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Abstract

We interpret a type of fuzzy controller as an inter-
polator of B-spline hypersurfaces. B-spline basis func-
tions of different orders are regarded as a class of mem-
bership functions (MFs) with some special properties.
These properties lead to several interesting conclusions
about fuzzy controllers if such membership functions
are employed to specify the linguistic terms of the input
variables. We show that by appropriately designing the
rule base, C"-continuity of the output can be achieved
(n is the order of the B-spline basis functions). The
wssues of function approzimation and heuristic control
using such a fuzzy system are also discussed.

1. Introduction

Recently, fuzzy logic control (FLC) has been suc-
cessfully applied to a wide range of control problems
and has demonstrated some advantages, e.g. in effi-
ciency of developing control software, appropriate pro-
cessing of imprecise sensor data, and real-time charac-
teristics, [9, 12]. However, as pointed out in [3], one
obstacle to the wide acceptance for industrial applica-
tions is that “it is still not clear how membership func-
tions, defuzzification procedures, ..., contribute, either
in combination or as stand-alone factors, to the per-
formance of the FLC”. Two important related issues
are:

Quality of fuzzy controllers. In practical applica-
tions, the smoothness of the controller output is
one of the most important design requirements.
This applies both to the control of very complex
systems such as the speed control of automated
trains as well as simple actuators like electrical
motors, whose life expectancy directly depends on
the smoothness of the controller output. Unfor-
tunately, in general cases, smoothness cannot be
guaranteed and is frequently hard to determine for
a given controller.

Guidelines for choosing membership functions.
Up to now, there exist no convincing guidelines
for the successful design of fuzzy controllers. In
particular this pertains to the choice of a concrete
membership function. In various fuzzy control
applications, membership functions of triangular
or trapezoidal shape are utilised because of the
simplicity of specification and the satisfying
results. But the question still remains: can the
control performance be improved by choosing a
certain set of membership functions?

These two issues can be addressed by comparing
B-spline models with a fuzzy logic controller. In our
previous work [13], we compared splines and a fuzzy
controller with single-input-single-output (SISO) struc-
tures. In this paper, the multi-input-single-output
(MISO)* controller is considered.  Periodical non-
uniform B-spline basis functions are interpreted as
membership functions. Aspects of function approxi-
mation and heuristic control are discussed.

2. Some Previous Work

2.1. Advancesin Fuzzy Control

Several authors have shown that fuzzy controllers
are universal approximators, [10, 2, 5]. Wang presents
a universal approximator by using Gaussian member-
ship functions, product fuzzy conjunction and “centre
of average”? defuzzification, [10]. Buckley has shown
that a modification of Sugeno type fuzzy controllers are
universal approximators. Kosko and Dickerson intro-
duced “additive fuzzy systems” to generally describe
fuzzy controllers which use the addition of “THEN”-
parts of fired rules to determine the crisp output. They
then proved that an additive fuzzy system uniformly

LA MIMO rule base is normally divided into several MISO
rule bases.

2Synonyms: Takagi-Sugeno IDM (Inference and Defuzzifica-
tion Method), Tsukamoto-method, “weighted-mean”.



approximates f : X — Y if X is compact and f is
continuous.

Two successful applications in commercial controller
and process control are given in [12], one is the OM-
RON temperature controller (chapt. 3), the other is
a gas-fired water heater (chapt. 12). The member-
ship functions are selected as only triangles, and each
pair overlaps. Can these be generalised as design rules?
The work in [6] shows that the triangular membership
functions with 1/2 overlap level produce the zero value
of the reconstruction error. Further questions are: Are
there other forms of suitable membership functions?
Should the overlap of the fuzzy sets for linguistic terms
fulfill certain constraints?

2.2. The Popularity of B-Splines

To solve the problem of numerical approximation for
smoothing statistical data, “Basis Splines” (B-Splines)
were introduced by I. J. Schoenberg [8]. B-splines were
used later by R. F. Riesenfeld [7] and W. J. Gordon
[4] in CAGD for curve and surface representation. Due
to their versatility based on only low-order polynomi-
als and their straightforward computation, B-splines
have become more and more popular. Nowadays, B-
spline techniques represent one of the most important
trends in CAD/CAM areas; they have been extensively
applied in modelling free shape curves and surfaces.
Recently, splines have also been proposed for neural
network modelling and control [1, 11].

