that it enables the creation of

sustainable software components. The following sections will address five service robots and their

components as well as how the discussed model fits in their context.

4.3 Leonardo

The Leonardo robot is a mobile platform which we used to address the lab automation and surveil-

lance scenarios. It is a mobile platform type MP-L655, produced by GPS GmbH in Stuttgart, Germany

with a mounted Mitsubishi Heavy Industries PA10-7 manipulator with seven degrees of freedom. It is

a wheeled vehicle with two laser range finders for localisation, navigation and obstacle detection and

is powered by batteries. This makes the platform independent of any power supply for up to nine

hours. The kinematically redundant industrial robot arm with seven joints enables the robot to pick

up, carry and place different sizes of sample vials even in close-packed areas. For precise interaction

with the lab devices, the robot is also equipped with a camera to detect and localise objects like vials

and analysis devices. A force/torque-sensor allows force-controlled motions to prevent any damage

by physical contact. All the sensors and actuators are controlled by an on-board computer which can

receive user commands or give image, or other sensor feedback to an observing station or to invoke
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analysis processes at certain stations in a life science lab via wireless network. Figure 4.2 shows

the latest state of the Leonardo robot and its sensors and actuators. Figures 4.3, 4.4 and Table 4.1

summarise the physical dimensions of the robot.

Camera

GripperForce/Torque
Sensor

Adjustable
Ring Light

Robot Arm

Laser
Rangefinder

Computer

Batteries

Mobile
Platform

Figure 4.2: The Leonardo mobile robot platform with its sensors and actuators.

Length 796 mm
Width 656 mm
Height including housing 950 mm – 2056 mm
Overall weight 190 kg
Maximal payload 10 kg

Table 4.1: Dimensions of the Leonardo platform.

4.3.1 Robotic Components

The Leonardo platform moves and steers with two motorised wheels, which are located at the sides

of the rotational axis. The motor controllers are connected to the robot’s CAN-Bus interface. Two

supporting wheels are located in the front and one supporting wheel is located at the back of the

platform. Table 4.3 summarises the parameters of its differential drive system.

Attached to the platform front and rear face are two SICK LMS 200 laser rangefinders for localisation

and mapping that are interfaced through the RS-422 ports. The platform also has a gyroscope sen-
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12 CHAPTER 2. SETUP AND HARDWARE

Figure 2.6 includes technical drawings of the top and back views of the mobile platform. Details
on the castor and drive wheels are also given. The specified dimensions are used, among other
things, to set up a system model of the robot discussed in chapter 4.
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Figure 2.6: Technical drawings of the back and top view and details of the castor
and drive wheels

Figure 4.3: Dimensions of the Leonardo mobile robot platform [37].
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2.1. The mobile platform GenBase II 13

Figure 2.6 shows a technical drawing of the mobile platform in front, left side and right side
view. The positions of the laser range finders, the gyro, the manipulator arm and the drive lifters
are given.

Sick

I

II

III IIIIII
front viewright side viewleft side view

gyrodrive lifter laserrangefinder

Figure 2.7: Technical drawings of the front, right and left side viewFigure 4.4: Front and side views of the Leonardo mobile robot platform [37].
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Voltage supply 48 V DC
Arcnet interface 1
Ethernet interface 1
W-LAN interface 1
CAN bus interface 1
IEEE1394 / Firewire 2
USB 2.0 3
RS-422 2
RS-232 1

Table 4.2: Summary of the I/O interfaces of Leonardo.

Drive Type differential
Motors 2, 9000 rpm
Gear 37:1
Motorised wheels 2, diameter: 154 mm
Encoder Resolution 4096
Support wheels 2 in the front, 1 in the back

Table 4.3: Drive system parameters of the Leonardo robot.

sor to measure its rotation and a voltage sensor to detect a low battery voltage. These two sensors

are connected via the CAN-Bus interface. Furthermore it is equipped with a Mitsubishi Heavy Indus-

tries PA10 Conventional manipulator, with seven degrees of freedom, that is connected to the Arcnet

interface card. The manipulator’s tool carries an ATI force/torque-sensor which communicates via a

dedicated interface card with the controlling computer, a phd electrical gripper, that is controlled via

empty digital outputs of the force/torque-sensor’s card and an AVT Marlin F-145C2 Firewire camera.

Table 4.4 summarises the robot’s additional sensors and actuators.

1 MHI PA10 Conventional 7 DOF manipulator
1 AVT Marlin F-145C2 Firewire camera
2 SICK LMS 200 laser rangefinder
1 ATI force/torque sensor
1 phd gripper
1 gyroscope sensor
1 voltage sensor

Table 4.4: Summary of Leonardo’s additional sensors and actuators.

4.3.2 Software Architecture

As the Leonardo robot was installed at the customer’s location and first experiments were carried

out in a dedicated pilot plant, the limitations of the installed software package became noticeable as

discussed in the Related Work chapter (see section 3.1.1). Afterwards the platform was moved to a
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real Cell Culture Development Laboratory to carry out monitoring and surveillance tasks in a highly

changeable environment, which the previous and the manufacturer’s software packages were not

able to cope with. For this reason I had to break down the previous software architecture, reengineer,

and adjust it to the new requirements. The software package that was contained in two big libraries

beforehand has been reimplemented according to the proposed model in section 4.2 and extended

by new software components such as a simultaneous localisation and mapping (SLAM) and a visual

tracking library. Figure 4.5 depicts the newly implemented software architecture.

At the Application Layer reside the implemented surveillance, sample management and a simple re-

mote control and monitoring process. The Planning Layer includes a task and a path planner as well

as a trajectory generator for the platform and the manipulator respectively. A simultaneous localisation

and mapping module and a visual tracking library along with a robot platform library for sensor ac-

cess form the Perception Layer. The Hardware Abstraction Layer contains standardised interfaces to

classes of devices for the robot’s sensors and actuators. In this case it includes laser range finder, light

source control, motor and odometry, gyroscope, battery voltage sensor, manipulator, camera, force-

/torque sensor, and gripper API modules. The Hardware Component Layer contains the specialised

software modules, that implement the functionality of the concrete devices like the Sick LMS 200 laser

range finders, Leonardo’s motors and encoders, Firewire camera, Mitsubishi Heavy Industries PA10

manipulator, etc. These components communicate through libraries at the Interface Abstraction Layer

for serial ports, CAN Bus, Arcnet, Firewire, and dedicated I/O via the force-/torque sensor board. The

figure also depicts the hardware interfaces and components on the Interface and Sensor/Actuator

Layer, which correspond exactly with the Interface Abstraction and the Hardware Component Layer

on the software side.
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Figure 4.5: The reengineered and reimplemented software architecture of the Leonardo robot accord-
ing to the model proposed in section 4.2.
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4.4 F5

The F5 robot is a mobile platform produced by Festo Didactic GmbH & Co. KG in Denkendorf, Ger-

many for the changeable factory scenario as described in section 2.4. It is a wheeled, mobile platform

with one laser range finder for localisation, navigation and mapping and is battery-powered. Further-

more two conveyor belts equipped with light barriers at the entry points are mounted on the top of

the platform to pickup and unload standard Schaefer Boxes at the changeable factory’s stations. All

the sensors and actuators are controlled by an on-board computer. Figures 4.6-4.10 show the mobile

platform, Table 4.5 summarises the physical dimensions and Table 4.6 the I/O interfaces of the robot.

Length 848 mm
Width 753 mm
Height ca 700 mm
Overall weight 300 kg
Maximal payload 100 kg

Table 4.5: Dimensions of the F5 mobile robot.

Voltage supply 24 V DC, 110 Ah
Digital inputs 8 + 6
Digital outputs 12 + 6
Analogue inputs 4 (0 – 5 V, resolution 10-bit)

Table 4.6: Summary of the I/O interfaces of the F5 mobile robot.

4.4.1 Robotic Components

The F5 platform drives with two motorised wheels, which are located at the sides of the rotational axis.

The motor controllers are connected to the robot’s CAN-Bus interface card. One supporting wheel is

located in the front, one suspended supporting wheel is located at the back of the platform. Table 4.7

summarises the parameters of the differential drive system.

Drive Type differential
Motors 2 Maxon motors, 9280 rpm
Gear 156:1
Motorised wheels 2, diameter: 150 mm
Encoder Resolution 2000
Support wheels 1 in the front, 1 in the back

Table 4.7: Drive system parameters of the F5 mobile robot platform.

Attached to the front of the platform is a 180 ◦ Leuze laser rangefinder for localisation and map-

ping, which is connected to the high speed RS-422/485 serial interface card. Two conveyor belts are
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Figure 4.6: Front view of the F5
robot. Noteworthy is the 180 ◦

Leuze laser range finder.

Figure 4.7: Left side of the F5 robot.

Figure 4.8: Rear view of the F5
robot with the control panel, the
touchpad and the warning light.

Figure 4.9: Right side of the F5
robot.
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Figure 4.10: The F5 robot with the control panel and touchpad on the rear side and two pairs of
conveyor belts mounted on top of the platform to pick up and hand over standardised Schaefer boxes.
Light barriers at the entry points of the conveyor belt indicate their occupation.
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mounted at the top of the platform, light barriers at the ends of the conveyor belts allow proper loading

and unloading of these. A warning flash light, can be enabled, to increase visibility of the platform in a

shared space with humans. The conveyor belts, the light barriers and the warning light are connected

to the Digital I/Os of a Wago field bus connector, which in turn is controlled via the CAN-Bus interface.

Table 4.8 summarises the additional sensors and actuators of the F5 robot.

2 Conveyor belts
4 Light barriers to detect load on the belts
1 Leuze laser rangefinder
1 Warning light

Table 4.8: Summary of the additional sensors and actuators of the F5.

4.4.2 Software Architecture

The software architecture of the F5 robot has been developed from scratch by myself, but with the

model from section 4.2 in mind. Since many of the hardware components have not been utilised be-

fore, I had to implement the necessary device libraries myself. Nevertheless, I was able to reuse some

of the already implemented interfaces and higher level libraries from the Leonardo robot. Figure 4.11

depicts the implemented software architecture.

The Application Layer contains the implemented changeable factory and a simple remote operation

process. At the Planning Layer resides a path planner for collision free motions of the mobile platform.

