To appear in Robotics and Autonomous Systems, Elsevier, 1999

A Neuro-Fuzzy Control Model for
Fine-Positioning of Manipulators

Jianwei Zhang, Alois Knoll, R. Schmidt

Faculty of Technology, University of Bielefeld, 33501 Bielefeld, Germany
Tel: ++49-521-106-2951/2952
Fazx: ++49-521-106-6440
E-mail: zhang | knoll | rschmidt Qtechfak.uni-bielefeld.de

Abstract

We propose an approach for learning the fine-positioning of a parallel-jaw gripper
on a robot arm using visual sensor data as controller input. The first component of
the model can be viewed as a perceptron network that projects high-dimensional
input data into a low-dimensional eigenspace. The dimension reduction is efficient if
the movements achieving optimal positioning are constrained to a local scenario. The
second component is an adaptive fuzzy controller serving as an interpolator whose
input space is the eigenspace and whose outputs are the motion parameters. Instead
of undergoing cumbersome hand-eye calibration processes, our system is trained in
a self-supervised learning procedure using systematic perturbation motion around
the optimal position. The approach is applied to tasks of three degrees of freedom,
e.g. translating the gripper in the z-y-plane and rotating it about the z-axis.

1 Introduction

Fine-positioning is one of the most important and most demanding sensor-
based manipulation skills. Even relatively simple tasks such as grasping rigid
objects with two-fingered grippers based on an image taken by a hand-camera
presuppose an effective sensorimotor feedback. This entails the implementa-
tion of the whole perception-action cycle including image acquisition with
the hand-camera, image processing, generation of manipulator actions for ap-
proaching the grasping position, etc. Additional levels of complexity are added
if the system is to be designed so as to work under variable lighting condi-
tions, moving or occluded objects. It is also desirable that the system be able
to control the manipulator from any location in the vicinity of the object to the
optimal grasping position regardless of perspective distortions (if the object

Preprint submitted to Elsevier Preprint

is seen from “remote” points), specular reflections and the like. Traditional
methods of sensor-guided fine-positioning are based on hand-eye calibration.
Such methods work well if the hand-eye configuration is strictly fixed, com-
pletely known (including camera parameters) and if the geometric features
for detecting the grasping position can be extracted robustly from the camera
image. We note, however, that even if these conditions are met, the hand-eye
calibration matrix cannot be interpreted as an adequate cognitive model of
human grasping (and hence probably never become just as powerful). Our idea
to solve the fine-positioning control problem is to use a direct, linear method
to reduce the input dimension and then apply the non-linear B-spline model
to map the projection on the subspace further to the control output. Since the
a robot arm can measure all its movements quite precisely using internal joint
position sensors, we can easily program the robot to generate training data by
itself. The whole controller is actually constructed by a neural network of five
layers. The B-spline model can be interpreted as fuzzy “IF-THEN” rule sys-
tem whose input is the whole image scenario data and output is the correction
motion of the gripper.

Recently, neural network-based learning has also found applications in grasp-
ing: [5,9,3,6] use geometric features as input to the position controller. Since
the image processing procedures such as segmentation, feature extraction and
classification are generally not robust in real environments and since these
processing algorithms are computationally expensive, some of the work re-
sorts to marking points on the objects to be grasped. By contrast, for dealing
with the general case of handling objects whose geometry and features are not
precisely modelled or specially marked, it is desirable that a general control
model can be found which, after an initial learning step, robustly transforms
raw image data directly into action values. In [7] Murase and Nayar used
PCA (principal component analysis) for object classification and for solving
a one-dimensional position-reconstruction-problem. In [2] Black and Jepson
presented an approach they called eigentracking, which can be used to track
objects in picture sequences. However, the experimental results did not prove
that PCA-based tracking is capable of controlling a robot.

