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Abstract

We havedevelopedomnidirectionalvision systemsby
combiningdigital colourvideocameraswith conicaland
hyperbolicmirrors andappliedit in mobilerobotsin in-
door environments.A learning basedapproach is intro-
ducedfor localisingmobilerobotmainlybasedon thevi-
sion data without relying on landmarks. In an off-line
learningstepthesystemis trainedon thecompressedin-
put datasoasto classifydifferentsituationsandto asso-
ciate appropriate behaviours to thesesituations. At run
timethecompressedinput dataare usedto determinethe
correspondencebetweentheactual situationand thesit-
uation they were trained for. The matching controller
maythendirectly realisethe desired behaviour. Theal-
gorithmsare straightforward to implementand the com-
putationaleffort is much lower thanwith conventionalvi-
sion systems.Preliminary experimentalresultsvalidate
theapproach.

1 Intr oduction

The issuewe addressis the applicationof a learning
systemfor navigating a mobile robot in an environment
which the robot hasbeenmadefamiliar with during an
initial training phase. The task of determiningits posi-
tion andorientationis to be accomplishedmainly based
on visual information, i.e. high dimensionalinput data.
Eventhoughhumansareusedto relyingonmapsfor “out-
doornavigation”, they manageto find their way in envi-
ronmentsthey have seenbeforewithout being mentally
awareof amap,e.g.for their own home.

Visualsensorsarebecomingmoreaffordableandeas-
ier to usein robotic systems.Given the currentstateof
technology, it shouldbe possibleto accomplishthe task
withoutaplethoraof sensorsthatarenotcommonlyfound
in living organisms(suchaslaserscanners,infrareddetec-

tors and large circular arraysof ultrasonictransducers).
Theultimategoalis to work withoutsymbolicsigns,arti-
ficial landmarks,beaconsandthelike.

Theneedfor arobustandaccuratelocalisationmethod
is obvious;thereforenumerousapproacheshavebeende-
velopedfor navigatingmobilerobotsin recentyears.The
majorobjective of mostlocalisationapproachesis to up-
dateandto re-calibratethe internalcontrolwith external
sensorinputs. Internal sensorslike wheel encodersare
accurateover short distancesbut fail over longer paths
dueto sliding wheels,e.g. duringorientationchanges.It
is thereforecommonto combineodometricsensorswith
standardcameras.Thevision systemcanthenbeapplied
to recognisecertainpositionsof theenvironmentandde-
terminethe robot positionandorientationby usingpre-
calibrateddata. A simpletechnicalsolutionareartificial
landmarks,e.g. “beacons”. Solutionsbasedon this ap-
proacharerobust but mostly limited to structuredindus-
trial environmentsandexpensive.

2 RelatedWork

In thefollowing two subsections,robotsarebriefly re-
viewedwhich useopticalsystemsfor localisation.Other
approachesbasedon non-opticalsensors,e.g.GPS, radio
navigationandlocalisationwith ultrasonicsensors,which
arenot directly relevantto theapproachwe propose,will
not bediscussed.

2.1 Navigation

When a multi-sensorsystemis usedfor navigation,
thecomplexity of thecontrolsystemgrowsexponentially
with thenumberof its inputs.Theseinputsmaybegener-
atedby individualphysicalsensors,or they maybedrawn
from logical sensors sharingthe samephysical sensing
device but evaluating its output accordingto different



principles. Oneway to reducethe complexity of the in-
put is to selectthe mostexpressive inputswith regard to
thedesiredsystemoutput(Input Selection)[5] or by sta-
tisticalanalysisof theinputpatternsusingtechniqueslike
the principal componentsanalysis(PCA). Hancockand
Thorpe[4] implementedeigenvector-basednavigationof
anautonomousvehicle.In theirexperiment,theimagese-
quenceof thevehiclemotionandthecorrespondingsteer-
ing motionof a humantutor arerecorded.Thecollected
training imagesarecompressedwith PCA. A new image
withoutany steeringinformationis first projectedontothe
computedeigenvectors. While the original imageis re-
constructedwith the principal components,the steering
parameterscanalsobereconstructed.