A simultaneous localisation and mapping module and a robot platform library for sensor access form

the Perception Layer. The Hardware Abstraction Layer contains the standardised interfaces to the

robot’s sensors and actuators. In this case it includes laser range finder, conveyor belt, light barrier,

wan warning light API modules. The Hardware Component Layer contains the specialised software

modules, that implement the functionality of the concrete devices like the Leuze laser range finder,

Maxon motors and encoders, Festo conveyor belt, Festo light barrier and the warning light. These

components communicate through libraries at the Interface Abstraction Layer for serial ports and

CAN Bus. The hardware interfaces and components on the Interface and Sensor/Actuator Layer cor-

respond exactly with the Interface Abstraction and the Hardware Component Layer on the software

side.
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Figure 4.11: The software architecture of the F5 robot according to the layer model of section 4.2.
Some of the interface and higher level libraries are identical to the ones of the Leonardo robot, verify-
ing the reusability of these components and the validity of the proposed model.
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4.5 F5-S

The F5-S robot is designed to be a successor of the Leonardo robot. Like the F5, it is a mobile

platform produced by Festo Didactic GmbH & Co. KG in Denkendorf, Germany for the Life Science

Lab, Surveillance and the Housekeeping Scenario. Compared to the F5, the F5-S was designed to be

smaller in size to enable its utilisation in domestic environments. It is also a battery-driven, wheeled,

mobile platform with one laser range finder for localisation, navigation and mapping and additional

distance sensors to detect stairs or difficult floor passages. A robotic arm allows precise manipulation

of the environment. Figure 4.12 shows the robot platform, Table 4.9 and Figure 4.13 summarise the

physical dimensions and Table 4.10 the I/O interfaces of the robot.

Length 607 mm
Width 630 mm
Height ca 700 mm
Overall weight 300 kg
Maximal Payload 1.5 kg

Table 4.9: Dimensions of the F5-S mobile robot platform.

Voltage supply 24 V DC, 110 Ah
Digital inputs 6
Digital outputs 6
Analogue inputs 4 (0 – 5 V, resolution 10-bit)

Table 4.10: Summary of the I/O interfaces of the F5-S robot.

4.5.1 Robotic Components

The drive system of the F5-S robot is identical to the one of the F5 robot, except for the distance of

the motorised wheels from each other (see Table 4.11).

Drive Type differential
Motors 2 Maxon motors, 9280 rpm
Gear 156:1
Motorised wheels 2, diameter: 150 mm
Encoder Resolution 2000
Support wheels 1 in the front, 1 in the back

Table 4.11: Drive system parameters of the F5-S mobile robot.

Besides the Leuze laser rangefinder for localisation and mapping and the warning flash light, the

F5-S is equipped with four distance sensors connected to the digital inputs. The distance sensors

are facing down, hence allow detection of stairs or uneven areas that are difficult to pass. There
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Figure 4.12: The F5-S mobile robot platform. Photo: Festo Didactic.
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Figure 4.13: Dimensions of the F5-S mobile robot platform. Image: Festo Didactic.
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is a second embedded PC in the upper deck of the platform for customised software. Furthermore

the F5-S carries a Mitsubishi MELFA RV-1A manipulator with six degrees of freedom. A Mitsubishi

electrical gripper and an AVT Guppy F-080C Firewire camera are attached to the tool the manipulator.

Table 4.12 summarises the additional sensors and actuators of the F5-S robot.

1 Mitsubishi MELFA RV-1A manipulator
1 Mitsubishi electrical gripper, range: 30 mm
1 AVT Guppy F-080C Firewire camera
4 Distance sensors
1 Leuze laser rangefinder
1 Warning light

Table 4.12: Summary of the additional sensors and actuators of the F5-S robot.

4.5.2 Software Architecture

The software architecture of the F5-S robot is based on the architecture of the F5 robot, yet extended

by the necessary components to interface the manipulator, the gripper and the camera. Nevertheless,

most software components could be reused from the Leonardo and F5 platforms. Figure 4.14 depicts

the implemented software architecture for the F5-S.

At the Application Layer reside the surveillance, sample management, medical lab, personal assistant

and remote operation processes. The Planning Layer includes a path planner as well as a trajectory

generator for the platform and the manipulator respectively. A simultaneous localisation and map-

ping module and a visual tracking library along with a robot platform library for sensor access form

the Perception Layer. The Hardware Abstraction Layer contains standardised interfaces to classes of

devices for the robot’s sensors and actuators. Here it includes laser range finder, motor and odom-

etry, dsitance sensor, warning light, manipulator, gripper and camera API modules. The Hardware

Component Layer contains the specialised software modules, that implement the functionality of the

concrete devices which are: Leuze laser range finder, Maxon motors and encoders, Festo distance

sensors, warning light, Mitsubishi Electric RV3-SB manipulator, Festo gripper and Firewire Camera.

These components communicate through libraries at the Interface Abstraction Layer for serial ports,

CAN Bus, Ethernet and Firewire. The figure also depicts the hardware interfaces and components on

the Interface and Sensor/Actuator Layer, which correspond exactly with the Interface Abstraction and

the Hardware Component Layer on the software side.
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Figure 4.14: The software architecture of the F5-S robot. Since many hardware components are
identical to the F5 platform, the appropriate software packages could be reused.
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4.6 Robotino

Robotino is the Festo Didactic Learning System for Automation and Technology (see Figure 4.15)

to serve the demand for robotic education systems as mentioned in section 2.7. The mobile robot

system "is designed to meet a number of different training and vocational requirements" [38]. It is a

platform with an open mechanical interface for the integration of additional mechanical devices and an

open electrical interface to integrate easily additional sensors or motors of devices. Power is supplied

via two 12 V lead gel batteries which permit a running time of up to two hours. Table 4.13 summarises

the physical dimensions of Robotino, while table 4.14 lists the available electric interfaces.

The controlling computer of Robotino consists of an embedded PC 104 with a 300 MHz CPU and

128 MB SDRAM, a compact flash card (256 MB) with the operating system (Linux) and a real-time

kernel, as well as the C++ API and several demo applications and a Wireless LAN access point.

Figure 4.15: Picture of the Robotino platform with the basic configuration [38].
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Diameter 370 mm
Height including housing 210 mm
Overall weight 11 kg
Maximal Payload 6 kg

Table 4.13: Dimensions of the Robotino platform [39].

Voltage supply 24 V DC, 4.5 A
Digital inputs 8
Digital outputs 8
Analogue inputs 8 (0 – 10 V)
Relais outputs 2

Table 4.14: Summary of the I/O interfaces of Robotino [38].

4.6.1 Robotic Components

Robotino is driven by three independent drive units with all-way rolling wheels mounted at an angle

of 120 ◦ to each other. The drive units with its characteristic wheels turn Robotino into a holonomic

mobile platform. The drive units are integrated in a sturdy, laser welded steel chassis. The chassis

is protected by a rubber bumper with an integrated switching sensor. Table 4.15 summarises the

attributes of the drive system.

Drive Type omnidirectional
Motors 3 Dunker motors, 3600 rpm
Gear 16:1
Wheels 3 all-way roller, diameter: 80 mm

Table 4.15: Robotino’s drive system [38].

The Robotino platform is equipped with 9 infrared distance measuring sensors which are mounted in

the chassis at an angle of 40 ◦ to one another. Robotino can scrutinise all surrounding areas for objects

with these sensors. Each of the sensors can be queried individually via the controller board. Obstacles

can thus be avoided, clearances can be maintained and bearings can be taken on a selected target.

The sensors are capable of accurate or relative distance measurements to objects at distances of

4 to 30 cm. The sensor connection is very simple consisting of just one analogue output signal and

a power cable. The sensors’ evaluation electronics determines the distance and reads it out as an

analogue signal. Figure 4.16 depicts the layout of the built-in sensors and the drives.

The anti-collision sensor consists of a switching strip which is attached around the entire circumfer-

ence of the chassis. A switching chamber is located inside a plastic profile. Two conductive surfaces

are situated inside the chamber, between which a given clearance is maintained. These surfaces are

short circuited when even minimal pressure is applied to the strip.
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The basic configuration comes with two light guide sensors, that can be mounted on the robot and

connected to the I/O board. Flexible fibre-optic cables are connected to a fibre-optics unit which

works with visible red light. Reflected light is detected. Different surfaces and colours produce different

degrees of reflection. However, gradual differences in the reflected light cannot be detected.

An optional inductive proximity sensor is available to detect metallic objects on the floor and is used for

continuous-path control. It reads out signals of varying strength depending on whether it is located in

the middle or at the edge of the metal strip. Path tracking can thus be implemented in a differentiated

way. Table 4.16 summarises the available sensors for the Robotino platform.

9 Analogous distance sensors
1 Bumper with an integrated contact sensor
1 USB Camera
2 Light guide sensors

Optional: analogue inductive proximity sensor

Table 4.16: Summary of Robotino’s sensors and optional accessories [38].

4.6.2 Software Architecture

The basic Robotino package ships with Robotino View (see Figure 4.17), a graphical development

environment for robotic applications with numerous prepared function blocks, that have input an out-

put connectors for arbitrary combinations of blocks and to create complex programming sequences

following the international standard IEC 61131-3.

Robotino View can be run on an external PC and communicate directly with the Robotino Server

running on the embedded PC 104 via W-LAN in order to control the robot system. The function blocks

receive a direct feedback from the hardware components in a way so that live interaction with the

robot system is enabled. Furthermore Robotino View programs can be transferred to the PC 104 in

order to run the applications completely autonomously. Own function blocks can also be implemented

in C++ through a well defined interface.

For educational purposes Robotino View introduces the user to:

• Setup of mechatronic systems

• Sensor applications

• Electric motor control

• Electric drives

• Closed loop control of mechatronic systems
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5. Design and function 

© Festo Didactic GmbH & Co. KG • 544305 67 

Sensor positions and their designations in Robotino®View 
The distance measuring sensors and the incremental encoder must be uniquely 

identified in order to be able to address them with Robotino®View in a targeted 

fashion. The respective designations are included in the figure below. IR1 is 

addressed as “Distance 1” in the software. In a like fashion, the other infrared 

sensors are designated “Distance 2” through “Distance 9”. 

The incremental encoders are assigned to their respective drive units. 
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Sensor assignments, IR1 to IR9: distance measuring sensors (1 – 9) 

M1 to M3: motors (1 – 3)  SL = impact strip, anti-collision sensor 

 

 Figure 4.16: Overview of the Robotino base plate depicting the sensor and motor positions [38].



CHAPTER 4. SYSTEMS DESIGN 49

Figure 4.17: Robotino View is a graphical development environment providing basic function blocks
for visual programming of robotic applications.
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• Graphical programming of mobile robot applications

• Introduction to the vision system

Robotino View implements the Robotino specific function blocks based on the Open Robotino API1.

The API is available as an alternative method to control the Robotino platform without Robotino View.