2 Experimental Environment

Our robot system [4] aims at assembling a toy-aircraft from basic objects
like screws, ledges or nuts (Fig. 1). Within this scope different tasks have
to be performed: determine which basic objects are needed, identify a single
object, position the gripper above it, grasp it, assemble it with others. The
task discussed here is the fine-positioning of a manipulator after a coarse
positioning has been completed. The object to be grasped is visible in the
image of a “self-viewing” eye-in-hand camera (Fig. 2), which sees an area of

Fig. 1. The working cell of our robot system. The “Baufix”’-parts on the assembly
table are to be grasped by the robot gripper.

about 11cm x 9cm of the z-y-plane (not exactly the PAL image ratio). The
aim is to move the robot hand from its current position (Fig. 3 left) to a
new position so that the hand-camera image matches the optimal grasping
position (Fig. 3 right). In our setting there are 23 different objects to be
handled. Some of the objekts in the image have the same shape but different
colors. It is therefore mandatory that a general image processing technique be
applied, which needs no specialised algorithm for each object and shows stable
behaviour under varying object brightness and color.

camera
gripper

Fig. 2. The end-effector of the manipulator with a hand-camera (positioned opti-
mally over the yellow cube).

Fig. 3. A cube viewed from the hand-camera — before and after fine-positioning.

3 The Perception-Action Transformation

3.1 The Neuro-Fuzzy Model

Fig. 4 depicts the feed-forward neuro-fuzzy structure which fulfils three sub-
tasks subsequently: pattern coding, pattern matching and rule firing and output
syntheszis.

The pattern coding aims at reducing input dimension based on the eigenspace
projection. Depending on how “local” the measuring data are and, therefore,
how similar the observed sensor patterns appear, a more or less small num-
ber of eigenvectors can provide a sufficient summary of the state of all input
variables (see the left part of Fig. 4). Our experimental results show under
the most diverse conditions that it is very likely that three or four eigenvec-
tors provide all information indices of the original input space necessary for
the positioning task. Therefore, in the case of very high input dimensions, an
effective dimension reduction can be achieved by projecting the original input
space into the eigenspace.

The pattern matching, rule firing and output synthesis are realised with an
adaptive B-spline fuzzy controller. Eigenvectors can be partitioned by covering
them with linguistic terms (the right part of Fig. 4). In the following imple-
mentations, fuzzy controllers constructed according to the B-spline model are
used [10]. This model provides an ideal implementation of CMAC proposed
by Albus [1]. We define linguistic terms for input variables with B-spline basis
functions and for output variables with singletons. Such a method requires
fewer parameters than other set functions such as trapezoid, Gaussian func-
tion, etc. The output computation is straightforward and the interpolation
process is transparent. Through numerous applications in robot control and
data modelling, the B-spline controllers have shown good approximation ca-
pabilities and rapid convergence.

pattern pattern rule firing
coding matching & sythesis

X (Y, o)

input output

vector rules
eigenvectors principal

components

Fig. 4. The task based mapping can be interpreted as a neuro-fuzzy model. The
input vector consists of pixels of a grey-scale image.

3.2 Dimension Reduction via PCA

Let us assume k sample input vectors 7!, ..., #* with #* = (z¢,...,2%)) origi-
nating from a pattern-generating process, e.g. the stacked input image vectors.
The PCA can be applied to them as follows:

First the (approximate) mean value ji and the covariance matrix Q of these
vectors are computed according to

i
1

L |
Q=22 (@ - @)@ — i) with ji=-

k
=1 =

The eigenvectors and eigenvalues can then be computed by solving

Aid; = Qd;
where \; are the m eigenvalues and @; are the m-dimensional eigenvectors of
Q. Since Q is positive definite all eigenvalues are also positive. Extracting

the most significant structural information from the set of input vectors #

is equal to isolating those first n (n < m) eigenvectors d@; with the largest
corresponding eigenvalues \;. If we now define a transformation matrix

we can reduce the dimension of the #* by

Pi=A-7 dim{@") =n

The dimension n should be determined depending on the discrimination ac-

curacy needed for further processing steps vs. the computational complexity
that can be afforded.

4 Implementation

The working system implements two phases: off-line training and on-line eval-
uation (Fig. 5). In the off-line phase, a sequence between 10 and 100 training
images showing the same object in different positions is taken automatically,
i.e. without human intervention. For each image the position of the manipu-
lator in the plane and its rotation about the z-axis, both with respect to the
optimal grasp position for the current object, is recorded.

sampled
image data ; .
| : camera| image
c N :
o train images
IS
= Y !
..g image preprocessing image preprocessing
c . E R
9 normalized images : normalized| image
) .
3 \ Y : Y
eigen A building A eigen
transformation [~ eigenspace o |_transformation
transformed| images transformedlimage
|/ :
= fuzzy controller training —| fuzzy controller

translational and
rotational correction

offline phase online phase

Fig. 5. The training and the application of the neuro-fuzzy controller.