In [6] therobottaskis to navigatealonga trainedpath
within a corridor. All the imagesalongthe pathandthe
associatedsteeringvectorsare stored. Basedon a fast
algorithmfor patternmatching,thepositionandorienta-
tion of the robot canbe calculatedfrom the information
pre-storedin the imagesequence.To minimisethecom-
putationcomplexity, imagesarestoredwith very coarse
resolution(32 � 32 imagepixels). Sincetheimagebank
canincreasevery rapidly, theapproachis only applicable
in smallworkingspaces.

2.2 Localisation

Basedonamonocularcamerasystem,therobotsystem
proposedby DudekandZhang[3] tried to calculatethe
exactrobotpositionin aroom.A cameraimageis takenat
eachtrainingpositionwith constantorientation.The im-
agesetis preprocessedwith conventionalapproacheslike
edgedetection,extractionof paralleledges,andis fedinto
a three-layeredneuralnetwork. Theinterpolationerrorof
unknown positionsis very small. However, theapproach
is verysensitive to rotationalchangesof therobot.

A flexible approachto localisationis theuseof anom-
nidirectionalvision system. With sucha vision system
a global view of the environmentcanbe acquiredwith-
out rotatingthecamera.Furthermore,it is relatively sim-
ple for the localisationsystemto dealwith new objects.
Approachesemploying anomnidirectionalvision system
canbegroupedaccordingto themethodof extractingin-
formationandhow the information is further processed.
Yagi et. al. [7] extractededgesof objectsandthengener-
atedamathematicalmodelof theenvironment.Theinter-
polationwith unknown imagesis performedby solvinga
linearequationsystemgeneratedwith thetraining image
set.

The POLLICINO systemby Cassiniset. al. [1] can
be viewed as a extension of the systemproposedby
Yagi. Thedetectededgesareclassifiedaccordingto their
coloursandcombinedinto a colour vector. In a similar

way to Dudek[3], thegeneratedvectoris usedasthe in-
put of a three-layeredneuronalnetwork.

Drocourtet. al. [2] proposea systemwith an omni-
directionalstereovision system. It consistsof a camera
with a mirror that is movedrelative to therobotandthus
canget imagesat two differentplaces.The systemuses
probabilisticmethodsto searchtheassociatedpartsof the
two images.The usedfeaturesareedgesandthe colour
of theareasbetweenthem.

In the work presentedin [10], the feasibility of local-
isationof a Kheperarobot in a small-scaleenvironment
has beendemonstratedby using a subspaceprojection
method.

3 Experiment Systems

The first versionof our system(Setup1) is a camera
combinedwith a conicalmirror installedon a mini-robot
Khepera. The vision systemconsistsof only two com-
ponents: a subminiaturecameralooking “upright” and
a conical mirror of polishedaluminium. The complete
Setup1 is shown in Fig. 1. Thetestenvironmentconsists
of aminiature“doll’ shouse”of 40cm� 40cmin size.The
walls arecoatedwith texturedwall paperandthe“room”
includesseveralpictures,windowsanddoors.

Figure1: Setup1: thesmallmobile robotmountedwith
anomnidirectionalcamerausingaconicalmirror.

We have developedthesecondversionof robotvision
system(Setup2) for naturalofficeenvironments.Theom-
nidirectionalvision systemis mountedon thetop of a pi-
oneermobile robot (Fig. 2), which consistsof a camera
facingupwardsanda hyperbolicmirror above it (Fig. 3).
To avoid imagedisturbanceandto achieveacomplete360
degreeomnidirectionalview of theenvironment,themir-
ror is placedonatransparentplasticcylinder. Theimages
takenwith this systemareusedto localisetherobotin an



environmentthat was learnedbeforehand.The robot is
intendedfor usein anunmodifiedreal-world office envi-
ronment.

Figure2: Setup2: Thepioneer2 DX robotwith anomni-
directionalvisionsystemusingahyperbolicmirror.
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Figure3: The omnidirectionalvision systembasedon a
hyperbolicmirror.

The camerarecordscyclically distortedimages(Fig.
4) that are converted to cylindric coordinatesto get a
panoramicview (Fig. 5) of the environment. These
panoramicimages(or featuresextractedfrom them)are
usedto determinethe robot position in an environment
learnedoff-line.

Figure4: Thecyclic view.

Figure5: Thepanoramicview.