The API enables the user to:

• Program mobile robots in C, C++, Java, .NET

• Remote control

• Integrate custom vision applications

• Implement autonomous navigation behavior

Figure 4.18 depicts how a software architecture for Robotino can possibly look like, if it is implemented

according to the proposed model in section 4.2.

The Application Layer would contain the applications such as a surveillance, a changeable factory

and a remote operation process. The Planning Layer contains a path planner and motion generator

for the platform. A simultaneous localisation and mapping module and a visual tracking library along

with a robot platform library for sensor access form the Perception Layer. The Hardware Abstraction

Layer contains standardised interfaces to classes of devices for the robot’s sensors and actuators.

In case of Robotino it would contain range finder, motor and odometry, distance sensors, bumper

sensor, and camera API modules. The Hardware Component Layer contains the specialised software

modules, that implement the functionality of the concrete devices: the PBS Hokuyo range finder,

Robotino’s motors and encoders, Robotino’s distance and bumper sensors and a USB camera. These

components communicate through libraries at the Interface Abstraction Layer for serial ports, CAN

Bus and USB. The figure also depicts the hardware interfaces and components on the Interface and

Sensor/Actuator Layer, which correspond exactly with the Interface Abstraction and the Hardware

Component Layer on the software side.

1The Open Robotino API is publicly available from http://svn.openrobotino.org/

http://svn.openrobotino.org/
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Figure 4.18: A possible description of Robotino’s hard- and software components, when applying
the proposed model from section 4.2. However this architecture is fictional and has never been im-
plemented this way. This graphic shall only emphasise, that the proposed model is also applicable
and valid for already existing robotic platforms on the market and how a software architecture could
possibly be implemented for Robotino.
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4.7 Summary

In this chapter I proposed a novel layer model to classify soft- and hardware components for service

robots. After giving a brief overview of software design principles, that I find important to keep in mind

to create sustainable software components, the different layers of this model are explained along

with examples. Moreover several different mobile service robots are presented, that I have personally

worked on. When I developed the software frameworks for the quite differently equipped Leonardo,

F5, and F5-S platforms, I applied the proposed model which enabled me to reuse many software

components. These really implemented and a hypothetical software architecture according to the

proposed model for the Robotino platform validate the model’s versatility and applicability.



Chapter 5

Methodology

This chapter addresses some of the challenges in software engineering for robotic applications and

presents the developed solutions.

5.1 Computer Supported Cooperative Work

Computer Supported Cooperative Work (CSCW) is a generic term, which combines the understand-

ing of the way people work in groups with the enabling technologies of computer networking, and

associated hardware, software, services and techniques [40].

5.1.1 Introduction

CSCW in computer science and software engineering is occurring inherently, once software projects

reach a certain size and complexity. The types of CSCW are generally classified by the dimensions

of space (same place/different place) and time (same time/different time) as described in the CSCW

Matrix (see Figure 5.1).

5.1.2 Application

Collaboration at the same place and at the same time is for example working in a meeting room

or two engineers collaborating on one computer screen like in Extreme Programming. Examples for

the combination different place/same time are video conferencing and instant messaging systems,

screens shared over the network or multi user editors. Collaboration in the same place at different

times occurs in team rooms or project specific locations. Collaboration at different places and at
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Figure 5.1: The CSCW Matrix, partitioning groupware based on time and space.

different times can be realised with well known communication tools such as email, group calendars

and wikis and version control systems which play a very important role in software engineering.

Version Control Systems such as Concurrent Versions System (CVS), Subversion, or Git provide a

central- or in case of Git a distributed source code repository for software engineers [41, 42, 43].

They allow managing files and directories and keep track of the changes made to them, over time.

This allows developers to recover older versions of their source code or other files and lets them

examine the history of how source code or data has changed. The repository inherently also serves

as a backup mechanism for the checked in files and allows easy recovery of older states.

5.1.3 Conclusion

The productivity of software engineering teams can be increased dramatically by the application of

CSCW. At our department, we utilise a Subversion repository to collaborate on software projects and

to distribute a consistent software package to every participating developer [44]. In addition to that,

the application of a wiki allows the organic growth of a user generated knowledge base for the distinct

projects. Email and instant messaging are used to overcome the boundaries of space and time, if

required.
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5.2 Cross Platform Software Development

When developing a software tool, one of the first questions arising is: which platform is it targeted

on? A platform describes a configuration consisting of hardware and software. With regard to the

hardware, one may want to distinguish between different processor architectures, like x86 or x86

64 bit, PowerPC, ARM, XScale, to mention just a few. Furthermore on embedded systems also the

peripheral equipment, like sensors and actuators play an important role. The software part of a con-

figuration is at least determined by the used operating systems, programming languages and their

runtime libraries. In robotics and embedded systems, developers are often facing an inhomogeneous

variety of operating systems, such as Microsoft Windows, Linux, and real time operating systems,

such as QNX, RTLinux or VxWorks. The most commonly used programming languages - at least up

to a certain abstraction level - are C and C++.

Even though the programming languages C and C++ have been standardised by the American Na-

tional Standards Institute (ANSI) and the International Standards Organization (ISO) [45, 46] and - in

addition to that - the availability of the C library and the Standard Template Library (STL) [47] enor-

mously simplified development of platform independent applications for the most common operating

systems, such a project often already fails at the beginning of the tool chain – the build system or the

source code project management.

In my opinion this gap is filled by the open source project CMake in an excellent way. It allows de-

velopers to use their favourite development environment on each operating system, yet spares the

time intensive synchronisation of platform specific project files, by providing a simple, single source,

textual description. With KDE4, CMake was introduced to a very popular project [48]. In this section, I

propose a workflow to ease the development of cross platform projects and I show, how I used CMake

to create an OpenGL application as a demonstrator for a windowed application running on Windows,

Linux and Mac OS X as well as a platform independent camera interface as an example for hardware

dependent cross platform applications.

5.2.1 Introduction

Due to the standardisation of C and C++, applications which can be compiled on multiple different

platforms, can be easily implemented. On Windows platforms, given a source file like the very simple

"Hello World!" application in Listing 5.1 the translation process however requires the manual creation

of a Visual Studio project file referencing the source file [49]. On Macintosh computers, people often

are used to the Xcode IDE, where the developers need to create the necessary Xcode projects, which

reference the source [50]. On Unix/Linux systems developers often use the GNU Autotools or even

write Makefiles manually [51, 52].
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#include <iostream >

using namespace std ;

i n t main ( i n t argc , char∗∗ argv )
{

cout << " He l lo World ! " << endl ;
return 0;

} ;
Listing 5.1: hello.cpp

At a final stage of a cross platform application, the developers may just provide project files for the

different platforms, but in most cases a software project is continuously being maintained and as

soon as new classes or modules are added to a project or as soon as multiple engineers co-operate

on a project, developers desire a tool, that supports synchronising the different Visual Studio- or

Xcode projects as well as the Unix Makefiles. The open source project CMake supports developers to

manage this kind of projects with simple textual project descriptions out of which generators provide

platform specific project files. Table 5.1 summarises the project generators of the current version

2.8.1 for the Windows, Mac OS X and Unix/Linux operating systems. According to the table, a wide

variety of development environments is supported on every platform, for example Eclipse with the

C/C++ Development Tooling (CDT) extension and even KDevelop 3 or CodeBlocks on each of them

in addition to the previously mentioned ones [53, 54, 55].

5.2.2 Application

CMake can be downloaded as source code or as installable executable for Windows or as precompiled

binaries for Mac OS X, Linux and several Unix systems for free at [56]. Furthermore packages for

many Linux distributions, the MacPorts- and the Fink-project for Macintosh users are provided in their

repositories for convenient installation and automated updates [57, 58]. By default the precompiled

Windows package comes with a Qt based GUI to ease the setup of initial settings for the project

under development, while the Unix/Linux and Mac OS X versions of the precompiled package come

with a ncurses based console user interface application ccmake (see Figure 5.2, 2nd row) [59, 60].

If built from source, a Qt based GUI and/or a ncurses based console user interface will be built on

each platform, provided that the necessary libraries Qt and ncurses are installed and accessible by

the compiler. Subsequent project updates can be generated by the utilisation of the cmake command

on each platform.

SET(SRCS main . cpp )
ADD_EXECUTABLE( h e l l o $ {SRCS} )

Listing 5.2: CMakeLists.txt
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Windows Unix/Linux Mac OS X
Borland Make Unix Make Unix Make
MSYS Make CodeBlocks - Unix Make Xcode
MinGW Make Eclipse CDT4 - Unix Make CodeBlocks - Unix Make
NMake Make KDevelop3 Eclipse CDT4 - Unix Make
NMake Make JOM KDevelop3 - Unix Make KDevelop3
Unix Make KDevelop3 - Unix Make
Visual Studio 10
Visual Studio 10 Win64
Visual Studio 6
Visual Studio 7
Visual Studio 7 .NET 2003
Visual Studio 8 2005
Visual Studio 8 2005 Win64
Visual Studio 9 2008
Visual Studio 9 2008 Win64
Watcom WMake
CodeBlocks - MinGW Make
CodeBlocks - NMake Make
CodeBlocks - Unix Make
Eclipse CDT4 - MinGW Make
Eclipse CDT4 - NMake Make
Eclipse CDT4 - Unix Make

Table 5.1: Available project generators for the supported operating systems as of CMake 2.8.1.
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Single Source Code for a 
Cross Platform Project.

The CMake Configuration 
Dialog on Windows.

The CMake Configuration 
Dialog on Linux.

The CMake Configuration 
Dialog on Mac OS X.

Visual Studio is a common 
IDE on Windows.

Eclipse+CDT as an example 
for a Linux environment.

The Xcode IDE is the native 
environment on Mac OS X.

Native Application on 
Windows.

Native Application on 
Linux.

Native Application on 
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setup-package.exe package.dmg package.tar.gz

Figure 5.2: Exemplary workflows depicted for the development process on Windows, Linux and
Mac OS X platforms. The first row symbolises the single source for the cross platform application.
The configuration step in the second row shows the Qt-based user interface of CMake on Windows
and the ncurses-based application ccmake on Linux and Mac OS X. In the depicted case, Visual Stu-
dio was used to build the native Windows application, eclipse was used for Linux and Xcode for Mac
OS X. Changes can be commited directly to the source code repository from within the IDEs. The
result of the build process is a native application on each system, which optionally can be packaged
automatically for deployment.
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Listing 5.2 shows a simple project description for the previously mentioned "Hello World!" application.

Invoking CMake with this description will produce a project for the desired development environment

on each supported platform. A subsequent build process in the individual developer’s favourite envi-

ronment will then build a native application for this platform.