Fig. 6 shows a typical pattern of positions for taking training images. The
reduced eigenspace of the images is computed by PCA and the training data
are transformed into this space. With these data B-spline fuzzy controllers are
built that take the principal components as input variables and whose outputs
correspond to the z-y-position and the angle « of the manipulator gripper. The
training of the controller output is realised with the back-propagation. Since
the local control feature of the B-splines, the training process can converge to
the single minimum rapidly.

In the on-line phase, the camera output is projected onto the eigenspace and

T T T T T
30 -
X X}
20 + . . E
LK __X]
E‘ 10 + X -
é X X)
- ° . e o o oemweo e o o ° .
S o 8§ i SRR IR AN i $ -
@ ° . ® o o00e o o ° .
o X ¥
a8
X -10 X X) .
LK __XJ
-20 . (] 1
-30 X X 1
1 1 1 1 1
-40 -20 0 20 40

y-Position [mm]

Fig. 6. The positions where the images for the z- and y-controllers are taken.

is then processed by the fuzzy controller. The controller output is the end-
effector’s position and angle correction.

4.1 Preprocessing

The task of preprocessing is to select the focus object from an image with
complex background and to transform the image to the standard using during
the training. Fig. 7 (left) shows a typical image taken by the camera. Fig. 7
(right) shows the image after clipping by simple thresholding. This operation
produces a single Region of Interest. After clipping all images are normalised
with respect to their “energy” [7]:

~i
i Ly

di ~i\2
=1 (@)
where i; is the intensity of the j-th pixel in the ¢-th image, ZL‘; is the intensity
of the j-th pixel in the corresponding normalised image and dim is the number
of pixels in the image.

For detecting the rotation of an object, one more preprocessing step is neces-
sary: since most of the variance in the images is caused by translations, the
rotation cannot be learned properly from the eigen-transformed images (Fig. 8
and 9). To eliminate the variance caused by changes in the position, the region
of interest should be moved to the centre of the image. As this removes the
translational information from the images, two eigenspaces must be computed:

Fig. 7. A typical camera image, before and after clipping.

one based on the original images and one based on the shifted versions.

0.6 T T
- R
) kR j*b"g.
o X oa
0 EN R
04 Lo9 o 4s s g i
= = X o a B o X o’ to ., 4 B
c
% pO%* o a Ef « 0 ¢ ? “ax
2 02t o A x Odeg-10deg - € &
5 38 o 10deg-20deg x 20"
o 20deg-30deg
S 30deg-40deg o
S ol 40deg-50deg = |
£ 50deg-60deg ©
o 60deg-70deg e
2 70deg-80deg & o aa
S xa 82 @ 80deg-90deqg s [x4 ©
b 02 Lor 4 p Aa o -.‘ Al
© * *o Lo
= % A%ixAA o R ot o % g +of§>jr &e
o EL SR
N R
04+ :%?EA . *Pi a . B i
? - e 'y B
%A oot e
PSS %%G
-0.6 I I I I I
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

The first principal component

Fig. 8. Eigenspace vectors resulting from the training images with no position shift-
ing. Only the first two components of these vectors are drawn in this projection.
They are classified by the angle of the cube in each image to reveal their unordered
placement, which makes it impossible for adaptive techniques to learn sensible struc-
tures (compare with Fig. 9).

4.2 Implementation of PCA

The PCA is implemented by interpreting each of the k£ training images as a
vector 7' in which the pixel rows are stacked, i.e. stored consecutively. The
covariance matrix Q, however, is not computed explicitly because this would
be completely intractable: let the image size be 192 x 144. Then, the number
of pixels (dim) in this image is 192 - 144 = 27648 resulting in a size of the
covariance matrix of 27648 x 27648, i.e. it consists of (27648)% = 7.64 - 10°
elements.