4 ImageProcessing

4.1 PCA vs ORF

PCA canbeusedasanapproachfor dimensionreduc-
tion to selectfeatures.With thefirst � dimensionsof the
eigenspace,the original imagecanbe reconstructedto a
pre-definedresolution.Sincethemagnitudeof theeigen-
valuecorrespondsto thevariability of a randomvariable,
problemsmayoccurwith input variableswhosevariance
is low but thatareneverthelesssignificantfor controlling
theprocess.Think of atraffic scenein whichasmalllight
that changesfrom greento red is muchlesssalientthan,
say, thelargechangesin theimagecausedby carspassing
by.

In suchsituations,with purePCA appliedto theinput
dataset,a largenumberof eigenvectorsareneededto rep-
resentcontrolinputvariablesin anappropriateway. A so-
lution to thisproblemis to useasetof vectorsthatdirectly
correlateinput and output space,insteadof using the
eigenvectorsof theinput data.Featuresthatshouldaffect
theoutputarecalledOutputRelevantFeatures(ORF).

Basedon a single-layerfeed-forward perceptronnet-
work, the ORFscan be extractedthroughtraining with
theHebbianlearningrules. Assumethatthetrainingdata
are denotedby ��� (���
	���
�
�
���� ). If one ORF weight
vectoris trainedwhich is denotedby �� , thenthenetwork
output � is:

��� ������� � ������������ �� �!�� � �� 
 (1)



Unlike PCA, which maximisesthe varianceof the input
dataalong the weight vector (eigenvector), the learning
rule for the ORF weight vectorsis to minimise the di-
recterror, i.e. thedifferencebetweenthedesiredandreal
valuesof theoutput.Obviously, this requiresboththein-
put � andthedesiredoutput "$# (in our casetheabsolute
positionof the robot in a givencoordinatesystem)to be
available. Then,oneelement� � of the weight vector ��
canbemodifiedasfollows:% � �&�('*)+",#.-/�102��� (2)

where ' is the learningrate. To calculatemore than
oneORF weight vectors,denotedby ���3 �4)+51�6	7��89��
�
�
:0 ,
we useanapproachsimilar to thatproposedby Yuille et
al. [8]. Thecomputationbeginswith thefirst ORFweight
vector(i=1) using(2). For calculatingfurther ��;3 )+5&<=	>0 ,
all theinput dataareprojectedontothelastORFvectors,
i.e. �� ����
�
�
������3@? � , throughwhich the componentsof the
input vector, lying parallelto the ORF vector, arecalcu-
lated. Thesecomponentsaresubtractedfrom the input.
Theelement��3 � of thevector ���3 canbethenadaptedby:% ��3 �&�('A)+"$#.-/� 3 0CBD���E- 3F? ��� �G� � � � � ��HI
 (3)

Unlike the eigenvectorsthe ORF weight vectorsare
notorthogonal.Therefore,they cannotbeusedfor recon-
structingtheoriginaldataunambiguously. However, for a
supervisedlearningsystem,ORFsaremoreefficient than
principal componentsbecausethey take into accountthe
input-outputrelation. When modelling a complex non-
linearsystem,thebenefitof finding theORFsis to deter-
minea smallnumberof themostsignificantfeaturesand
to isolatethemthrougha lineartransformation.

4.2 Overlap Measure

To interpolatetheactualpositionbasedon sometrain-
ing examples,the similarity of the featuresshould in-
creasewhenthedistancebetweenthecorrespondingposi-
tionsdecreases.In otherwords:imagestakenat locations
closeto eachothermustresultin similar featuresandthe
featurescomputedbasedonanimagefrom amoredistant
positionmustnot bemoresimilar.

For thedevelopmentof thevisual localisationsystem,
we needto selectsomeimagepre-processingalgorithms.
Thesealgorithmswere to emphasisethe contentsof the
imagesthatareimportantfor localisation,andto suppress
thosecontentsthat are causedby position-independent
changes.To selectthebestfeatureextractionalgorithms,
wesuggestameasureof overlap.

