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Abstract—This paper presents a novel approach for estimating
the vehicle’s trajectory in complex urban environments. In
previous work, we presented a visual odometry solution that
estimates frame-to-frame motion from a single camera based
on Random Finite Set (RFS) Statistics. This paper extends that
work by combining the stereo cameras and gyroscope sensor. We
are among the first to apply RFS statistics to visual odometry
in real traffic scenes. The method is based on two phases: a
preprocessing phase to extract features from the image and
transform the coordinates from the image space to vehicle
coordinates; a tracking phase to estimate the ego-motion vector
of the camera. We consider features as a group target and use the
Probability Hypothesis Density (PHD) filter to update the overall
group state as the motion vector. Compared to other approaches,
our method presents a recursive filtering algorithm that provides
dynamic estimation of multiple-targets states in the presence of
clutter and high association uncertainty.

The experimental results show that this method exhibits good
robustness under various scenarios.

I. INTRODUCTION

USING cameras for vehicle navigation is the current trend

in the field of intelligent vehicles. Visual odometry (VO)

is gaining importance for estimating vehicle’s trajectory. The

main idea is on finding features and matching them between

successive images. Based on this information, the motion of

the vehicle, the ego-motion, can be calculated. However, there

are still open issues in achieving highly robust ego-motion

estimation in real traffic scenes as discussed in [1]:

• Features that are used to estimate the ego-motion vector

may contain some false associated pairs. Robust matching

techniques are needed to avoid false matching.

• The algorithms for ego-motion are typically based on

features of stationary objects. However, typical road

scenes may contain a large amount of features stemming

from moving objects. All these artifacts reduce the perfor-

mance of ego-motion estimation. An approach is required

to estimate the features’ position by utilizing the posterior

density to reduce the influences of features from non-

stationary objects.

Many of these challenges were addressed in the Structure-

from-Motion method [2] which focuses on the removal of the

false features. It uses RANSAC [1] to ignore large number

of outliers. However, the method does not provide robust

behavior in all situations.
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In this paper, we extend existing methods by using Proba-

bility Hypothesis Density (PHD) filter to increase robustness.

PHD filter works on sets of features, called set-valued states,

instead of single features. The observations associated with the

features are treated as set-valued observations. Modeling set-

valued states and set-valued observations as Random Finite

Sets allows to solve the problem of dynamically estimating

multiple-targets in the presence of clutter and association

uncertainty in a Bayesian filtering framework [3].

In our earlier work [4] , we presented a VO system based on

a single camera to provide localization information in urban

environments. The system estimates the ego-motion vector

by utilizing the SIFT [5] (Scale Invariant Feature Transform)

features which are calculated from consecutive frames. The

tracking algorithm does only take into account two consecutive

frames.

This paper enhances our previous system by using a well

calibrated stereo camera and a gyroscope sensor. We rely on

PHD filtering to track features as many frames as possible

and then estimate the ego-motion vector. Additionally, we use

SURF [6](Speeded Up Robust Features) instead of SIFT to

satisfy real-time constraints.

Our method consists of two phases: a preprocessing phase

and a tracking phase. The preprocessing phase starts by

extracting features using SURF from the stereo frames and

matching them as feature pairs from consecutive frames.

Then, the coordinates of the features are transformed to 3D

vehicle coordinates. Finally, we record features’ positions as

measurements for the tracking phase.

The tracking phase is performed in spatial dimension. In

this phase the algorithm tracks features in vehicle coordinates

by using the PHD filter to estimate the ego-motion vector at

each frame.

We use an off-the-shelf platform providing data under real

traffic scenarios [7] to evaluate the approach. The platform

offers data from GPS, stereo cameras and gyroscope sensors.

The experimental results indicate that the proposed method

yields precise estimation.

The benefits of our approach are as follows: First, it

eliminates the false matching features since the PHD filter does

not need to focus on the data association problem. Second, the

PHD filter can utilize the posterior density which is calculated

in the Bayesian filtering framework to reduce the influences

of non-stationary objects.

The remainder of this paper is structured as follows: Sec.

II describes the related work in visual odometry. Sec. III

introduces details about the preprocessing phase. Sec. IV de-



scribes the PHD filter and its implementation. Sec. V presents

experimental results under real traffic scenes. Finally, the paper

is concluded in Sec. VI.