Although B-splines have been mainly used in off-line
modelling and fuzzy techniques lend themselves to on-
line control, some interesting common points can still
be found. Our previous paper [13] pointed out that
the B-spline basis functions and the membership func-
tions of a linguistic variable are both normalised, over-
lapping function hulls. Splines and fuzzy controllers
possess good interpolation features. The synthesis of a
smooth curve with spline functions can easily be associ-
ated with the defuzzification process. These points are
the main motivation for our work on utilising B-splines
to design fuzzy controllers.

3. B-Spline Basis Functions vs. Member-
ship Functions

We consider the membership functions which are
used in the context of specifying linguistic terms (“val-
ues” or “labels”) of input variables of a fuzzy controller.
In the following, basis functions of Non-Uniform B-
Splines (NUBS) are summarised and compared with
the membership functions. We also use B-functions
for the NUBS basis functions.

3.1. NUBS B-Functions

Given a sequence of ordered parameters:
(o, 1,22, ..., T, L1, - - - Lmyn), the normalised
B-functions N; , of order n are defined as:

1 forao; <z <xig1 .
- if n=1
Nin(2) 0 otherwise
i,nlT) = —x; .
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withz=0,1,...,m.
Three important properties of B-functions are:

partition of unity:
positivity:
C"=2 continuity:

Z?:O NZ,”($) =1,

Nin(z) > 0for z € [0,1],

If the knots {x;} are pairwise
different from each other,
then N;,(x) € C"7% ie.
Nin(z) is (n — 2)-times con-
tinuously differentiable.

3.2. Overview of MFs of B-Function Type

The B-functions are employed to specify the linguis-
tic terms, knots are chosen to be different from each
other (periodical model). Visually, the selection of n,
the order of the B-functions determines the following
factors of the fuzzy sets for modelling the linguistic
terms, Table 1.

3.3. Partition of the Input Variable into Support
Intervals

It is assumed that linguistic terms are to be used
to cover [zg, 2], the universe of an input variable «
of a fuzzy controller. m is chosen according to how
fine this input variable should be partitioned by con-
sidering an appropriate granularity to achieve a trade-
off between the precision of the control/approximation
and the complexity of the rule base. If we want to
use B-functions N; ,,¢ = 1,...,m as linguistic terms,
then first, [zg,2.] is partitioned into m intervals,
[%i, it1], & # 2541, 1=0,...,m—1, (Fig. 1). In or-
der to maintain the “partition of unity”, some more B-
functions should be added at the both ends of [aq, 2]
They are called marginal B-functions and define the
vertual linguistic terms in the following.

e Marginal B-functions are to be defined on the left
end, which need additional n—1 intervals adjacent
zg. They are [, 2;41],i = —n+1,...,—1. These
intervals may be selected as if they have the same
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Table 1. The visual effect of fuzzy sets de-
pends mainly on choosing the order of B-
functions

span as the symmetrical intervals right to zg, e.g.
| w_120 |=] wowy |, etc.

e Marginal B-functions should be also added on the
right end, which need still n — 1 more parameter
intervals [#;, 2;41],7 = m,...,m + n — 1. These
intervals can also be selected as having the same
span as the symmetrical intervals right to z,,.

In sum, to cover fully the universe [2p, @] with B-
functions:

e m + 1 B-functions of order 2, N_»,..., Npy_1 2,
are sequentially labeled as linguistic terms, e.g.

Al,Az,...,Am+1;

e m + 2 B-functions of order 3, N_23,...,Np_13
which span over [#_s, Z;,42] are sequentially la-
beled as, e.g. Ag, A1,..., Am, Am41, where Ay
and Ap,41 are defined by marginal B-functions
N_273 and Nm—1,3~

e m + 3 B-functions of order 4, N_34,...
which span over [x_3, 2,,13], are sequentially la-
beled as, e.g. A_1, Ao, A1,..., Am, Am41, Where
A_1, Ao, Am, Apmy1 are marginal B-functions.
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Figure 1. Partition the universe into intervals

e m + n — 1 B-functions of order n span over
[$—n+1axm+n—1]~

4. Construction of the SISO System

Assume that the parameter axis is the input variable
x and y is an output variable. # is covered by the B-
functions N; ,,. For specifying linguistic terms of y, the
simple fuzzy-singletons y; are used.