To build an application out of the two files hello.cpp and CMakeLists.txt, the path to the project

description in the CMakeLists.txt file is passed to cmake, an optional parameter -G can specify the

desired generator. Calling cmake �help lists all possible parameters and the supported generators

on the running platform.

On Unix/Linux/Mac OS X the build process is performed by the calls in Listing 5.3, since per default

Unix Makefiles are generated.

he l l o$ cmake .
he l l o$ make

Listing 5.3: Building the "Hello World!" application on Linux/Unix and Mac OS X.

On Windows the commands in Listing 5.4 perform the same, provided that Visual Studio is installed.

If installed, also the GUI application or the ncurses based console user interface application can

be used to create the project files. As an alternative to Listings 5.3 and 5.4 you can also generate

a Visual Studio Solution, a Xcode project or a KDevelop 3 project as desired and invoke the build

process within the IDEs as usual. The only important prerequisite is, that the necessary dependent

tools (make, nmake, gcc, link, cl, ...) are available on the command line, thus the environment variables

are set properly. A very useful feature is the out of source build, which means that the source code of a

project stays separated from the created project files, compilations and possibly generated temporary

files to avoid the accidental submission of platform specific files to the source code repository.

he l l o$ cmake . −G "NMake Makef i les "
he l l o$ nmake

Listing 5.4: Building the "Hello World!" application on Windows.

5.2.2.1 Project Description

The project description of the "Hello World!" example only defines a variable ${SRCS}, which refer-

ences the necessary source code files. The instruction ADD_EXECUTABLE notifies CMake to create a

hello executable target out of the source files passed as an argument. In a similar way static or

dynamic libraries can be created by the ADD_LIBRARY(libname [SHARED | STATIC] sourcelist)

instruction. A complete list of the CMake instructions can be found in the frequently updated online

documentation at [61] or in the official book [62]. In contrast to the GNU Autotools - which are only
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available for Unix environments - complex projects can be described and maintained after a very short

learning phase already.

Often software systems need to access external libraries or connected hardware, which is accessed

differently on different operating systems. Sections 5.2.2.2 and 5.2.2.3 describe both scenarios.

5.2.2.2 Project Configuration

Since nowadays software projects often rely on external libraries, one of the most necessary features

of a build system is the support of the configuration step, hence finding necessary header and library

files of external packages. CMake simplifies this step by providing many configuration scripts for

the most common libraries. However reusable configuration scripts can also be easily implemented

by the user himself as described in the documentation. If, for example, a cross platform application

should not be restricted to the command line, you can easily utilise one of the supported GUI toolkits

(Qt3, Qt4, GTK+, wxWidgets, FLTK etc.) [63, 64, 65]. This way impressive, windowed cross platform

applications can already be implemented just by choosing the right external libraries.

To inspect 3D models on every operating system in the same environment and to establish a software

basis for animated simulations for future use, qiew a demonstrator and test-bench was implemented.

Using the Qt toolkit and Coin3D, a reimplementation of SGI’s Open Inventor, a platform independent

VRML viewer was created (see Figures 5.2, 4th row) [66, 67]. The source code of the application is

available at its website [68]. In the source I also contributed configuration scripts to find the Coin3D

libraries on Windows, Linux and Mac OS X.

5.2.2.3 Resolving Platform Characteristics

When it comes to hardware access, software engineers often have to deal with different Application

Programming Interfaces (APIs) on each operating system.

As part of a unified, vision based tracking library, I needed to implement a platform independent cam-

era interface, which was put into effect by applying common software engineering methods [19]. In

this case I utilised the AbstractFactory Design Pattern as described in [34] to encapsulate platform

specific code in specialised classes derived from an abstract interface class, which provides the func-

tion interfaces for the end user. Figure 5.3 shows the implemented UML class hierarchy with a subset

of the implemented methods.

Video sources which we defined as cameras can be recorded movie sequences, USB web-cams out

of which many are supported by the open source vision library OpenCV [69] or Firewire cameras.

Since most Firewire cameras support the Instrumentation & Industrial Digital Camera (IIDC) Stan-

dard [70], they are frequently used in academia. Therefore enhanced support for Firewire cameras
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ImageDevice

+ open(): void
+ close(): void
+ init(): void
+ captureStart(): void
+ captureStop(): void
+ captureNext(): void
+ getImage(): Image*

FirewireCamera

+ getNumberOfCameras(): int
+ createCamera(int number): 
FirewireCamera*

LinuxDC1394Camera

+ getNumberOfCameras(): int
+ createCamera(int number): 
LinuxDC1394Camera*

MacDC1394Camera

+ getNumberOfCameras(): int
+ createCamera(int number): 
MacDC1394Camera*

WindowsCMU1394Camera

+ getNumberOfCameras(): int
+ createCamera(int number): 
WindowsCMU1394Camera*

OpenCVCameraMoviePlayer

Figure 5.3: A Cross Platform class hierarchy for unified camera access.

was implemented to make use of the standardised access to relevant registers such as white balance,

gain or shutter speed.

On Linux and Mac OS X access to Firewire cameras is provided by the commonly used library

libdc1394 [71] while the CMU 1394 Digital Camera Driver [72] provides a similar functionality for

Windows, yet with a completely different interface. I contributed the necessary configuration scripts

to find the libdc1394 library on Linux and Mac OS X and the CMU 1394 Digital Camera Driver on

Windows. Furthermore I contributed a software package providing a uniform programming interface

for the platform specific APIs.

5.2.2.4 Deployment

Once an application or library is built, it is usually packaged for distribution. While Windows pack-

ages mostly come as installable setup files, Unix/Linux packages are often Tarballs or self-extracting

shell-scripts and Mac OS X packages usually come as DMG disk images, which directly contain the

binaries or an installer package. By the simple use of an INCLUDE(CPack) directive in the CMake-

Lists.txt file, a package target will be generated in the project file and all files, which are tagged with

an INSTALL command will automatically be added to the appropriate deployment package, when in-

voked. Table 5.2 summarises all package generators. The generators STGZ, TBZ2, TGZ, TZ and ZIP

are available on every platform, provided that the necessary packaging tool is available and create
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archives with the necessary binaries and/or sources if tagged for installation. The NSIS generator

creates an installable windows package based on the Open Source Tool: Nullsoft Scriptable Install

System (NSIS) [73]. The generated and installed package will also show up in the system wide list of

installed Programs and provides an uninstaller for clean removal. The DEB and RPM generators are

available on Linux machines to build commonly used Debian- (DEB) or Red Hat Package Manager

(RPM) packages which can be installed and removed easily. The Bundle, DragNDrop, OSXX11 and

PackageMaker generators are only available on Macintosh systems and provide native installers for

this platform.

Generator Description Windows Unix/Linux Mac OS X
Bundle Mac OSX bundle – – +
DEB Debian packages – + –
DragNDrop Mac OSX Drag And Drop – – +
NSIS Null Soft Installer + + +
OSXX11 Mac OSX X11 bundle – – +
PackageMaker Mac OSX Package Maker installer – – +
RPM RPM packages – + –
STGZ Self extracting Tar GZip compression + + +
TBZ2 Tar BZip2 compression + + +
TGZ Tar GZip compression + + +
TZ Tar Compress compression + + +
ZIP ZIP file format + + +

Table 5.2: Available deployment package generators for the supported operating systems.

5.2.3 Workflow

Single
Source
Code

svn, cvs, 
CMake

Platform 
specific 
Project

Native 
Application

Deployment 
FileNative IDE CPack

Figure 5.4: The Cross Platform Workflow and its involved Tools.

To sum up, I propose the following workflow for cross platform applications or software components. In

the first place, developers get the current source code and project descriptions from a source code and

version management system such as Subversion or CVS, for the reasons mentioned in section 5.1.2,

no matter which operating system they work on. Afterwards they generate native project files for the

development environment, which they prefer to work with by the use of the CMake project generator.

From within their favourite IDE they contribute to the project and, if necessary, to the project descrip-

tion files, which are committed back to the source code management system, once a goal is achieved.
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For testing, the native build processes are invoked from within the IDE. In addition to that, packaging

for deployment can be performed automatically on each supported platform to reduce the effort of ap-

plication bundling for every new version. Figure 5.4 shows the workflow depicting the project’s states

in boxes and the utilised transformation tools and their impact directions as arrows. Figure 5.2 depicts

the workflow for the previously mentioned cross platform application in section 5.2.2.2 at its different

stages which was developed for Windows, Linux and Mac OS X.

5.2.4 Conclusion

It is true, that the proposed workflow requires software engineers developing C/C++ applications

to learn an additional tool. On the other hand doing so could make their applications available for

a much larger user base running different operating systems. And actually the learning curve with

CMake is not as steep as with the GNU Autotools by far. In some software projects the co-operation

of users of different platforms is just inevitable. At the chair for Robotics and Embedded Systems at the

Technische Universität München a majority of the vision group prefers to implement their algorithms

on Windows, while the robotics group usually uses Realtime Linux on their robot platforms, where the

vision algorithms are put into effect. This was the initial reason to create a workflow connecting both

worlds.

During an evaluation of building tools by myself in 2004, CMake was the most promising out of sev-

eral other tested ones among which were: qmake [59], GNU Autotools, Microsoft Visual Studio, Apple

Xcode, smake [74], CONS [75], SCons [76], Apache Ant [77], Jam [78], bjam [79]. Since then, the de-

scribed workflow with CMake has been used in very many cross platform projects at our department.

Furthermore it has been introduced in the two spin-off companies of the department: Robotics Tech-

nology Leaders GmbH and Robotics Equipment Corporation GmbH due to the many advantages.

From project generation and synchronisation, to configuration and dependency resolving and to de-

ployment packaging, as mentioned above. The utilisation of CMake within well-known projects such

as KDE4 or OpenSceneGraph and OpenCV may raise its popularity. I showed, it can be easily inte-

grated in the development process on the most popular operating systems, still letting the developer

choose his favourite environment, however more important than that, I showed, it can be used very

well as the missing link in managing cross platform projects on the configuration and build level [14].



CHAPTER 5. METHODOLOGY 64

5.3 Rapid Hardware Prototyping

Development of mechatronic systems is a time consuming process and requires efforts in mechanical,

electrical and software engineering which typically are put into effect sequentially in the mentioned

order. At the chair for Robotics and Embedded Systems at the Technische Universität München we

develop robot and robot part prototypes and the necessary tools to comply with the short timeline

requirements. To parallelise the different development steps, we utilise the Rapid Prototyping Toolset

EasyKit which consists of a collection of hardware and software modules and our model based, visual

programming tool EasyLab.