II. RELATED WORK

Much work has been done in visual odometry using e.g.

a single camera [8] [9] [10], stereo cameras [11] [12], or

an omnidirectional camera [13] [14]. One approach to visual

odometry uses the Structure-from-Motion (SfM) technique.

The idea is to find good quality features in one frame and the

corresponding features in the next frame, estimating displace-

ments from these features and translating them to the motion

of the camera [2]. Using RANSAC approach [1] enables the

method to overcome a large number of outliers as encountered

in real traffic scenes.

Optical flow is a different approach which focuses on the

change in the brightness of the image, where this change

in brightness results from the apparent motion in the image

[15] [16]. This method is much simpler and computationally

cheaper than the extraction and tracking of features. However,

the precision is not very good. Corke et al.[17] compared these

two approaches and got the conclusion that SfM method allows

higher precision at the cost of higher computational needs.

In this paper, we apply the SfM technique to estimate the

displacements of the vehicle within the RFS framework.

III. PREPROCESSING PHASE

This section describes the steps performed in the prepro-

cessing phase.

A. Feature Extraction

In most of the previous work on visual odometry using SfM

technique, features are used for establishing correspondences

between consecutive frames in a video sequence. Researchers

often use approaches based on Harris corner detector [18],

Kanade-Lucas-Tomasi detector (KLT) [19], SIFT [5] or SURF

[6].

Since the SURF feature descriptor is highly distinctive

and allows robust matching under real time requirements,

our system considers matched SURF feature pairs in vehicle

coordinates as measurements for the PHD filter (the resulting

stereo matches between the first two stereo images are then

similarly matched with the stereo matches in the next stereo

image).

B. Transformation between Image Coordinates and Vehicle

Coordinates

In this step, we determine the mapping between the im-

age coordinates [u, v]
T

of a tracked pixel and the vehicle

coordinates [x, y, z]
T

of the corresponding point. First, we

introduce the used coordinate systems (see Fig. 1a). The ve-

hicle coordinates [x, y, z]
T

are defined in a three-dimensional

cartesian coordinate system with origin in the middle of the

rear axle; the camera coordinate [xc, yc, zc]
T

are described in

a three-dimensional cartesian coordinate system with origin in

the optical center of the camera, and the image coordinates
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Figure 1. Different coordinates systems

[u, v]
T

are defined in a two-dimensional cartesian coordinate

system with origin in the upper left corner of the image. For

an easy implementation of the transformation, we will use

homogeneous coordinates in the following.

1) Transformation from Vehicle Coordinates to Camera

Coordinates: Considering the object in the image as a rigid

body, the transformation from the vehicle coordinates to

camera coordinates is represented by six independent extrinsic

parameters. These are the three translation parameters within

the translation vector T = [xt, yt, zt]
T

, and the three rotation

parameters within the rotation matrix R = RxRyRz . R is

the rotation matrix corresponding to the product of rotations

around the z-axis (rotation matrix Rz), y-axis (rotation matrix

Ry) and x-axis (rotation matrix Rx). In summary, the trans-

formation between vehicle and camera coordinates is
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2) Transformation from Camera Coordinates to Image Co-

ordinates: For stereo camera system, we have two camera

coordinates: left camera coordinates [xl
c, y

l
c, z

l
c]
T

and right

camera coordinates [xr
c , y

r
c , z

r
c ]

T
(see Fig. 1b). For an easy

implementation of the transformation we will use the camera

coordinate [xc, yc, zc]
T

instead of the left camera coordinates

[xl
c, y

l
c, z

l
c]
T

. We calculate the 3D coordinates of the pixel from

both stereo images in the camera coordinates (left camera co-

ordinates). Three-dimensional objects of a scene are projected

onto the two-dimensional surface of the camera sensor. From a

standardized projection of a point P = [xc, yc, zc]
T

in vehicle

coordinates system based on pinhole model, we can get its

image coordinates [u, v]
T

[

u

v

]

=

[

fxc

zc
+ u0

fyc

zc
+ v0

]

(2)

where (u0, v0) is the point of camera optical axis and image

plane intersection. This formula can be expressed in homoge-



neous coordinates as
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From equation (1) and equation (3), we can express the

relationship between the vehicle coordinates [x, y, z]
T

of a

point in the space to its image coordinates [u, v]
T

as follows:
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Rearranging the above equation, we can transform the pixels

from image coordinates to vehicle coordinates.