Assumewe have a setof imagesJ7� to J�K takenat po-
sitions LM� to LNK . Thesepositionslie on a straight line,

so that positions L 3@? � and L 3PO � have the smallestdis-
tancesto positionL 3 . WethencomputethefeaturevectorsQ �R�TSU)+J7�:0 to

Q K(�TSU)+J�KN0 usingdifferentalgorithms.
WedefinethedistancebetweenfeaturesasV )+5W�2�90X�ZY Q 3 - Q ��Y (4)

andthenon-ambiguousradiusin featurespace:[ )+5\0X�(] � �_^ V )+5W�W5$`(	>0�� V )+5W�a5,-b	40dc (5)

A useful featureshouldhold the following conditionfor
all 5 : [ )+5\0_e V )+5W�f�g0ih9�kjlnm 54-.	7�W5W�a5:`o	�p (6)

This meansthatthetwo nearestimagesJ 3PO � and J 3@? � re-
sult in themostsimilar features.

To check this condition we first definethe absolute
overlap q4r
q r )+5W�f�g0X�tsuv uw

[ )+5\0U- V )+5W�2�g0xh V )+5W�2�g0_e [ )+5\0
and �kjlym 54-z	7�a5W�W5�`o	>p{

else
(7)

which computeshow far the featurevectorof � reaches
into thesmallestnon-ambiguousradiusof 5 . If all q4rf)+5W�2�90
aresummedup for oneposition L 3 , we canseewhether
thereis anambiguityat thisposition.� )+5\0X�}|����G� q r )+5W�2�90 (8)

If � )+5\01� { , the condition(6) is met at position L 3 , oth-
erwisethereis an ambiguity. This test is suitableto au-
tomaticallydividea longsequenceof imagesinto smaller
sequences(situations)at positionsthatcauseanambigu-
ity. Within thesesmallersequencesa numericalinterpo-
lator shouldbeableto determinethe positionout of one
singleimage.

To have a measurefor thewholesequenceof images,
all q4rf)+5W�2�g0 aresummedupover 5 and� anddividedby the
appropriate[ )+5\0 :

q~� |� 3 �G� 	[ )+5\0 |����G� q r )+5W�2�90 (9)

In different environments, suitable featurescan be
selectedfrom diversemodalitiessuch as the complete
colour and intensity images, image regions, energy-
normalisededgeimages,HSI histograms,PCA andORF
projections,etc.For anoptimalfeaturetherelative over-
lap q shouldbezeroandfor all othersit tells how unsuit-
ablea featureis for navigation.



4.3 Sectoring

To fully utilise theglobalandsometimesredundantin-
formation,theviewing areaof thecameracanbedivided
into multiple sectionsof thesamesize.Theoretically, the
sectoringcan be achieved by arbitrarily fine resolution.
In ourexemplaryexperiment,it wasfoundthata viewing
areaof 	4� {�� is sufficientin mostpracticalcases.As anex-
ampleof theSetup1,eachof sectorsA, B andC coversan
angleof � {�� . All sectorsareindependentlytransformed
andnormalised.This way, an object in arbitrarycolour
will not influencethenormalisationof othersectors.With
the help of the sectoringtechnique,an unexpectednew
objector changeof the environmentat run-timecan be
detectedand the correspondingsectorcan be discarded
for interpolation.

For situationrecognitionusingORF, whichwill bede-
scribedin section5.2, thesesectorsare combinedinto
pairswhich aredenotedaspseudo-segments.A pseudo-
segmentcovers a viewing areaof 	�� {�� . In the experi-
ments,oneORF vector is computedfor eachcombined
viewing area. The projectionsof all threeORF vectors
areassociatedwith therobotpositions.

A B C

AB AC BC

90° 10° 90° 10° 90°

180° 180° 180°

transformation

scaling
+ normalisation

Figure 6: Sectoringby constructingpseudo-segments.
Here 10 degree“blocking region” is usedto avoid that
small unknown objectsaffects two segmentssimultane-
ously.

5 Vision BasedSituation Assessment

In our earlierwork on robotnavigation [9], we devel-
opeda“situation-based”controlfor input from simplein-
fraredproximity sensors.Theaimwasto differentiatebe-
tweensituations: if the robot encountersmany new ob-
staclesit hasto givemoreweightto localcollisionavoid-
anceandit must temporarilyreducethe weight given to
goaltracking.For thispurposea“situationevaluator”was
constructedby heuristicfuzzy rules.

