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Abstract. We propose an approach to designing fuzzy controllers based
on the B-spline model by learning. Unlike other normalised parame-
terised set functions for defining fuzzy sets, B-splines do not necessarily
span membership values from zero to one but possess the property of
“partition of unity”. B-splines can be automatically determined after
each input is partitioned. Learning of a fuzzy controller based on B-
splines is then equivalent to the adaptation of a B-spline interpolator.
Parameters of the controller output of each rule can be rapidly adapted
by gradient descent. Optimal placements of the non-uniform B-splines
for specifying each input can be found by a genetic algorithm. Through
comparative examples of function approximation we show that training
of such a fuzzy controller generally provides results with minimal error.
The approach can be extended to the problems of supervised as well as
unsupervised learning.

1 Introduction

Classical fuzzy controller of the Mamdani type [5] is based on the idea of directly using symbolic
rules for diverse control tasks. As application areas grow, the systematic design of an optimal fuzzy
controller becomes more and more important. Another important type of fuzzy controllers is based on
the TSK (Takagi-Sugeno-Kang) model [7]. Recently, TSK type fuzzy controllers have been used for
function approximation and supervised learning [8, 1]. However, it is pointed out that the TSK model
is a black-box based on multi-local-model.

We propose an approach that can build membership functions (MFs) for linguistic terms of the
IF-part systematically, then adapt the control actions of the THEN-part and the shape and position
of the IF-part MFs through learning. Our approach is based on the B-spline model.

B-spline models employ piecewise polynomials as MFs. The universe of discourse of each input
is divided into a number of subintervals, where each subinterval is delimited by breakpoints called
knots which determine the appearance and position of each B-spline. Figure 1 illustrates the partition
of a two-dimensional B-spline model with 8 MFs on each uniformly subdivided input interval and
the activated B-splines (slightly shaded) for a given input. Since learning one new part of the input
space affects only a given number of controller response values (darkly shaded area of figure 1), fast
on-line learning can be devised. Due to these advantages, B-spline models are proposed to be applied
in control systems and will be denoted as B-spline Fuzzy Controllers [10]. By using the B-spline
model the approximation ability is only limited by the number of knot-points distributed over the
input intervals. Regarding that most observed data are disturbed to a certain degree, the overfitting
problem may occur. Genetic optimized B-spline models are a promising approach to find sparse models,
which are able to bridge the gap between high bias and high variance of a model.

2 Constructing Fuzzy Controllers with B-Splines
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Figure 1: The B-spline model — a two-dimensional illustration.

2.1 Definition of B-Splines
The B-spline N; 41 of degree k with knots A1,. .., A\jyx+1 is defined as (see figure 2):
k41
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Figure 2: Univarite B-splines (UBs) of order 1-4.

The most important properties of B-splines, with respect to neurofuzzy modelling are: a) the
B-spline computation is recursive; b) all B-splines are non-nagative; c¢) each B-spline has only local
support; d) at each input point “partition of unity” is fulfilled.

2.2 Use B-Splines as Fuzzy Controller

In [10], we showed that under several slightly modified conditions, the computation of the output of
such a fuzzy controller is equivalent to that of a general B-spline hypersurface.

The output of a Single Input Single Output (SISO) B-spline network is simply the unique repre-
sentation of a B-spline s(x), z € [a,b]:

y= ZCzNzk(l‘) (2)

in which ¢; are called control points of s(x) (also denoted as weights, or de Boor points) and m denotes
the number of basis functions. This network can also interpreted as a fuzzy system of the zero-order



TSK type. The overall output of a SISO B-spline network is:
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The output of a Multiple Input Single Output (MISO) B-spline network can be computed straightfor-

ward:
n

y= Z Z Ciyig...in HNi];-,kj (z5) (4)

i1=1 in=1 j=1
where z; is the j'* input (j = 1,...,n); k; is the order of the B-splines used for z;; NZ],W is the
ith linguistic term of x; defined by B-splines; i; = 1,...,m; represents how fine the j—th input is
partitioned; ¢;, i,,...i, are the control points of Rule (i1, 2, ...,4y).

2.3 Generating the THEN-Part

Fuzzy singletons represented by control points can be initialised with the values acquired from expert
knowledge. These parameters will be fine-tuned by a learning algorithm.

For supervised learning, we show in the following that the squared errors with respect to control
points are convex functions. Therefore, rapid convergence for supervised learning is guaranteed. The
control space changes locally due to the “local support” property of B-functions while the control points
are modified. Based on this feature, the control points can be optimised gradually, area-by-area.

Assume that (X7,y7..;..q) is a set of training data, where X" = (z7,...,27) is the rt* input
vector with desired output yJ_.. .,. The output value computed by a controller output is denoted with
Yeomputed- BY defining the Mean-Square Error (MSE) criterion as:

1
E = 5 ) (ycomputed - ydesired)2 = MIN) (5)
the derivative of each control point ¢, .., is:
OF .
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where € denotes the learning rate. Since the second partial derlvatlve of ¢p,,...r, is constant, the
error function (5) is convex in space. If the inputs x, are linearly independent, there exists, due to
the convexity of the MSE performance surface, only one global minimum and no local minima. On
the other hand, if the autocorrelation matrix is singular, which occurs when the inputs z,. are linearly
dependent, there exists an infinite number of global minima in weight space.