In [7] a procedure is described for computing the first £ most important eigen-

0.2

T % x T
X *
N &K%}(g%xﬁ* %X X o o
0.15 F \:ED\:F‘DD o™ X *{V X % ;x,;%x i
m;* %ﬁ% + iiﬁﬂfﬁ — ﬁ;
= | o i
L T g gEEE L
o -
faa} eg eg X +
g = D% o 20deg-30deg * %%1 M
g 005F "o oo | 30deg-40deg © . oy 1
= = 40deg-50deg = EL
i3 - T 50deg-60deg © +
= OfF &% == 60deg-70deg e a B
g lq. " 70deg-80deg & P <
- "ol 80 deqg - 90 deg . aa sas
c L] a
38 -0.05 u B
3 - - " <L
) o) i
R gt M .
o 8P° ° S
o % © I~ aAuz
N L og a ,
R TR L
gg‘h‘zo . AAAAA‘% 2
0.2 L . 1% dop

!
-0.25 -0.2 -0.15 -0.1 -0.05 0 005 01 015 02 025 03
The first principal component

Fig. 9. Eigenspace like in Fig. 8. Here, the region of interest was shifted to the image
centre. The obvious clustering is the basis for the adaptive learning scheme.

vectors and eigenvalues of this covariance matrix without computing the ma-
trix itself. Of these k eigenvectors we use only a subset of n vectors, corre-
sponding to the n largest eigenvalues. When combining the PCA with stan-
dard pattern-matching techniques such as nearest-neighbour classification, n
is usually between 10 and 20. By contrast, for controlling a manipulator with
our B-spline fuzzy controller, 3 or 4 input dimensions are sufficient.

Let {@;]i € 1...n} be the n most important eigenvectors. Then, after the
eigen-transformation, we have the following preliminary results:

e A matrix A = (@, - -+ a@,)T, which transforms images into the n-dimensional
subspace of the eigenspace.

e pi = A -7 the eigen-transformed and projected training image vectors.

e The position and angle of the object in each training image and hence the
position and angle d* = (z,y, a) that corresponds to each vector T".

4.8 Fuzzy Controller Training

With the #* and the corresponding d a B-Spline fuzzy controller is trained.
We use third-order splines as membership functions and between 3 and 5
knot points for each linguistic variable. The distribution of these points is
equidistant in the current implementation and constant throughout the whole
learning process. The coefficients of the B-Splines (de Boor points) are initially
zero. They are modified by the rapid gradient descent method during training
[10].

4.4 On-line phase

In the on-line phase the same image preprocessing as in the off-line phase
is applied. Then, the image vector is transformed into the eigenspace. The
resulting n-dimensional vector is fed into the fuzzy controller, which, in turn,
produces the position and angle of the object in the image. These values are
then used to move the robot closer to the target object. This sequence is
repeated several times; normally in our experiment no more than 3 steps are
necessary until all parameters (i.e. deviation in = and y direction and residual
angular deviation) are below a specific threshold (e.g. 0.5 mm and 1degree).

To improve the raw algorithm outlined above several aspects were refined:

Color Images: Instead of the gray-scale images, the saturation parts of color
images in the Hue-Saturation-Intensity color-space may be used. For objects
with full colors (“rainbow” colors) the saturation part is high; for colors like
teal, pink or light blue this component is low and for all grey-tints including
black and white it is zero. This increases the contrast between objects and
background when compared with the intensity image (Fig. 10). Thus, in the
case of colored objects, the controller becomes highly independent of the hue
of the objects.

Fig. 10. The intensity image and the color-saturation image of the yellow cube (left
two images) and the blue cube (right two images).

Boosting image vectors: The proposed PCA based dimension reduction
method is not limited to one image per vector. For example, the vector ¥
could consist of the intensity image, the saturation image, and a Sobel-filtered
(Fig. 11) intensity image. This can help to suppress inaccuracies due to un-
usual lighting conditions. Obviously, further (possibly object-dependent) im-
provements can be achieved with specialised feature detectors (lines, angles,
etc.).

Hierarchy: If, for an object of complex shape, the discrimination accuracy
of the neuro-fuzzy controller is not sufficient, a hierarchical system may be
built. The camera images are separated into regions, then an appropriate
classifier detects in which region in the image the object to be grasped is
located and, based on this information, the robot moves approximately to the
optimal grasping position. After this movement, a neuro-fuzzy controller is

10

Fig. 11. A sobel-filtered image of two cubes.

trained. The training images for it need only show the object near the optimal
position. Such a system is even more accurate than the neuro-fuzzy controller
alone.