In a situation-basedmodelthecompleterobotnaviga-
tion areasarecoarselyclassified.Thewholecontrol task

is brokendown into subtaskswhich canbeperformedin
local “situations” so that within eachsituationthe input
patternsneededfor control correlateto a certaindegree.
Theclassificationcriterioncanbethephysicalneighbour-
hoodor a setof distinctive features.If a learnedsituation
is recognisedto correspondto a known area,then, in a
secondstep,a fine localisationcanbe implementedby a
local controllerwhich is speciallytrainedfor a situation,
Fig. 7.
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Figure7: Dividing a globalsceneinto local controlprob-
lems.

5.1 Fundamentalsof Situation Representation

In principle, if a global eigenspaceis usedto project
the situation-relatedimages,the projectionsof the im-
agesthat fall into one situation form a specific mani-
fold. If thedimensionof theeigenspaceis largeenough,
thesemanifoldsareeasyto separate,i.e. situationscan
bedistinguishedsimply by identifying thepoint

Q
in the

eigenspacethattheimagesareprojectedonto. Fig. 8 and
9 illustrate the processin a simplified manner. Repre-
sentedthis way, thematch betweena situationanda new
imagecan simply be definedas the Euclideandistance
between

Q
andthe manifold of this particularsituation.

To differentiatebetweenthesituations(“walls” in Fig. 8),
moredimensionsthanshown in thefiguresareneeded(12
in ourexperimentwith theSetup1).

Figure8: Views from therobotcamerausedin Fig. 1.
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Figure9: Situationmanifoldsin eigenspace.Thesethree
manifoldsrepresentpartsof thesituationsshown in Fig.8.

5.2 Situation RecognitionUsingORF

Although the global eigenspaceprovides a universal
approachfor representingdifferentsituationscompactly,
it is memory-intensivebecauseall theeigenvectorsaswell
asthesituationmanifoldsmustbestored.On-lineprojec-
tion into theglobaleigenspaceandsearchin themanifolds
to find thenearestneighbourarecomputationallyexpen-
siveandhencetime-consuming.

To classifysituations,the varianceof the projections
of the pseudo-segmentson their respective ORF vectors
areusedasfollows:� If therobotis locatedin asituationwhich it hasbeen

trainedfor, all theprojectionsdeliver thesamevari-
ance.� If the robot is locatedin other situations,all three
projectionsdiffer verymuch.

Therefore,the situationwith the smallestvarianceis
identifiedasthe correctone. Sinceambiguityof certain
degreein the grey-level image-basedperceptionalways
exists,thecorrectnessof sucha situationclassificationis
evaluatedin a probabilisticsense. Further information,
e.g. theenergy-normalisededgeimagesandthehuehis-
togram,caneasilybe addedto increasethe reliability of
theclassification.

6 Position Learning in an Office Corridor

Besidesthe experimentwith the Setup1 in a small-
scaleenvironment,wealsoachievedsomepreliminaryre-
sultswith the Setup2 in a real office environment. The

robot’s position in this environmentis estimatedby us-
ing imagefeatureswhich have beenlearnedfrom a small
numberof trainingimages.Thelearningis basedonusing
ORFs.

As mentionedabove, it is difficult to find relevantfea-
turesin acoupleof takenimagesandthesearchandeval-
uationof thosefeatureshave to be directly implemented
to the robotsimageprocessingalgorithms,e.g. edgeor
cornerdetection.In ourexperiments,omnidirectionalim-
agesof theenvironmentareusedasinput vectors,which
result in estimatedpositioncoordinateswith the help of
ORFs.

The imagesfor the describedtestshave beentaken
acrossthe corridor of our working group(Fig. 10). Un-
fortunately, thisenvironmentis poorin colour(grey floor,
doorsandwhite paintedwalls). Themostinformationis
containedin thegrey-level images.

Figure10: Testingareais theunmodifiedofficecorridor.

The first experimentincludes52 imagestaken at the
centerof the corridor with a constantdistanceof 10cm
betweentwo neighbouringimages.Thuswe testedon a
line with a lengthof 5.10m,lying betweentwo pairsof
opposingoffice doors(Fig. 11). For this problem,ORF
networksweretrainedtodeliverthe � -positionontheline.
Notethatthedoorcrossingthecorridoris a glassdoor.