5.3.1 Introduction

One of the real world projects, where EasyKit was applied to recently, is the autonomous mobile robot

platform in a Life Science Lab (see sections 4.3 and 6.1) of a global pharmaceutical company which

needed to be equipped with an adaptive light-source to improve illumination conditions for its image

processing. The robot is able to carry out a complete sample management process in a pilot plant.

Since the robot moves to different stations and analysis devices in a large laboratory, illumination

conditions vary according to the time of the day, and according to the distance to the windows and

the overhead lights. While the image processing performed perfectly in well illuminated areas, we

wanted the robot to be ready also for challenging environments. Several more difficult scenarios are

apparent and were encountered: the overhead lights in the lab might just accidentally be switched off

by a human, a power outage may occur and in worst case there would be no daylight late at night to

illuminate the environment or due to the absence of windows.

This was the driving force to equip the robot with an adaptive, computer-controlled light source to

locally illuminate the area of interest according to ambient light conditions. We wanted the light source

to be computer-controlled, since different materials have different reflection properties and may cause

problematic highlights if the light is just switched on to maximum power [17].

5.3.2 Motivation

Before we started development, we carried out a literature and parts research, not to reinvent the

wheel. The requirements for our light-source were the following:

• Computer-controlled brightness

• Low energy consumption

• Easily attachable to the robot’s tool
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• As cheap as possible

Since the robot is battery driven, we wanted the light source not to consume too much energy. Fur-

thermore it should fit around the camera to illuminate the region which the robot is looking at and its

brightness should be controllable on demand by the robot’s on-board computer. Finally, also the price

is an important factor.

During parts research we found an appropriate LED array, circular in shape, with 24 or alternatively

48 white LEDs, which perfectly fits around machine vision lenses and whose energy consumption is

small due to the utilisation of LEDs. Siemens/NERLITE provides these LED arrays for machine vision

applications as off-the-shelf components [80, 81, 82]. The power requirements of the selected ring

lights are 12 V/160 mA for the 24 LED R-60-1 "V2" and 24 V/160 mA for the 48 LED R-70-2 "V2".

The lights are available with different delivery rings, out of which we chose the diffuse ones for a

homogenous illumination.

The brightness of LED arrays can be controlled by adjusting the current, which apparently also

changes the wavelength of the emitted light or – which is the commonly preferred method – by

powering the LEDs with a pulse width modulated signal, where a low frequency will result in low

brightness while a high frequency results in a brighter light. During parts research we came across

several components, however after intensive investigation we only found one controller which can be

directly connected to a computer via RS232: the Gardasoft Vision PP610 – LED Lighting Controller

with RS232 Control [83, 84]. However at a price of 866 EUR, we double-checked, if it was possible

to create an appropriate, computer interfaceable controller by ourselves utilising our Rapid Hardware

Prototyping Toolset EasyKit, which resulted in this proposal [85].

5.3.3 Hardware Toolbox

Mechatronic applications often utilise many different Integrated Circuits (IC) which need to be ar-

ranged and assembled on a circuit board and connected to data interfaces. For rapid prototyping

EasyKit includes a modular toolbox based on Match-X with different circuit blocks, which can be eas-

ily put together. Figure 5.5 exemplary shows some components out of the construction kit and the

connection through the standardised electrical data bus.

The available modules cover a variety of requirements and provide a CPU block with a Microchip PIC

18F2520 Microcontroller [86] as well as a voltage regulator, a serial interface component and sensor

connector components among others. The Match-X standard is published by the VDMA and also

covers the development transition from Match-X blocks towards small batch and series production [87,

88].
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Figure 5.5: Some exemplary modules out of the Match-X construction kit are depicted on the left,
while the centre image shows the data bus layout. The right image shows an elementary assembly of
three blocks with a CPU, a voltage regulator and sensor connectors.

5.3.4 Software Toolbox

EasyLab is a modular and model based Integrated Development Environment (IDE) for creat-

ing software applications focussing on but not limited to embedded systems. It provides two

kinds of graphical software models: Structured Flow Charts (SFC) and Synchronous Data Flows

(SDF) [89, 90, 91, 92, 93]. SFCs describe the different possible states of a system and the state

transitions. The states themselves are references to subprograms implemented in any arbitrary lan-

guage, while the transitions can be alternative branches conditioned by boolean expressions and

parallel branches. A state itself can be another SFC or for example a SDF, which is a directed multi-

graph, consisting of actors connected by edges, representing the data flow between actors.

The functionality of hardware modules such as described in 5.3.3 is represented by analogous soft-

ware counterparts with the appropriate input and output connectors for SDFs. In addition to that, the

IDE also provides building blocks for generic data types and methods to define constants, variables,

arrays and images for example as well as common operations like mathematical functions or image

processing filters, just to mention a few of them.

After defining the application logic in EasyLab, the user can invoke the integrated code generator to

create customised machine code for the targeted microcontroller, which in turn is usually limited in

its resources. Compared to the method to write microcontroller applications from scratch - which still

is a common and widely used approach - the utilisation of EasyLab can reduce development time

dramatically.

5.3.5 Implementation

Our goal was to develop an adaptive, computer-controlled light-source for the mentioned mobile ma-

nipulator to improve illumination conditions for the mounted camera and computer vision system. As
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Hardware components we decided to use the Siemens/NERLITE ring illuminators mentioned in 5.3.2

and a controller stack built from Match-X components. The solution for this task was as follows:

Initially the robot takes an image with its onboard camera. Afterwards the brightness of the acquired

image is determined by calculating a brightness histogram and its mean in a range from 0 to 255.

A controller in the host application gradually increases or decreases the brightness of the ring light

by sending brightness values to the serial port until the desired image brightness is achieved or the

minimum or maximum possible brightness is reached.

The light’s controller-board was designed to have a serial interface to receive brightness commands

as plaintext values in a range from 0 to 255, terminated by a linefeed. According to the read value,

the microcontroller adjusts the pulse width modulated power signal for the ring-light which is mounted

around the camera.

Figure 5.6 shows the controller-board on the left and the test setup for result verification on the right.

The controller board basically consists of a Match-X stack with two modules, a power supply connector

and connectors for a serial RS485 cable and the ring-light. The Match-X module which is marked black

and white contains the voltage regulator for the CPU module and the RS485 serial interface, while

the module which is colour-coded in red and orange contains the CPU. The generated pulse width

modulated signal is picked up through a wire directly from the data bus and amplified by a MOSFET

to match the ring-light’s power specification. Figure 5.7 shows the light source with three different

brightnesses.

Figure 5.6: The controller board with the serial and the ring-light connector next to the Match-X stack
consisting of two modules in this case. The right picture shows the mounted test setup for verification
of the results.

5.3.6 Result

To verify that the initial goal of improving illumination conditions for the image processing of the mobile

robot was in fact achieved, we set up a series of experiments. The robot was placed in front of a lab



CHAPTER 5. METHODOLOGY 68

Figure 5.7: The robot’s light-source at 0 %, 30 %, and 100 % brightness.

Figure 5.8: The software implementation of the adaptive light-source with EasyLab. The main program
- on the left - consists of a simple subroutine - shown on the right - with the necessary functional
blocks, which can be easily arranged and connected by the user. The program reads a value in the
range of 0 to 255 from the serial port, this value is converted into a floating point number through the
division by 255 and is scaled up afterwards to a range of 0 to 10 which determines the frequency for
the pulse width modulated power signal of the LED array.
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workbench and the arm was positioned above a rack with vials. The rack has a coloured patch for

calibrating the arm’s position by calculating the centroids of the colour segments.

Figure 5.9 depicts the experiment and the results. The first row shows pictures taken at regular lab

illumination with the ceiling lights switched on during daytime, while the second row shows pictures

which were taken when the ceiling lights were switched off and the scene was illuminated by day-

light only which entered through the lab windows. The third row of pictures were taken in darkness

with almost no ambient illumination. The three columns in each figure distinguish between different

brightness levels of the LED array, which were set to off, 30 %, and 100 % brightness.

Every item in the figure consists of three pictures: the source image, which was taken with the robot’s

camera, the processed, colour segmented picture below and the brightness histogram with a linear

x-axis and a logarithmic y-axis, representing dark values on the left and bright values on the right.

Taking a closer look at the results, and comparing the 0 % column of the figures with the 33 % and

100 % ring light brightness columns, it is apparent that the colour segmentation works significantly

better in the more challenging scenarios, where the ceiling lights in the lab are off. These were just

three fixed illumination values for better comparability, however the robot’s host application is actually

implemented in an adaptive way, gradually changing the intensity of the light-source with respect to

the mean of the brightness histogram to get optimal results. Furthermore it is possible to adjust the

light appropriately, if highlights on shiny surfaces are detected.

5.3.7 Conclusion

The mobile robot’s object recognition is carried out by the utilisation of a mounted machine vision

camera. The challenge however is the different illumination conditions in a large life science laboratory.

Thus the development of an adaptive light source for the visual servoed mobile manipulator was

indispensable. NERLITE/Siemens build LED based ring illuminators suitable for many purposes, yet,

in our case, the brightness needs to be computer controllable depending on the currently observed

object and the ambient light to prohibit highlights on shiny surfaces and to allow pattern matching

and vial inspection even in dark areas of the lab. We are aware that computer interfaceable LED

controllers are available off the shelf, but we want to point out, that developing custom mechatronic

applications utilising the hardware toolbox EasyKit based on Match-X in conjunction with our software

toolbox EasyLab can reduce development resource requirements dramatically in terms of money,

man-power and time. In the presented application one single business day was sufficient to implement

the necessary LED controller, which receives brightness commands via the serial port of a computer,

depending on the visual feedback received from the connected camera. The developed computer-

controllable light-source contributes significantly to the autonomy and versatility of the robot.
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Figure 5.9: Colour segmentation at the Cedex vial rack. While the colour segmentation shows very
good results in all cases when the ceiling lights are switched on in the lab, it becomes much harder
to examine the colours in a lab when the ceiling lights are off, be it day or night. The LED array
significantly improves colour detection in the latter cases.
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5.4 Human Robot Interface

The user interface is where interaction between humans and machines occurs. The goal of interac-

tion between a human and a machine at the user interface is effective operation and control of the

machine, and feedback from the machine which aids the operator in making operational decisions.

Examples of this broad concept of user interfaces include the interactive aspects of computer op-

erating systems, hand tools, heavy machinery operator controls and process controls. The design

considerations applicable when creating user interfaces are related to or involve such disciplines as

ergonomics and psychology.

5.4.1 Introduction

Prices for commercial service robots grow disproportionate with increasing complexity, which asks

for intuitive user controls to avoid any damage and to motivate the robot’s utilisation. This section

addresses briefly how human robot interaction can be implemented in both traditional and unconven-

tional ways.