4.5 Optimal Choice of Training Images

The appearance-based method is frequently criticised for the fact that the
training tmages must be chosen manually, which often leads to simple trial-
and-error. To cope with this problem we developed a method for automatically
determining the positions where the camera images should be taken. Since
the robot is allowed to do several steps, high accuracy is only needed near the
optimal grasp position d = (xo, Yo, o) = (0, 0, 0).

Rotation: The angles at which the images are taken depend on the object
symmetry S. For objects with an S of less than 360 degrees there is more than
one optimal grasp position. That is because it makes no difference whether a
cube is grasped by the front and rear side or at the left and right side. So near
the angles 0,5,2S,... more images are needed. The test objects in Fig. 12
possess the following symmetries: For the ledge S is 180 degrees, for the cube
S is 90 degrees and for the screw head S is 60 degrees.

To limit the number of images for objects with a small S, the following changes
are made: If S is smaller than 90 degrees, then it is multiplied by the smallest
integer that produces a value of greater than or equal to 90 degrees. This
leads, for example, to an S of 120 degrees for the screw head. The following
heuristic formula produced acceptable results:

11

Fig. 12. Test objects for grasping, from left to right: yellow cube, partly covered
yellow cube, blue cube, yellow screw head, ledge with 3 holes; from top to bottom:
optimal, worse and poor illumination.

S1 . S1 .
W= U {55 +i8 5558
1 € Ny
j=0,1,...,360/S — 1

For the cube, this formula gives the set of angles W = {45, 23, 67, 11, 79, 6,
84, 3, 87, 1, 89, 0, 90, 45490, 23+90, ... }(in degrees), with W containing
48 elements. Due to the clipping described in section 4.1 for rotation, only
training images near the optimal grasping position are taken, at the points
with coordinates (0,1), (1,0), (0,0), (0,1), and (1,0). Long objects like the
ledge can lie partly outside the image. In this case, images with 0, 90, 180 and
270 degrees are added at the 4 positions (£25mm, £25 mm).

Translation: Images at the positions shown in Fig. 6 are taken with 0 degrees
rotation. In most cases the resulting accuracy for the z- and the y-controller is
satisfying with these images. If not, either the controller for x or that for y can
be selected. If the y-placement is not correct, then we rebuild the y-controller
with images at those positions in Fig. 6 where z = 0.

4.5.1 Preparation of Continuous Output for Learning.

Since the fuzzy controller learns to approximate a function, it works correctly
only if the function to be learned is continuous, i.e. a differential change of the
input will result in a differential change of the output. The correction angle
a of the objects to be grasped has different rotation symmetry (lying screw:

12

|sin(1/2 x)| 1
sin(x) -------

Py : i ; : i : —
200 % -150 -100 -50 50 100 150\ 200

7 -05-

Fig. 13. Two functions used for fuzzy controller learning

360°, slat: 180°, block: 90°, standing screw with six-edge head: 60°). Therefore,
we need to find a set of functions which meet the following conditions: a)
continuous output values can be generated for fuzzy controller learning; b)
the original correction angle can be uniquely reconstructed given the values
of these functions. We propose the following two learning functions (Fig. 13):

1
L, = sin <§a> , Ly =sin(a)

These two fuzzy controllers are needed to learn L, and L, separately. The
correction angle can be reconstructed as follows:

e The function arcsine supplies a value between —90° and +90°. |2 arcsin(L,)|
supplies the absolute value of the correction angles.

e The sign of arcsin(L,) provides the information on whether the object is
rotated clockwise or counter-clockwise with respect to the gripper.

In the application phase, the gripper motion should be corrected in the re-

verse direction of the object rotation. Therefore, the correction angle @ can
be calculated:

a = —sign(Ly) - |2 arcsin(L,)| (1)

These two functions can be extended for objects with the symmetry S:

13

360° 1 360°
La:sin<S§a>; LS:sin<Sa>

The reconstruction of the angle is then:

S
~360° sign(Ls) - |2 arcsin(Ly,)|

a =

5 Experimental Results

5.1 Test Objects

The approach was applied to the grasping of different objects: a yellow cube,
a partly covered yellow cube, a blue cube, a yellow screw head, and a ledge
with 3 holes (Fig. 12). All training images were taken under optimal lighting
conditions. For each object a specific controller was trained, except for the
three cubes, where training (not grasping!) was restricted to the yellow cube.
For the ledge, different training images for and y were used (see section 4).