4.1. The Rule Set

We define the Core Rule Set (CRS) as a priori lin-

guistic rules;, which can be described as:

CRS = {Rule(?) : IF x is A; THEN y is y;
| i=1,...,s}

If virtual linguistic terms appear in the premise, in
order to maintain the output continuity at both ends
of the real universe of z, additional rules, called the
Marginal Rule Set (MRS), are needed to deal with the
cases. Marginal rules which contain the left (right) vir-
tual linguistic terms can just use the repeated output
value ¥, (ys).

The whole rule set RS is then: RS = CRSUMRS.

4.2. |nference and Defuzzification

Given a value #, #; < # < Z;41, it can be seen
from the definition of the B-spline basis functions that
Nin(2), Nig1n(2),..., Nign_1,n(x) are greater than
zero, i.e. exactly n rules fire to non zero degree.

If THEN-parts of fired rules are added and the cen-
tre average defuzzifier is used, due to the “partition of



unity” property, the crisp value of the output variable
is:

Yy =

Z:r;—l-_n;l—l yi - len(x) m+4n—1
Zi:—n+1 z,n(l“) i=—n+1
(1) is exactly the NUBS interpolation of one-
dimensional data points. As x varies from zg to @,
y generates a (n — 2) times continuously differentiable
trajectory.

4.3. An Example

We define a core rule set of 5 rules: CRS =
{IF «is A; THEN yis y;,7 = 1,...,5}, where y; to
ys are fuzzy singletons with the following values: 0.5,

1.0, 0.3, 0.55, 0.2.

(a) order 2

(b) order 3

(c) order 4

Figure 2. Membership functions used for the
input variable

Linguistic terms used for input z are shown in
Fig. 2 (a)—(c). For B-functions of order 3, one virtual
linguistic term 1s added at the left and one at right end,
while for B-functions of order 4, two virtual linguistic
term at the left and two at right end. If the two virtual
linguistic terms for the case of order 3 are denoted
Ap and Ag, two marginal rules can be constructed
by copying the output values y; and ys: MRS =

{IF «is Ao THEN yis y;IF «is As THEN yis ys}.

The curves of the output with respect to input
are depicted in Fig. 3 (a)-(c). They are (a): C°-
continuous; (b): Cl-continuous; (c): C'*-continuous.

(a) order 2

(b) order 3

(c) order 4

Figure 3. Output trajectories with respect to
the input



5. MISO Fuzzy-Controllers
5.1. Two Inputs and One Output

Consider a fuzzy controller with two inputs z1,
and one output y. x; and xs can be indepen-
dently defined with linguistic terms {Ay, ..., As, } and
{Bi,...,Bs,}. These linguistic terms are modelled
with B-functions of order n; and ns respectively in the
procedures illustrated in 3.3. Similarly to 4.1, the Core

Rule Set can be represented as follows:

CRS = {Rule(i,j) : IF 21 is A;(21) and 24 is Bj(x2)
THEN yis y;; |i=0,...,81,/=0,...,s9}

The marginal rule set (MRS) is used for representing
all rules which have the virtual linguistic terms in their
premises. Their output values are just copied from that
of the nearest core rules.

If the “product” conjunction and the “centre aver-
age” defuzzifier are used, the output y can be repre-
sented as:

Zsl-l-nl—l

i=—ni+1
Zsl-l-nl—l
i=—ni+1
s14+n;—1 sg4ng—1

= Y Y v N ) Nimle) @)

t=—ni1+1 j=—ng+1

sgt+ng—1

j=—no+1 Yig * Niy"l (l‘l) : NJ7"2(‘r2)
sotng—1 Ni,nl(xl) . N]7n2($2) (2)

J=—n2+l1

(3) can be associated with the definition of a NUBS
surface.

5.2. Examples

Two input variables x; and x5 are covered with
three real linguistic terms, represented by {A;, A2, Az}
and {Bj, By, B3}, which denote “low”, “middle” and
“high” respectively. A core rule set consisting of 9 rules
is shown in Fig. 4(a). On output variable y, fuzzy sin-
gletons are defined to represent “VL” (very low), “L”
(low), “M” (middle) and “H” (high).