5.4.2 Graphical User Interface

Graphical user interfaces (GUIs) accept input via devices such as a computer keyboard and a

mouse and provide articulated graphical output on the computer monitor. Several Theses have been

published, that deal with the construction, usability and implementation of user interfaces in de-

tail [94, 95, 96]. GUIs are realised by the utilisation of the native developer tools of an operating

system or with a GUI Toolkit, which are often cross platform capable as opposed to the native devel-

oper tools.

Due to the diverse variety of installed operating systems on robotic platforms and client computers, the

utilisation of a GUI Toolkit is preferable for robotic applications in my point of view. Ideally, this allows

the same code to be compiled for different operating systems as showed in section 5.2. Table 5.3

summarises the attributes and features of the most commonly used C/C++ GUI Toolkits: Qt [59], the

GIMP Toolkit (GTK+) [63], Fast Light Toolkit (FLTK) [65] and wxWidgets [64]. A detailed overview

about the mentioned and further Toolkits is given in Leslie Polzer’s article "GUI Toolkits for The X

Window System" [97].

With regard to the feature set, the mentioned GUI Toolkits are pretty similar nowadays as opposed

to some of the earlier versions. Although Qt requires the most resources in terms of disk space and

ram for an implemented graphical user interface application, it is my personal Toolkit of choice, due to

the big user and developer community as well as third party add-ons and due to its use in a variety of

well-known projects such as KDE, Google Earth, Skype, Adobe Photoshop Elements and others [98].
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Qt Gtk+2 FLTK wxWidgets
Windows + o + +
Unix/Linux + + + +
Mac OS X + o + +
OpenGL + + + +
GUI Designer + + + +
Native Widgets + + – +
Resources – o + +
Implementation C++ C C++ C++

Table 5.3: A summary of features of common Graphical User Interface Toolkits for C/C++.

5.4.3 Simulation

Robotics Simulators are often used to create embedded applications for robots without physically

depending on the actual machine. Simulators can help getting familiar with a robotic device without

the need to buy hardware. However adaptive simulators that are connected to real robots and that

would update the virtual reality environment based on the perceived world of the connected robot, are

powerful human robot interfaces for remote operations.

Based on my Diploma Thesis I developed a simulation framework with a physics engine for mobile ser-

vice robots that displays highly detailed 3D models of robots in their environments (see Figures 5.10

and 5.11) [99]. The simulation can be used for training and testing purposes or to connect to real

robots for remote operation.

Figure 5.10: Simulation of a Leonardo robot. Figure 5.11: Leonardo simulation.
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5.4.4 Voice User Interface

A Voice User Interface (VUI) makes human interaction with computers and machines possible through

voice or speech recognition and synthesis and serves as a platform in order to initiate a service or

process. The VUI is the interface to any speech application. Controlling a machine by simply talking to

it was science fiction only a short time ago, but was introduced into more and more recent consumer

devices. However people have very little patience for a "machine that doesn’t understand".

Colleagues at the department of Robotics and Embedded Systems have demonstrated a successful

implementation of speech recognition and synthesis in the EU funded project Joint Action Science

and Technology (JAST) [100].

5.4.5 Remote Controls

The goal for autonomous service robots is ultimately to gather enough context information through

speech, vision, and gesture recognition to trigger desired robot tasks just as if humans interacted

with each other. However as long as speech recognition still misses every tenth word and as long as

instantaneous 3D reconstruction from images and semantic interpretation of acquired models remains

prototypical and limited to small controlled areas, the user benefits from intuitive remote controls for

mobile service robots. While most robots have USB ports to connect a mouse and a keyboard, users

tend to avoid controlling robots like computers as most industrial robots have a complicated user

interface. In contrast to that, when giving users remote controls at hand, that they are familiar with

from other applications in every day life – such as the WiiMote or the iPhone (see Figures 5.12

and 5.13) – they are more willing to look into and experiment with robots.

To overcome the complexity of robot control, I implemented a remote control service utilising a Wi-

iMote for the Leonardo robot. The WiiMote is an inexpensive Bluetooth device, that many people

are familiar with and which was well appreciated by colleagues in the biotechnology lab. The iPhone

and iPad are also well suitable devices for remote robot control, as they can display current camera

images and a live map on their large touch screens.

5.4.6 Image Processing

Image and video processing are powerful tools for human robot interaction. Their application can vary

from object and person detection and tracking to the creation of a complete 3D world model. Object

and person tracking for initial teaching phases for lab walkthroughs is described more in detail in the

next section.
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Figure 5.12: The WiiMote is a cheap and easily in-
terfaceable Bluetooth device, that people intuitively
know how to use.

Figure 5.13: The
iPhone is a multi-
touch device with a
large screen, that
many people are
familiar with.

5.4.7 Conclusion

This section presented different methods for human robot interaction which can be realised in many

different ways via graphical or voice user interfaces, with simulators and intuitive remote controls or

image processing, just to mention a few. The presented applications summarise what I personally ex-

perimented with. The right tools can tremendously increase the comfort for end users when controlling

mobile service robots.
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5.5 Visual Tracking

Visual object tracking is the process of locating moving objects in video sequences in real-time, by

exploiting redundant frame-to-frame context information through model-based computer vision tech-

niques. Recent surveys cover many state-of-the-art tracking methodologies [101, 102]. The Open

Tracking Library (OpenTL) [103] is an approach of our department to unify many of the state-of-the-

art model based visual tracking methodologies in a single software framework [19].

5.5.1 Introduction

In all of the discussed application scenarios (see chapter 2) visual object tracking became a key

technology. In the Lab Automation scenarios, a person and object tracker were implemented based

on OpenTL to realise a walkthrough teaching process. The same algorithm was used in a TV Studio

to locate a moderator and control a manipulator with a camera mounted on it. This section presents

the underlying algorithm for the person and object tracker.

5.5.2 Architecture

The software architecture of OpenTL is based on the elementary concepts of every visual tracking

system. A scene with more or less prior information about it is recorded by one or multiple image

sensors. The prior information enables creation of a model, which at first needs to be detected and

in subsequent images needs to be tracked. Figure 5.14 depicts the generic flow diagram for a model-

based tracking application.
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Figure 5.14: Generic flow diagram for a model-based visual tracking application.



CHAPTER 5. METHODOLOGY 76

The main classes that our library provides are building blocks for this kind of applications. They have

been organised in functional layers representing an increasing level of abstraction: from base utili-

ties, image acquisition devices and data structures, up to application-related functionalities (see Fig-

ure 5.15).

Figure 5.15: The layered software architecture of OpenTL with the currently implemented compo-
nents.

The OpenTL building blocks can be arbitrarily combined to implement a variety of different visual

tracking applications. The functional layers serve the following purposes:

1. Tracking Data: the raw sensor signal It; any pre-processed data related to a given visual modal-

ity; measurement variables and residuals associated to a given object; multi-target posterior

state distribution st.

2. Tracking Agents: input devices, visual pre-processing, feature processing (sampling, match-
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ing, data fusion) and likelihood computation, Bayesian tracker, output visualisation and post-

processing.

3. Visual Modalities: common abstraction for visual features such as image pre-processing, sam-

pling from the model, warp in image space, data association, residual and covariance computa-

tion; within each class, storage for off-line and on-line selected model features, and intermediate

processing results.

4. Scene Models: off-line available models for each object class; base shape and appearance;

degrees of freedom for pose and appearance parameters, and related warp functions with Ja-

cobian computations; object dynamics; sensor and context models.

5. Utility Classes: low-level, model-free image processing and computer vision tools; base data

storage for matrices, vectors and images; basic algebra and image manipulation functions;

GPU-assisted scene rendering tools and visibility testing of geometric primitives under a given

camera view.

5.5.3 Implementation

The visual tracking software component for the person and object tracker were designed and imple-

mented following the layered architecture of Figure 5.15.

Image input The scene is recorded by an AVT Marlin Firewire camera, that provides RGB colour

images. The models in this case consist of single sub-images containing the face, the hand and the

upper part of the body as well as additional reference images of known lab equipment.

Image pre-processing The recorded images as well as the reference sub-images are transformed

into the HSV colour space to create two dimensional colour histograms zcol for the colour-based

likelihood.

Tracker Each tracker holds a state-space representation of the 2D model pose, given by a planar

translation (x, y) and scale h of the respective rectangular model in the image plane. Considering

a single person tracker consisting of a hand, a head and an upper body tracker, the three particle

filters provide the sequential prediction and update of the respective 2D states s1 = (x1, y1, h1),

s2 = (x2, y2, h2) and s3 = (x3, y3, h3).

Every particle filter generates several prior state hypotheses sit from the previous particle distribution

(si, wi)t−1 through a Brownian motion model.

sit = sit−1 + vit (5.1)
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with v a white Gaussian noise of pre-defined covariance in the (x, y, h) state variables. A deterministic

resampling strategy [104] over the previous weights wit−1 is employed every time in order to keep a

good distribution of the particle set.

For each generated hypothesis, the tracker asks for a computation of the likelihood values

P (zcol|sihead) for the head, P (zcol|sihand) for the hand and P (zcol|sibody) for the upper body tracker.

Colour likelihood The rectangular reference image boxes defining the teacher’s shape model are

warped onto the HSV image at the predicted particle hypotheses sit; for each patch p, underlying

H and S color pixels are collected in the respective 2D histogram qp
(
sit
)
, that is compared with the

reference one q∗p through the Bhattacharyya coefficient [105]

Bp
(
qp (s) , q∗p

)
=

[
1−

∑
n

√
q∗p (n) qp (s, n)

] 1
2

(5.2)

where the sum is performed over the (N ×N) histogram bins (currently implemented with N = 10).

The color likelihood is then evaluated under a Gaussian model in the overall residual

P (zcol|sit) = exp(−
∑
p

B2
p/λcol) (5.3)

with given covariance λcol

Estimated state Afterwards the average state st

st =
∑
i

wits
i
t (5.4)

is computed for each tracker.

In order to ensure jitter-free operations the trackers’ outputs are finally filtered by a temporal low-pass

filter with higher cut-off frequencies with respect to the expected covariance of motion parameters.

Loss detection An important feature of our system is the loss-detection, as a face or a hand disap-

pears when the teacher turns around to lead the robot and to re-initialise the trackers as the teacher

faces the robot and points at locations of interest.

In principle, target losses can be detected by checking the likelihood and covariance for the particle

set. A covariance test is independent of the actual likelihood value, but it may fail to detect a loss

when the particle set concentrates on a false positive which has a low covariance as well. On the

other hand, the likelihood test is dependent on the likelihood value, which can vary under changing
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illumination conditions, however the changes would occur relatively slow considering the large amount

of frames in a certain period of time.