Experimentsweremadeby splitting eachdatasetinto
training dataand test data. As anticipated,the method
works with neglectableerror usingall imagesfor train-
ing. Themain interestis to reducetheusedtrainingdata
without losingperformancein resultsfor not trainedtest
data.
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Figure11: Thetrainingandtestpositions.

Thedatabasefor thefirst experimentcontained52 im-
agesof size612 x 384. We first took every fifth image
(let �_�Z� indicatethis), which is equalto oneimageev-
ery 0.5m,to train theORFvector. We startedwith image
6 andfinishedwith 46 in orderto additionallyget some
informationaboutthemethod’s extrapolationabilities.

Usingtheoriginal iamges,theextrapolationresultsof
images1–5 and47–51wereexpectedlypoor, but on the
otherhandthe interpolationof unknown positionsworks
very well with smallvariances.We madeanothertestus-
ing the orignial imagefrom the mirror and also down-
scaledimagesof size 	487�y����� (Fig. 12). The training
imagescorrespondto thefilled dots,thetestimagesto the
unfilled triangles.Note that in this case,thegiven image
numbersareseton the �U- axisandtheestimatedoneson
the �D- axis, which meansthat a perfectpositionestima-
tion would resultsin astraightdiagonalline of symbols.
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Figure12: Testresultsof the robotpositionwith respect
to theimagenumber, �,��� .

In spiteof this lossof imageinformation,themethod
still deliversgoodresults.Thuswedecreasedthenumber

of training imagesby setting ����	 { , which meansa dis-
tanceof 1m betweentwo trainingimages.Theresultsare
still acceptablealthoughtheestimationerrorsincrease.

Usingthesectoringmethod,goodestimationsof robot
position along the � -direction can also be achieved.
Therefore,theproposedmethodsin section4.3canbeap-
plied to eliminatetheproblemof partialocclusions.

7 Discussions

We showed that a localisationapproachbasedon the
wholeandsectorsof theomnidirectionalimagesof anar-
bitrary environmentis feasible. The experimentalenvi-
ronmentis part of a typical living room or office, where
mobile robotscanfind potentialapplicationsfor service
jobs. The further developmentof this approachaimsat
achieving thefollowing features:

Scalability. The situation-basedapproachcanbe scaled
almost arbitrarily. If the movement area is ex-
tended,new situationscan be learnedto cover the
new area. Additionally, the computationtime re-
quiredandmemoryexpensesareonly linear in the
numberof situations.

No geometricmodel. No additional information of the
environmentis needed.Without usageof sophisti-
catedgeometricmodels,thedirectmappingleadsto
a significantreductionof computationalcosts.

Universal method. The conventionalrobot vision algo-
rithmsbasedonsegmentation,geometricfeatureex-
traction,etc. mustalwaysbeadaptedto specificen-
vironments.Theproposedmethodisgenerallyappli-
cableto environmentswheregeometricor color fea-
turesaredifficult to befoundandfollowedrobustly.

Low cost. The necessaryhardwarecomponentsareoff-
the-shelf low-cost standardproducts. The perfor-
mance/priceratio is very good in comparisonwith
othersystemsthatneedspecialhardware.

Obviously, many problemsneedto besolved to make
the approachapplicablein arbitrary environments(with
too few or ambiguousobjectsfor differentiation, large
degreeof unexpectness,fluctuationsof the illumination,
etc). The probability of the correct situation recog-
nition and localisationcan be increasedby combining
knowledge-basedmethodsandfusionof redundantmod-
ulesevaluatinghybrid sensorinformation.At themoment
the SituationClassifieris realisedby physical grouping.
It is desirablethat in the future the learningsystembe



capableof automaticallydividing a large numberof se-
quencesinto appropriatesituationsaccordingto the rel-
ative overlappingmeasure.Another issueis the sizeof
thevisualareato receivegoodinterpolationresults.Since
the amountof memoryneededfor the local controllers
is directly relatedto the size of the featurevectors,the
input imagesshouldbe assmall aspossible.If, by con-
trast,the imagesaretoo small,majordistinctive features
are lost. An automaticadaptationto the bestsize is an
importantobjective. Furthermore,it is feasibleto replace
thecrispsituationmultiplexing with asoft-switchingcon-
troller. Moreover, it is necessaryto automatethelearning
processto make theapproachsimpleto use.
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