Only the eigenvectors corresponding to the three largest eigenvalues were used
as input to the fuzzy controllers. The eigenvalues for rotation/translation and
the corresponding eigenvectors, which have the same dimension as the training
images and can hence be interpreted as images, are shown in Fig. 14. The
eigenspace and the fuzzy controller that were derived from these data were
applied to 15 different scenarios: the manipulator was to be positioned above
the five objects, each with optimal, worse, and poor illumination (Fig. 12) and
from the most remote starting position. The accuracy of the controllers was
determined as the average error of 50 positioning sequences for each scenario.

5.2 Numerical Results

Table 1 shows the RMS error for x, y, and the rotation angle a for positioning
above the objects. Obviously, the positioning is correct even for the blue cube
with the controller trained on the yellow one. It is easy to see that for the
translation it makes hardly any difference whether the illumination is optimal
or less optimal. The performance deteriorates under poor lighting conditions
but it is still good enough to grasp the object. The rotation is more dependent

14

12 T T T T T T T T T
Elgenvalues of the rotatlon |mages (soned Elgenvalues of the translatlon |mages (sorted)

20 B

10 - q

‘l A 1 A
0 IIIII..IIIIIII-- 0 I II Ilinnns
34567189 7 8

101112 1314 1516 17 18 19 20 123 l 1211151617181920

Fig. 14. Eigenvalues and eigenvectors for the cube. In the first line: the first 4
eigenvectors with the fixed placement but varying rotation angles; in the second line:
the first 4 eigenvectors used for the translation; in the bottom line: the eigenvalues
of the first 20 eigenvectors, sorted according to their values, the left one for rotation
and the right one for translation.

on the illumination, in particular with the blue cube. That is because the
vertical edges of the cube are practically invisible.

5.8 Linguistic Interpretation of the Controller

One main advantage of the neuro-fuzzy system in comparison with other adap-
tive systems like the multi-layer perceptron is the interpretability of the con-
troller’s function. First we explain how the projections in the eigenspace can
be transformed back into the original input image space as follows.

Eigenvectors are orthogonal to each other. If all the m eigenvectors are used,
then the resulting complete transformation matrix A, is quadrate and orthog-
onal. The inverse of an orthogonal matrix is equal to its transposed:

A=Al (2)
We can transform the eigenspace projected image back in the original format

15

as follows:

F= A7 = AT (3)

C

If A is incomplete, then the projection p_; is dimension reduced with respect
to #*. The back transformation can be approximated by filling the unavailable
components of A and p'¢ with zeros.

In this way, the control rules can be given an interpretation as follows:

[F Antecedent THEN Consequent

where Antecedent is a back-transformed image and the Consequent (the con-
troller output) is the z-, y-value or the correction angle .

The following example illustrates the rules for a two-dimensional controller,
each input variable with four linguistic terms. Therefore there are 4 - 4 = 16
rules altogether. The rotation control looks as follows:

._..
—
—
—

then |Aa| = 2.2° then |Aa| = 14.9°

._..
=
—
—+

then |Aa| = 5.8° then |Aa| = 17.8°

—-
—+

then |Aa| =6.7°

—-
—

then |Aa| = 19.7°

then |Aa| =7.6° then |Aa| = 22.6°

._..
—
—
—

then |Aa| = 7.8° then |Aa| = 24.8°

._..
—+
—e
—+

then |Aa| =7.9° then |Aa| = 28.2°

—_-
—

then |[Aa| = 11.3°

—-
—

then |Aa| = 29.3°

—-
—

D/D/00D0DD

—-
—

0/000000/0

then |[Aa| = 13.6° then |Aa| = 34.3°

16

6 Conclusions

We have shown that the PCA in conjuction with neuro-fuzzy control is a
practical technique for performing multi-variant task-oriented image process-
ing tasks. It is a general method which needs learning but no geometric fea-
tures. By contrast, this approach has the following advantages over classical
approaches:

Calibration-free. The camera need not be calibrated.

Direct mapping. No computationally expensive algorithms are needed for
edge detection, region growing, etc. The projection into the eigenspace and
the B-spline interpolation can be performed almost in real-time.