Therefore we implemented a likelihood test on the estimated state st of each tracker and declare a

loss whenever P (zcol|st) decreases below a minimum threshold value Pmin. This threshold is set as

a percentage (e.g. ≤ 10%) of a reference value Pref , initially set to the maximum likelihood value.

In order to provide adaptivity to variable postures as well as light or shading variations, Pref is being

slowly adapted if the last likelihood P (zcol|st−1) is comparable to Pref (e.g. ≥ 60%). When a track

loss occurs, the affected particle filter are re-initialised with the diffuse prior, until the target becomes

visible again and the likelihood increases above the threshold.

5.5.4 Conclusion

Based on the described method we implemented a multi target tracking system for a Teaching Pro-

cess to guide a mobile robot through an unknown laboratory and to teach positions of interest for

subsequent, repetitive walkthroughs [5]. The same algorithm was previously used in a TV Studio to

autonomously control a camera robot based on the person tracker’s feedback while tracking the mod-

erator of a TV production [15], which demonstrates the versatile application domains of the Tracking

framework.
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5.6 Dead Reckoning and Odometry

In traditional aviation or nautical navigation, the term "dead reckoning" means to estimate position

without external references. The position of a vehicle is dead reckoned using knowledge about its

course and speed over a period of time. In robotics, the necessary information is often acquired

by measuring wheel revolutions. Encoders are coupled to a robot’s drive wheels and act like digital

odometers. They generally provide a good estimate of displacements sL and sR for the left and right

wheels. However accuracy depends on factors such as friction and slip on the surface tat the robot

moves along.

5.6.1 Introduction

Many wheeled mobile robot platforms have a differential steering system. So do the Leonardo, F5,

and F5-S platforms. If the wheels turn at equal speed, the robot moves along a straight line. If both

wheels turn in opposite directions at the same speed, the robot pivots. Two constant but different

speeds applied to the wheels will make the robot move along a circular path.

5.6.2 Application

x
g

y
g

θ

b

(x, y, θ)
vR - vL

Figure 5.16: Differential drive system.

Given a robot platform with a differential drive system and wheel encoders, a user wants to control

motion executions and keep track of where the robot is. In the first case the desired forward velocity
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v and angular velocity θ is given and the speeds vL and vR of the left and right motors are to be

determined.

According to figure 5.16:

vL = rθ (5.5)

vR = (r + b)θ (5.6)

v = (r +
b

2
)θ (5.7)

From equation 5.7 r can be resolved:

r =
2v − bθ

2θ
(5.8)

vL =
2v − bθ

2
(5.9)

vR =
2v + bθ

2
(5.10)

with r being the radius of the circular path, b the distance between the two motorised wheels and v

the speed at the pivot point of the platform. Be rW the radius of the wheels and g the gear reduction

factor, the desired speeds for the wheels become:

sL =
2v − bθ
4rWπ

g (5.11)

sR = −2v + bθ

4rWπ
g (5.12)

In the second case the position and orientation are to be computed from the known velocities of both

motorised wheels. In this case the following common formulas are applied [106]:

v̄ =
(vR + vL)

2
(5.13)

θ =
(vR − vL)

b
+ θ0 (5.14)

x = v̄ cos(θ) + x0 (5.15)

y = v̄ sin(θ) + y0 (5.16)

5.6.3 Conclusion

This section showed how to compute the desired speeds for the wheels of a robot with a differential

drive system and how to keep track of the robot’s pose by the utilisation of wheel encoders. Although

these formulas are just approximations, they are well applicable as long as the sampling frequency

is high enough. With this implementation and an update frequency of 100 Hz the Leonardo and F5

robots are able to manoeuvre with a precision of a few mm in medium sized rooms. Nevertheless an

accumulating error is inevitable. For this reason the odometry readings often serve as measurements

for the motion model of laser range finder based localisation and mapping approaches.
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5.7 Simultaneous Localisation and Mapping

Perception plays an essential role in Service Robotics. Mobile service robots have to know where they

currently are, where they find objects and places, which they are providing a service for and they have

to be aware of their environment to prohibit injuries or damages caused by collisions. This section

describes how laser rangefinder data is used for simultaneous localisation and mapping.

5.7.1 Introduction

Particle filter based, probabilistic approaches have shown very promising results for simultaneous

localisation and mapping (SLAM). Based on DP-SLAM, an improved software package has been

developed which was utilised successfully on the Robotino and Leonardo platforms utilising SICK

LMS 200 laser range finders. "SLAM addresses the problem of constructing an accurate map in real

time despite imperfect information about the robot’s trajectory through the environment". Unlike other

approaches that assume predetermined landmarks, the presented algorithm is purely laser range

finder based. It uses a particle filter to represent both robot poses and possible map configurations.

DP-SLAM is able to maintain and update hundreds of candidate maps and robot poses efficiently by

using a novel map representation called distributed particle (DP) mapping [107, 108]. "Even with an

accurate laser range finder, map-making presents a difficult challenge: A precise position estimate is

required to make consistent updates to the the map, but a good map is required for reliable localisa-

tion. The challenge of SLAM is that of producing accurate maps in real time, based on a single pass

over the sensor data, without an off line correction phase. Straightforward approaches that localise

the robot based upon a partial map and then update the map based upon the maximum likelihood

position of the robot tend to produce maps with errors that accumulate over time. When the robot

closes a physical loop in the environment, serious misalignment errors can result." This is avoided by

implementing a particle filter that also creates map hypotheses.

5.7.2 Implementation

A particle filter is a simulation-based method of tracking a system with partially observable state.

It maintains a weighted set of sampled states S = {s1...sm}, called particles. Upon observing an

observation o the particle filter:

1. Samples m new states S′ = {s′1...s′m} from S with replacement.

2. Resamples each new state through a Markovian transition model: P (s′′|s′).

3. Weighs each new state according to a Markovian observation: P (o|s′′).

4. Normalises weights for new set of states.
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For localisation a particle represents a robot’s pose (xi, yi, θi). The motion model differs across robot

types and terrains but it is generally based on odometry values and takes a linear shift into account

to address systematic errors and gaussian noise. For Odometer changes of x, y, and θ a particle i

results in:

xi = ax ∗ x+ bx +N(0, σx)

yi = ay ∗ y + by +N(0, σy)

θi = aθ ∗ θ + bθ +N(0, σθ)

with linear correction factors a and b and gaussian noise N(0, σ) with mean 0 and standard deviation

σ. Assuming a standard deviation in laser readings and δ = d′ − d where d′ is the reported distance

of a laser measurement and d the calculated laser cast within the generated map the total posterior

for particle i is

Pi = ΠkP (δik|si,m),

where δik is the difference between the expected and measured distances for sensor cast k and

particle i.

The key contribution of DP-SLAM is distributed particle mapping, which allows to create a particle

filter over robot poses and maps. Its core data structure is an ancestry tree and an occupancy grid

which enable an efficient and fast mapping process. The environment is subdivided into an array

of rectangular cells. The resolution of the environment mapping depends on the size of the cells.

Additionally, a probabilistic measure of occupancy is associated with each cell. This measure marks

the cell as occupied or unoccupied. A grid square consists of an ancestry tree which stores all particles

which have updated this grid square and illustrates an internal storage of a map.

5.7.3 Conclusion

While most particle filter based SLAM methods require substantial resources in terms of memory

and computing power, our solution has been adapted to run in soft realtime on currently available

off the shelf PCs or Laptops and for easily adjusting the necessary resource parameters to provide

an appropriate solution for different mobile platforms. This software package has been installed on

the Leonardo robot for its first industrial application. Figures 5.17 and 5.18 show first results of auto-

matically acquired maps in the Life Science Laboratory, where the Leonardo robot was installed. In

comparison to other approaches, DP-SLAM does not need predetermined landmarks and is accurate

enough to close loops without any additional off-line techniques. The data association problem was

eliminated through the abandonment of landmarks. Finally it is not necessary to predetermine the

environment.
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Figure 5.17: An automatically generated map, created by the Leonardo robot in a Cell Culture Devel-
opment laboratory.
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Figure 5.18: The map of a real world fermentation laboratory, generated by the Leonardo robot.
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5.8 Summary

This chapter described commonly utilised methods for the development of service robots. Section 5.1

gave a brief overview about collaboration methods, section 5.2 demonstrated how to develop cross

platform software components for heterogenous applications, such as robots are. In section 5.3 a

method is shown for rapid hardware prototyping that speeds up the development process for robotic

hardware components. The later sections 5.5 and 5.7 focus on perception, to dramatically improve

the awareness of robot’s environments.



Chapter 6

Results

The results section gives a brief overview, of how the initially stated application scenarios for mobile

service robots have been addressed with the solutions that we developed in collaboration with our

industrial partners.

6.1 Lab Automation

We addressed the Lab Automation Scenario (see sections 2.1 and 2.2) with a feasibility study about

implementing the complete sample management process in a real industrial Life Science Pilot Plant

at Bayer HealthCare LLC in Berkeley with an autonomous mobile manipulator Leonardo (see sec-

tion 4.3). Sample management is an inevitable and time-consuming part during the development and

production of biopharmaceuticals to keep track of growth parameters and to adjust these as it be-

comes necessary. The robot has been developed in a close cooperation between the University of

Bielefeld, the Technische Universität München, Germany, and Bayer HealthCare in Berkeley, Califor-

nia [109]. After transferring the robot to the customer, it has been upgraded and customised to match

local conditions and to serve the company’s specific lab devices. Reliability and robustness have been

demonstrated in 101 error free sampling cycles.

Precise device interaction is carried out as follows: to move to workstations, the robot positions itself

using the laser range finders’ feedback which is matched against the acquired map of the lab. Fur-

thermore, to overcome precision issues of the platform, all relevant devices are tagged with colour

markers as shown in Figure 6.1, which the robot approaches with the arm and its mounted tool. The

camera is constantly giving visual feedback for its actual position (see Figure 6.2). Finally, after reach-

ing known positions, scripted force controlled movements are triggered to prohibit damage due to

physical contact.

87
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Figure 6.1: Image Processing using colour features.

To serve the local requirements, the robot’s tool has been replaced in a way that it can handle 10 ml

Vacutainer sample tubes as well as common 50 ml Falcon1 sample tubes and Cedex2 cups. The

analog camera was replaced by a firewire camera to improve image quality, furthermore a Siemen-

s/NERLITE3 ring illuminator was attached to the lens to improve the illumination in critical areas (see

also section ??). Figure 6.3 shows the new tool of the robot arm with a sample.