IV. TRACKING PHASE

A. Overview on RFS Statistics

The Random Finite Set (RFS) is a hidden markov chain

model with set-valued states and set-valued observations while

the PHD filter is a predict and correct framework for recursive

Bayesian filtering in such a RFS formulation. A comparison

of the RFS approach and traditional multiple-target tracking

methods has been given in [20]. In the PHD filter, the

collection of individual targets is treated as set-valued states,

and the collection of individual observations is treated as

set-valued observations. Fig. 2 is a basic introduction of

the PHD filter which shows that the observations and their

estimated states are treated as a single valued measurement

and its corresponding estimation at each frame [21]. The PHD

filter operates on the single-target state space and avoids the

combinatorial problem that arises from data association.

The Gaussian Mixture Probability Hypothesis Density (GM-

PHD) filter is a closed form implementation of the PHD filter,

which is based on the Bayesian estimation framework utilizing

random finite sets as the mathematical backbone [22].

Clark [23] introduced a particle PHD filter implementation

for tracking group targets. The results of the implementation

show a high robustness when tracking group targets in clut-

tered environments.

B. Kalyan [24] and John. M [25] implemented the PHD

filter in the field of simultaneous localization and mapping

(SLAM) problem. Results show that the use of a PHD filter

is an effective solution to the SLAM problem.

In this paper, we use the PHD filter to estimate the motion of

the target set instead of tracking individual targets. Assuming

the motion of the whole targets to be equal, we calculate the

average of each target’s state to acquire the motion of the

whole set. From the physical model, we consider the whole set

to have the same motion vector with the vehicle. According to

this model we estimate the vehicle’s ego-motion vector at each

frame. Compared to earlier approaches, our work is among the

first to apply PHD filtering to visual odometry in real traffic

scenes.
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Figure 2. Set-valued states and Set-valued observations

B. Mathematic Background on the PHD Filter

The PHD filter is an approximation to alleviate the compu-

tational intractability of the optimal multi-target Bayes filter,

proposed by Mahler [26]. Considering the RFS of survived

targets Sk|k−1 between iterations k − 1 and k, the RFS of

spawned targets Bk|k−1 and the RFS of spontaneous birth

targets σk, the global RFS characterizing the multiple-target

set can be written as:

Xk = [
⋃

ζ∈Xk−1

Sk|k−1(ζ)] ∪ [
⋃

ζ∈Xk−1

Bk|k−1(ζ)] ∪ σk (5)

The set observation Zk can be seen as a global RFS composed

by the RFS of measurements originally from the targets θk(x)
and by the RFS of false alarms κk, modeled by a Poisson

distribution.

Zk = [
⋃

x∈Xk

θk(x)] ∪ κk (6)

The PHD filter evolves in two steps: prediction and update.

The multiple-target posterior density of the target RFS is also

called the intensity function D. The transition function is

denoted as fk|k−1(x|ζ) given the previous state ζ.

The prediction equation of the PHD filter is:

Dk|k−1(x) = [

∫

[PS(ζ)fk|k−1(x|ζ)+β(x|ζ)]Dk−1(ζ)dζ]+γk

(7)

Knowing the measurement random set Zk, it is possible to

update the intensity function as follows:

Dk(x) = (1− PD)Dk|k−1(x) (8)

+
∑

z∈Zk

PDgk(zi|x)Dk|k−1(x)

κ(zi)+
∫
PDgk(zi|ζ)Dk|k−1(ζ)dζ

where PD is the probability of detection. gk(zi|x) is the

likelihood of state x given an observation zi.

The prediction PHD equation (7) includes components

whose intensities are affected by targets that enter the scene

(γk), targets that spawn new targets (β(x|ζ)), and targets that

survive from the previous time step PS . Dk−1 is the posterior

PHD from the previous time step.

The update PHD equation (8) corrects the predicted PHD

by including evidence from the current set of observations.

Knowledge about scene clutter κ(z) is also embedded into the

update step. κ(z) is the intensity of clutter (expected number

of observations arising from the clutter at z).