2.4 Adaptive Modelling of the IF-Part

Based on the granularity of the input space and the distribution of extrema in the control space (if
known), the fuzzy sets can be initialised using the recursive computation of B-splines. These fuzzy
sets based on non-uniform B-splines can be further adapted during the generation of the whole system
by using Genetic Algorithms (GAs).

By freeing the knot-positions, the task of finding control points and accurate knot-vectors to fit
training data becomes a non-linear minimization problem. To solve this problem we follow a strategy
of problem splitting. We first consider the underlying model d()) of the controller and then compute
the control points to minimize §(c). Instead of using constrained least-square methods (constrained
because of avoiding to “ride” on the gradient edge of coincident knots [2]), we try to estimate the
knot-positions by using GAs, because GAs are both theoretically and empirically proven to provide
the means for efficient search, even in complex spaces [3]. Therefore each individual, in the example
each B-spline controller with its special knot-point distribution, represents one point in search space.

2.4.1 The Genetic Algorithm
We applied the basic GA introduced by Holland [4] with some modifications as follows:

e We used gray coding instead of standard binary code while representing coded chromosomes, a
common modification.



e To bypass the undesirable effect of the increasing probability along the descendent chromosome-
string to receive a changed allele (bit) (thus the conjointly heredity of genes decreases when the
distance of their position increases) while using n-point crossover, we used wuniform crossover.
This kind of crossover has no positional and a high distributional bias, so that a high blending rate
between participant chromosomes is granted. This leads to an algorithm producing permanently
solutions which explore new locations by bridging even great distances of the search space.

e Instead of using fitness-proportional selection it is advantageous to use tournament selection.
This selection schema draws ¢ individuals (2 < ¢ < u) with a probability £ from the current
population and copies the individual with the best fitness into the mating pool. Besides saving
computational power as a result of no need to sort the population (as in ranking based selection
schemes), it is easier to bias the takeover time.

2.4.2  Chromosome Encoding for the Knot Placement Problem

To minimize §(\) each individual consists of n knot-vectors, where n is the problem dimension. Each
encoded knot-vector consists of 32 knot-points and a so-called activation string of 32 bit length. Which
knot-points are in use to define the current model is encoded through the activation string. Activated
knots are represented by 1 and inactivated knots are represented by 0.

Activation | Encoded | Encoded .. Encoded

String Knotpoint O | Knotpoint 1 Knotpoint 31
Knotvector 1| Ao|®** | Ay|Bits|* " BitO|Bit15 ***|Bity [*****[Bitg *** Bit0|
Knotvector2| Ao|*** | Ay|Bitis|* " BitO|Bit15 ***|Bify | """ |Bitg " Bit0|
K notvector n | }\/0 ese }'31 Bi'(ls ese Bito|Bit15 ese Bito esene Bit_[s cee Bit0|

Figure 3: Encoded B-spline model.

Every knot-point is encoded by 16 bit (see figure 3) and therefore each knot-point can be placed
on its respective input interval [a,b] with an accuracy of 515 x (b — a). The fitness values for each
individual are simply computed by determining the control points of the controller. Using these control
points the mean square error is evaluated and the fitness for one individual is set equal to ﬁ

3 Numerical Results

For comparison (see table 1) the above described GA was applied on one and two-dimensional functions
used in [6]. Parameter settings were chosen as crossover probability= 0.75, mutation probability=
0.0005, 4 = 40 and £ = 3. A maximum generation index of 200 was used as stop criterion. The
MSE of each adapted B-spline model represents the average MSE of 3 runs. These functions with the
optimized B-splines are shown in figure 4 and 5.

4 Applications

Besides function approximation, this model has been applied to supervised and unsupervised learning
in the following intelligent control and robot systems:

4.1 On-Line Learning

Rapid on-line learning of sensor-based operations is implemented. A mobile robot with distance sensors
can realise the intelligent behaviours like collision-avoidance, contour tracking, goal tracking, etc.,
through only a few learning steps [12]. A two arm robot system can learn on-line the cooperative
motion by evaluating force/torque sensors [9].



Function | Rules Used Membership Function
Uniform B-splines | Adapted B-splines | Best of [6] | Worst of [6]

fi 12 0.02 0.007 0.08 0.7
fa 12 0.0005 0.00003 0.02 0.3
f3 12 0.0008 0.000048 0.002 0.03
fa 12 4.9 0.04 0.1 10
I 12 0.04 0.0002 0.01 1

f6 12 0.6 0.012 0.1 0.4
a1 64 766 26.36 (60 rules) 9 26
g2 64 10.91 2.8 (60 rules) 7 19
73 64 5.78 0.0 (60 rules) 1.2 6

Table 1: MSE results from [6] in comparison to results of a uniformly distributed B-spline
controller and results of a genetic modified B-spline controller.
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Figure 4: Optimized B-splines for one-dimensional test functions.
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4.2  Visual Learning

We implemented visual learning of robot positions based on PCA (principal component analysis)
dimension reduction and the B-spline model. With an omnidirectional vision system, a mobile robot
can locate itself by using just the natural landmarks [13]. A robot arm with hand-eye can use the raw
image data as input and learn the optimal grasping motion [11].
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Figure 5: Optimized B-splines for two-dimensional test functions.
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