Model-free. No model for recognising an object is needed. Thus, it is no
longer necessary to implement special algorithms for each object.

Robust. The appearance-based approach is robust even when the camera
focus is not correctly adjusted or objects are soiled.

In complex scenarios or by considering more degrees of freedom of the robot, a
large amount of observation data are not necessarily correlated closely enough
to make the PCA efficient. We are currently investigating the dimension re-
duction capability for vision based control by using self-organising neural net-
works and output-related features. For complex tasks, we are working with
hierarchy to automatically divide a complex image sequence into local “situ-
ations”. A local controller for one situation should contain a limited number
of output-related features and at the same time minimise the interpolation
error. To enhance each local controller in diverse complex environments, we
are also working with adding further components into the input vector, like
redundant camera data, as well as some robust, easily extractable features
because the proposed neuro-fuzzy model intrinsically possesses the capability
of integrating multiple sensors and multiple representations.

References

[1] J. S. Albus. A new approach to manipulator control: The Cerebellar Model
Articulation Contorller (CMAC). Transactions of ASME, Journal of Dynamic
Systems Measurement and Control, 97:220-227, 1975.

[2] M.J. Black and Allan D. Jepson. “EigenTracking: Robust Matching and
Tracking of Articulated Objects Using a View-Based Representation,”
Proceedings of the ECCV’96, Cambridge, pp. 329-342, 1996.

17

I. Kamon, T. Flash, and S. Edelman. Learning visually guided grasping: A
test case in sensorimotor learning. IEEE Transactions on System, Man and
Cybernetics, 28(3):266-276, May 1998.

Knoll, A. and B. Hildebrandt and J. Zhang, “Instructing Cooperating Assembly
Robots through Situated Dialogues in Natural Language”, in Proceedings of

the IEEFE International Conference on Robotics and Automation, Albuquerque,
NM, pp. 888-894, 1997.

W. T. Miller. Real-time application of neural networks for sensor-based control
of robots with vision. IEEFE Transactions on System, Man and Cybernetics,
19:825-831, 1989.

M. A. Moussa and M. S. Kamel. An experimental approach to robotic
grasping using a connectionist architecture and generic grasping functions.
IEEFE Transactions on System, Man and Cybernetics, 28(2):239-253, May 1998.

S. K. Nayar, H. Murase, and S. A. Nene. “Learning, positioning, and tracking
visual appearance,” Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 3237-3244, 1994.

T. Sanger. An optimality principle for unsupervised learning. Advances in neural
information processing systems 1. D. S. Touretzky (ed.), Morgan Kaufmann,
San Mateo, CA, 1989.

G.-Q. Wei, G. Hirzinger, and B. Brunner. Sensorimotion coordination and
sensor fusion by neural networks. In Proc. IEEE Int. Conf. Neural Networks,
San Francisco, pages 150-155, 1993.

[10] J. Zhang, A. Knoll, Constructing fuzzy controllers with B-spline models —

principles and applications, International Journal of Intelligent Systems,

13(2/3):257-285, Feb/Mar, 1998.

18

yellow cube, completely visible

illumination | x[mm]| | y[mm] | «[degree]
optimal 0.399 | 0.665 0.608
worse 0.595 | 1.525 2.606
poor 3.126 | 1.038 6.059

yellow cube, 20% covered

illumination | x[mm]| | y[mm] | «[degree]

optimal 0.832 1.093 0.997

worse 0.524 2.373 1.141

poor 6.395 | 4.728 19.786
blue cube

illumination | x[mm]| | y[mm] | «[degree]

optimal 1.658 | 0.946 1.481

worse 0.494 2.020 1.979

poor 1.006 | 0.928 10.803
screw head

illumination | x[mm]| | y[mm] | «[degree]

optimal 0.630 | 0.535 1.850
worse 0.323 | 0.851 1.897
poor 0.610 | 0.751 1.281

ledge with 3 holes

illumination | x[mm]| | y[mm] | «[degree]

optimal 0.272 | 0.728 0.452
worse 0.940 | 0.704 0.386
poor 1.198 | 0.612 0.404

Table 1
RMS-errors for the three objects under different lighting conditions. Controllers
with three input dimensions and four linguistic terms for each dimension were used.

19