The lab itself has a bioreactor and a Cedex Cell Counter. Depending on the cell sample a dilution

step was necessary for the Cedex. Humans usually perform the dilution by hand utilising common

manual pipettes. To enable the robot to carry out the dilution, a sample preparation station was con-

structed consisting of a Hamilton4 PSD/2 electrical syringe connected to a Hamilton modular valve

positioner serving the necessary liquids. The sampling in turn is performed by a dedicated pneumatic

valve, which was constructed to take the sample vials. All lab devices were connected to controllers

with serial or ethernet network interfaces, which enabled the robot to trigger specific actions, when

required. Figure 6.4 shows the complete setup in the pilot plant, while figure 6.5 depicts the sample

management process as an UML sequence diagram [110].

First, the robot invokes the sampling of the bioreactor. Once done, it takes the vial from the sampling

valve. In the next step it places the vial at the sample preparation station and triggers the dilution

process. In the meantime the robot picks up a new Cedex cup and places it at the dispenser needle of

the preparation station, where 1 ml of the sample is dispensed after complete preparation. Afterwards

the robot places the Cedex cup at the Analyser and triggers the measurement process. Meanwhile

the sampling vial is removed from the preparation station by the robot and placed in the waste bas-

ket, triggering an automated cleaning program of the preparation station. Furthermore the robot also

removes the Cedex cup after it’s analysation and places it in the biohazard waste basket. Finally the
1http://www.bd.com/
2http://www.innovatis.com/products_cedex
3http://www.nerlite.com/
4http://www.hamiltoncompany.com/

http://www.bd.com/
http://www.innovatis.com/products_cedex
http://www.nerlite.com/
http://www.hamiltoncompany.com/
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Figure 6.2: Three examples for approaching different lab devices: the sample valve (top), the sample
preparation station (middle) and the Cedex cell counter (bottom). Iteratively the robot arm’s position
converges over a defined position on top of the colour marker.
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Figure 6.3: The robot’s new tool with a Firewire camera and a ring illuminator surrounding the lens.
The adjusted gripper carries one of the new 10 ml sample vials.
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Figure 6.4: The robot lab for the cell counting sample management process with all necessary devices.

robot places a new 10 ml sample vial in the cradle of the sampling valve, which leaves the setup ready

for the next cycle [22].

To ensure repeatability, the implemented process was tested for its robustness. Therefore the robot

was required to carry out 100 error free cycles. The sampling valve was driven pneumatically and

equipped with steam connectors for sterilisation. It has been tested for approximately 2000 cycles

without any mechanical issues, while the entire sample management process was carried out suc-

cessfully for 101 times. Out of that number, 75 cycles were executed with real cell samples to mea-

sure deviations and the physical stress caused by the automated sampling and sample preparation.

Figures 6.6 and 6.7 show eight viability and viable cell density (VCD) measurements per sample com-

paring the robot’s results with two manual results side by side – one manual result with the sample

taken out of the original 50 ml sample vial and one out of the Vacutainer vial, which the robot had

just used. While the graphs show good overall comparability, especially with the cells from cell line 2,

which seem to be less sensitive, the robot’s results in general appear to be slightly lower. The reason

for this probably resides in the higher number of syringe strokes at the sample preparation station

utilised by the robot [21, 16, 11, 9].
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Figure 6.5: The implemented sample management process as an UML sequence diagram. The boxes
on the top represent the devices, which the robot needs to operate. The two different kind of arrows
symbolise commands, which are triggered by the robot and actions which the robot carries out itself.
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Figure 6.6: Comparison of the Viable Cell Density and Viability from three different samples of Cell
line 1. Each bar represents the average and the standard deviation of eight measurements with the
same cell sample. Furthermore the measurements are split into three sections: measured by the
robot (Robot), measured manually out of the original cell source at almost the same time (Hand)
and measured manually out of the 10 ml vial, that the robot had just used (Hand(Vial)). The results
show slightly lower viable cell density and viability values when measured by the robot. This may be a
result of the increased stress and higher number of syringe strokes at the sample preparation station
compared to manual pipetting, which may have an impact on this cell line in particular.
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Figure 6.7: Comparison of the Viable Cell Density and Viability from three different samples of Cell
line 2. Each bar represents the average and the standard deviation of eight measurements with the
same cell sample. Furthermore the measurements are split into three sections: measured by the
robot (Robot), measured manually out of the original cell source at almost the same time (Hand) and
measured manually out of the 10 ml vial, that the robot had just used (Hand(Vial)). The results show
no significant difference between the robot’s measurements and the manual measurements.
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6.2 Surveillance

After carrying out the feasibility study for complete Sample Management the mobile robot Leonardo

has been installed in a real Cell Culture Development laboratory on site at Bayer HealthChare LLC in

Berkeley for monitoring multiple high cell density perfusion reactors. As the project progressed new

challenges were encountered. The lab setup was not completely static. Therefore the robot should

be easily adjustable to a changing environment, without the demand for a dedicated programmer.

A novel simultaneous localisation and mapping (SLAM) algorithm based on the laser range finder

measurements (see section 5.7) and a person tracker based on the high resolution images from

the camera (see section 5.5) enable the robot to discover an unknown laboratory and to monitor

Fermentor stations (see Figure 6.8).

During the initial teaching phase the robot follows the teacher and continuously generates a map (see

Figure 6.9). Constraint rules and the continuous evaluation of the laser range finders’ data makes

sure, that collisions with the possibly unknown environment are prohibited. At points of interest the

teacher indicates with a gesture to record the location and to search the location for known lab devices,

such as fermentors and pumps (see Figure 6.10). These are checked by the robot autonomously on

subsequently scheduled walkthroughs [10, 5, 4, 2].

Figure 6.8: The mobile robot Leonardo checking a fermentor station.
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Fermentor AFermentor BFermentor C

Fermentor E

Fermentor D

Figure 6.9: Automatically created map of the laboratory with the stations of interest indicated. The real
floor plan overlays and shows how precisely the map was generated.
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Figure 6.10: In the shown pictures, the scientist’s face and hand (upper row) are detected and tracked
by the robot until he arrives at a fermentor station (lower row) where the fermentor is detected as
well. This way and in combination with the automated mapping and path planning a human guide can
teach a lab walkthrough and indicate positions of interest for a repetitive fermentor monitoring routine,
without preprogramming any knowledge about the environment.
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6.3 Changeable Factory

The F5 platform has been developed to address the Changeable Factory scenario. I implemented

the software architecture based on the proposed layer model. Therefore I was able to reuse many

software components, that I previously developed for the Leonardo platform.

The developed system was shown at the Hannover Messe 2009 (Hannover fair 2009) where it was

navigating autonomously and docking to a changeable factory made of Festo MPS modules. Fig-

ure 6.11 shows a changeable factory and figures 6.12 and 6.13 show the F5 robot at the Hannover

Messe 2009. In the meantime the platform has been shipped to its final destination: the IFF at the

university of Stuttgart.

Figure 6.11: Changeable Factory made of Festo MPS modules. Photograph: Festo Didactic.

6.4 Housekeeping

The F5-S platform is the successor of the Leonardo platform and is intended for the Housekeeping as

well as future Lab Automation scenarios. Despite the different actuators and manipulator compared to

the F5 platform, the fine grained software architecture, which I developed according to the proposed

layer model from section 4.2 allowed to reuse almost the entire code base of the larger F5 platform.

The first F5-S was shipped to the Technische Universität Berlin in 2009 and successfully installed at

the demo apartment of the DAI Labor.

6.5 TV Studio

RoboKam is a well established product for Virtual TV production studios. Several RoboKams have

been installed at ZDF’s most recent news studio N1 in Mainz and at RTL’s n-tv news center in Cologne,

Germany. While most of the software components have been developed by RTLeaders, our visual

tracking framework OpenTL became an essential key component for autonomous camera moves

during live productions [15].
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Figure 6.12: Closeup of the F5 robot in front of a changeable factory.

Figure 6.13: F5 docking to a changeable factory at the Hannover Messe 2009.
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Figure 6.14: RoboKam. Photographs: RTLeaders. Figure 6.15: RoboKam in a TV
Studio.

6.6 Robot Education

Essential parts for the control, localisation and navigation as well as for the Robotino simulator

have been developed at our department for Robotics and Embedded Systems [7]. In the meantime

Robotino has been sold over 1000 times world wide and became a great and affordable product for

robot education purposes.

6.7 Summary

This chapter presented how we approached the different application scenarios for mobile service

robots with the various robot platforms that were developed in collaboration with strong industrial

partners. The Lab Automation scenarios as well as Surveillance and Housekeeping with a versatile

personal assistant were addressed with the Leonardo and the F5-S mobile robots. The larger platform

F5 with a different actuation setup was utilised for the Changeable Factory. TV Studio productions

were implemented with RoboKam and Robot Education has been addressed with Robotino. The

Software architectures presented in chapter 4 have been implemented according to the proposed

classification model from section 4.2 hence validated the model’s purpose. The number of reusable

software components speak for themselves.
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Conclusion

In this thesis I presented a model to classify and describe the hard- and software-architecture of

mobile service robots and to ease the development of their components. A total of seventeen authored

and five co-authored publications have emerged up to now addressing individual aspects of this thesis.

I applied the proposed model to several service robot platforms developed at our department. It is

validated by the utilisation of the created software components on a variety of robots in real world

applications. My work on the Biotechnology robot has been recognised by the independent author

Harald Zähringer and appeared in an article in the 4/2009 issue of Lab Times, a well-known european

biotechnology journal [109]. I addressed certain solutions in service robotics, including automated

mapping and localisation as well as visual tracking to improve the perception and usability of current

mobile service robots.

After several years of independent work on mobile service robots by individuals or groups, standardi-

sation efforts for robotic hard- and software components become noticeable in projects like Robot Op-

erating System (ROS) and Open Architecture Humanoid Robotics Platform (OpenHRP) to overcome

their big variety and complexity and to avoid reinventing the wheel over and over again. Ultimately

the development of service robots will benefit from standardised software components and interfaces,

since only reusable software architectures will sustain.

Automatic lawn mowers and vacuum cleaners are just the beginning of the growing field of service

robotics. To make classical robots – as we know them from industrial automation – smart, they need to

be equipped with sensors to become aware of their environment and sufficient computing power to be

able to process and interpret continuously the acquired sensor data. To make and keep service robots

versatile, their software architecture should be modular and scalable. Classes of modules need well

specified interfaces to make components exchangeable; dependencies between components should

be kept to a minimum. As more and more research teams are collaborating on standardisation efforts

and exchangeable soft- and hardware components, we may see more and more mobile service robots

entering our homes.
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