N(k) =

∫

Ψ

Dk|k(x)dx (9)

Equation (9) illustrates that the integral of the PHD over a

certain domain Ψ yields the estimated number of targets N(k)
in that domain at time k. The PHD is not a probability density

and does not necessarily sum up to 1 [26].

It is to be noted that the PHD recursion involving equations

(7) and (8) have multiple integrals that have no closed form

solutions in general. One of the common approaches to mit-

igate this problem is to use GM-PHD approximations. More

details and a generic description of the GM-PHD filter are

given by [22]

C. Implementation Details

Our algorithm is implemented in vehicle coordinates. We

assume that the vehicle is driving on a flat plane. Suppose at

frame k, the coordinates of one feature point is (xk, yk, zk).
According to Euler’s rotation theorem the relationship between

the feature points in consecutive frames is as follows:

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where (∆xk,∆yk,∆βk) is the vehicle’s ego-motion vector.

In this paper, (∆xk,∆yk) is the vehicle’s movement in (x, y)
direction and ∆βk is the vehicle’s angular change related to

the z-axis.

• From the physical model we consider the target has the

same motion process. In the same manner like equation

(10), we assume that at frame k the target moves inde-

pendently and the motion process parameters are:

xk = [xk, yk, zk, βk, ẋk, ẏk]
T (11)
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The process noise is defined by:

Qk = diag([σ2
x1, σ

2
y1, σ

2
z1, σ

2
β1, σ

2
ẋ1
, σ2

ẏ1
]) (13)

• The measurement vector is as follows:

z = [x, y, z, β]T (14)

where (x, y, z, β) is acquired according to the coordinates

transformation process and the gyroscope sensor. To map

the state vectors to the observation space, the observation

matrix is:
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







1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0









(15)

The observation noise is described as:

Rk = diag([σ2
x, σ

2
y, σ

2
z , σ

2
β ]) (16)

• Aggregated targets falling below a given threshold are

pruned and the remaining targets are reweighted accord-

ingly (weight is consider as the possibility of the target

compared to clutter). If the distance of the targets defined

by the covariance matrix falls within a merging threshold

τ , then the targets are merged.

From the physical model we consider the whole group set to

have the same motion vector. According to this motion model,

we calculate the average state of the targets as the ego-motion

vector at frame k.

µk = [∆xk,∆yk,∆βk]
T (17)

where (∆xk,∆yk,∆βk) is the mean of the state set which is

calculated by:

∆xk =
1

N(k)

N(k)
∑

i=1

ẋi
k

∆yk =
1

N(k)

N(k)
∑

i=1

ẏik

∆βk =
1

N(k)

N(k)
∑

i=1

βi
k (18)

According to the pruned and merged technology, the PHD

filter can keep on tracking the targets as many frames as

possible without concerning the data association problem.

First, the PHD filter initialized the new birth targets at cur-

rent frame by the SURF features (from the stereo image pairs)

in vehicle coordinates. Second, it utilizes the measurements at

next frame to update the previous estimated results (including

the previous birth targets). Finally, it repeats the above steps

frame by frame to estimate the motion vector.

Since the PHD filter estimates the whole set’s motion vector

within the RFS framework, µk is not only used to calculate the

trajectory of the vehicle at frame k, but also used to initialize

the parameters of the birth models at frame k + 1.

The birth models consist of the initial observations (initial-

ized by the features’ coordinates and the previous estimated

motion vector e.g. equation (17) from consecutive frames).

There are no spawn targets in our model.

D. Relationship between PHD filter and Kalman filter

The differences between our approach and visual odometry

using Kalman filter (which focuses on tracking the features)

are as follows:

First, the Kalman filter is only used to track individual

targets. However, it needs to solve the data association problem

from consecutive stereo image pairs. The false matching

features may influence the estimation while the PHD filter

can distinguish the false features as clutters according to the

random set statistics. Second, the Kalman filter is neither able

to aggregate measurements nor to separate one measurement



to multiple targets. It needs a one-to-one relation between

real measurements and expected measurements, solved by data

association. A PHD overcomes this, as it is an n-to-m mapping.

We calculate the average of each target’s state to acquire the

whole set’s motion vector within the RFS framework.