A1, Ay, Az and By, By, Bs are defined with adjacent
uniform B-functions of order 2, 3 and 4, similar to Fig.
2 (a)—(c). If B-functions of order 3 are used, one virtual
linguistic term Ag (Bg) is added left-adjacent to A;
(B1), another A4 (B,) is added right-adjacent to As
(Bs). Marginal rules which have Ag, A4, By, By in the
premise are assigned with the output singletons of the
nearest core rule, Fig. 4 (b). For the case of order 4,
two virtual linguistic terms for each input variable are
added; the construction of the rule base is illustrated
in Fig. 4 (c).

The control space on the relation of y with x; and
23 is shown in Fig. 5 (a), (b), (¢). The continuity of

the three cases is (a): y is continuous; (b): dy/dx; and
dy/Oxs are continuous; (f): 9%y/dx? and 9%y/dx3 are
continuous.

5.3. The General MI1SO Case

Generally, rules with ¢ conjunctive terms in the
premise are given in the following form:

{Rule(iy,12,...,1q): IF (21 is Ny, (21)) and (22 is
Niymo(z2)) and ... and (z4 is Ny, n,(z4)) THEN y is

lq,ﬂq
Yirin.ig)

Under the same conditions in 5.1, the output y of a
MISO fuzzy controller is:

s1+n1—1 mg+ng—1 q
y = E E yi1i2~~~qu “Nijn, (%)
ip=—ny+l  ig=—ng+l j=1 (4

This is called a general NUBS hypersurface. If
the B-functions of order ni,n.,...,n, are employed
to specify the linguistic terms of the input variables
T1,%2,...,%4, 1t can be guaranteed that the output
variable y is (n; — 2) times continuously differentiable
with respect to the input variable z;, 7 =1,...,¢.

We used this type of fuzzy controller in a mobile
robot with a modular rule base. Its 6 Infrared sen-
sors and subgoal points are used as input variables, the

“speed” and “steer” as output variables. More results
are described in [14].

6. Discussions and Conclusions

Some issues related to the construction procedures
of a fuzzy controller are:

Definition of membership functions.

The B-functions are piecewise polynomials. If the
parameter intervals are equidistant, the member-
ship functions are then uniform B-functions, which
can be explicitly represented as polynomial func-
tions. Coeflicients of non-uniform B-functions of
any order can be computed by a matrix solution.
Therefore, they could easily be included in fuzzy
development tools to facilitate the modelling of
MFs of such type of controller.

Choosing control vertices.
Note that y; represents also the “control vertices”
(de Boor points), which are only identical with the
output values for interpolation if the order n = 2
(this agrees with the conclusion in [6]). For n > 2,
control vertices are points near the interpolation
point; they “control” the output curve to form a



certain shape inside the convex hull of them. The
greater n 1s, the bigger the difference between con-
trol vertices and interpolation points will be.

Normally when rules are formulated using the
“IF-THEN” convention, the singleton values of
the output are initialised qualitatively in a man-
ner enabling the controller approximately to reach
these values; they can be optimised locally by fine-
tuning. For this purpose, various adaptive neural-
fuzzy methods can be applied, like [10, 5].

Criterion for selecting order n.
Obviously, if C™~2-continuity is demanded, the or-
der of B-functions should be at least n. However,
a too large value of n leads to more margin linguis-
tic terms and thus more rules, as well as a larger
disparity of control vertices and data points. In
most applications, C'— or C?—continuity is suffi-
cient. Then, B-functions of order 3 and 4 besides
these of order 2 with triangular shape could be
well suitable for modelling membership functions.

The transformation shown in section 4 and 5 is con-
ceptually important since it provides a quasi construc-
tion method for data-approximating using fuzzy con-
trollers. The advantage of the fuzzy control idea over
the pure B-spline interpolation lies mainly in its lin-
guistic modelling ability: interpolation data can be pre-
pared using natural language with the help of expert
knowledge. Furthermore, the interpolation procedure
becomes transparent because it can also be interpreted
in fuzzy logic “IF-THEN” form.

Experiments show the feasibility of such type of
fuzzy controllers with B-functions as MFs of input vari-
ables, singletons as MFs of output variables, “product”
as fuzzy conjunction, centre average as defuzzification
method. If the rule table is complete, then by adding
certain more marginal rules; the smoothness of the con-
troller output can be reached by selecting the proper
order of B-functions.
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