Since equation (12) is nonlinear, we use the GM-EK-PHD

filter to estimate the state which is very similar to the GM-

PHD. More details about EK-PHD can be found in [22].

V. EXPERIMENTAL RESULTS

The visual odometry algorithm described in this paper has

been implemented on a Core 2 Duo 3.0 Ghz computer. The

algorithm is executed in Matlab and the average processing

time is 70ms per frame in tracking phase. The vehicle platform

is used from Karlsruhe dataset [7] which included GPS, gyro

and stereo images at 10 frames/s with a resolution of 1344×
391 pixels. All sequences correspond to real traffic conditions

in urban environments with pedestrians and other cars. In the

experiments, the vehicle was driven with an average velocity

of 40km/h.

As can be observed, we also use the RANSAC algorithm to

estimate the ego-motion vector [27]. A dead reckoning method

is used to calculate the trajectory according to the ego-motion

vector provided by both the RANSAC algorithm and the PHD

filter.

Fig. 3 shows the result of our approach. The left part of the

figure shows an aerial view of the area where the experiment

was conducted. The right part of the figure illustrates the

2D trajectory estimated by the visual odometry algorithm

presented in this paper compared with RANSAC algorithm.

From Fig. 3b and Fig. 3c, we can see that our approach

provides better accuracy under real traffic scenarios compared

to RANSAC.

Fig. 4 compares the number of SURF features and the PHD

effective tracking features during the whole process at each

frame. From Fig. 4, we can see that the number of SURF

features is higher than the number of targets in the set-valued

states estimated by the PHD filter. This phenomenon illustrates

that during the whole process there must contain certain

number of falsely matched feature pairs, which might influence

the performance of the visual odometry result. The PHD filter

can intelligently choose the effective features to calculate

the ego-motion vector. The experiment doesn’t compare the

numbers of the effective SURF features in RANSAC since the

reason of the RANSAC approach keeps a certain percentage

of outliers during the whole process.

Fig. 5 compares the measurements of the vehicle’s angular

change from the gyroscope sensor and its estimated results

from the PHD filter. It illustrates that the estimated results

are more smoothing than the observations while the vehicle is

turning. Fig. 3b also shows that when the vehicle is turning

the path calculated by visual odometry is more smoothing than

GPS.

Our approach was tested in comparison to RANSAC on all

tracks provided by Karlsruhe dataset [7]. Our approach lead

to a decrease between 25% and 80% on the average RMSE
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Figure 3. Visual odometry result
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There are two benefits compared with RANSAC in visual

odometry:

1) RANSAC has been established as the standard method

for motion estimation in the presence of outliers (false
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lecting a random subset of the original data. However,
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the PHD filter treats the false features as clutters within

the RFS framework by using the dynamics model (phys-

ical laws of motion).

2) It is difficult for RANSAC to remove outliers when the

VO system has a large proportion of features that stem

from moving objects. These features can influence the

precision of the results. However, within the RFS frame-

work, the PHD filter propagates the posterior intensity, a

first-order statistical moment of the posterior multiple-

target state at each frame. According to the dynamic

system model (equation (12)), it can utilize the estimated

state to reduce the influences from those features.

The results of our experiments indicate that the algorithm

performs robustly in the presence of pedestrians, vehicles and

shadows on the road.

VI. CONCLUSION

Visual odometry in urban scenes is challenging due to a

large amount of outliers. The clutter from falsely matched

features and moving objects cause the results to deviate from

the real status. In this paper, an approach of PHD filtering

under RFS framework is presented. In comparison to the other

works, this contribution is among the first to apply a PHD filter

to visual odometry in a real traffic scenes. With this, visual

features are considered as a group target – we then utilize the

average of each target’s state to approximate the ego-motion

vector since all targets should have the same motion vector in

the whole group set within the RFS framework. Compared to

other approaches, our approach presents a recursive filtering

algorithm that provides dynamic estimation of multiple-targets

states in the presence of clutter and high association uncer-

tainty. The evaluation results show that the algorithm achieves

high accuracy and robustness under different scenes.

Future improvement of the visual odometry system may use

a better movement model which not only estimates the ego-

motion vector but also estimates the state of the moving targets

in a large scale urban environment.
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