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Visual Odometry based on a Bernoulli Filter 

 

Feihu Zhang*, Daniel Clarke, and Alois Knoll 

 

Abstract: In this paper, we propose a Bernoulli filter for estimating a vehicle’s trajectory under ran-

dom finite set (RFS) framework. In contrast to other approaches, ego-motion vector is considered as 

the state of an extended target while the features are considered as multiple measurements that origi-

nated from the target. The Bernoulli filter estimates the state of the extended target instead of tracking 

individual features, which presents a recursive filtering framework in the presence of high association 

uncertainty. Experimental results illustrate that the proposed approach exhibits good robustness under 

real traffic scenarios. 
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1. INTRODUCTION 

 

Using cameras for vehicle navigation is the current 

trend for intelligent vehicles. The basic idea is to find 

associated features and calculate the displacement in 

consecutive frames. Much work has been done utilizing 

Structure-from-Motion (SfM) technique [1]. It refers to 

the process of estimating three dimensional information 

from two dimensional images. Stereo camera provides 

high qualities in 3D construction to calculate the camera 

motion. Furthermore, RANdom SAmple Consensus 

(RANSAC) enables the SfM to overcome a large number 

of outliers [2]. However, there are still open issues: 

• Features which are utilized to estimate the ego- motion 

vector may contain falsely associated pairs between 

consecutive frames. Robust matching techniques are 

required to avoid false matching. 

• Unevenly distributed features which are aggregated in 

a small region may influence the performance since 

they are not uniformly distributed throughout the 

whole space. Effective extraction techniques are 

required to overcome this challenge. 

• Algorithms for visual odometry are typically based on 

features from stationary objects. However, typical 

road scenes may contain a large number of features 

stemming from moving objects. 

• Features are often considered as individual targets, 

such that an ego-motion vector is acquired by calculat-

ing the average states of the group targets. However, as 

time passes, the number of targets may become huge. 

Various algorithms have been investigated for 

eliminating influences from the issues. One approach to 

visual odometry applies the Structure-from-Motion 

technique [3-6]. The idea is to find high quality features 

between consecutive frames and estimate the 

corresponding displacements. SfM technique reduces the 

complexity of dealing with the whole image by solely 

relying on features, which makes the computation 

realistic [7]. 

The dense motion algorithm, also known as optical 

flow, has been studied which focuses on changing in 

brightness regions [8,9]. The computed flow fields are 

typically useful for obstacle avoidance, however, tough 

for the global geometry. Although optical flow is 

computationally cheaper, the precision is not guaranteed. 

Corke et al. compared the above approaches with the 

conclusion that Structure-from-Motion allows higher 

precision on computational requirements opposed to the 

optical flow [10]. 

Probability Hypothesis Density (PHD) filter for visual 

odometry is first proposed in our previous work [11,12]. 

The random finite set (RFS) paradigm is a 

mathematically principled and elegant approach to multi-

target filtering which has already attracted considerable 

attentions in recent years, whereas the PHD filter is a 

predict and correct framework for recursive Bayesian 

filtering in such RFS formulation [13-15]. Features are 

treated as set-valued observations as random finite set 

allows solving the problem of dynamically estimating 

multiple-targets in the presence of clutter and association 

uncertainty. The overall group state, also known as the 

ego-motion vector, is acquired by calculating the average 

state in the states set. 

Although PHD implementation provides a high 

precision localization, another important but lesser 

known Bayes filter is the Bernoulli filter [16]. In this 

paper, we expand the previous work by investigating the 

visual odometry based on a Bernoulli filter. Unlike PHD 

recursion which propagates moments distribution, the 

Bernoulli filter propagates Bernoulli distribution which 

approximates the posterior density. Implementation of 
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the Bernoulli filter is involved a few approximations: the 

Sequential Monte Carlo approximation [17] is proposed 

for the estimation of the posterior spatial probability 

density function (PDF). In this paper, ego-motion vector 

is considered as the state of an extended target which 

generates multiple measurements (features) per frame. 

The Bernoulli filter is utilized to estimate the corres-

ponding state instead of tracking individual features. 

The benefits of the proposed approach are concluded 

as following: Firstly, the matching process is eliminated 

since the Bernoulli filter avoids the data association issue. 

Modeling set-valued states and set-valued observations 

allows solving the problem of multiple targets tracking in 

the presence of association uncertainty. Second, ego-

motion vector is solely estimated. In PHD implemen-

tation, ego-motion vector is calculated by averaging the 

corresponding states of the whole targets. The number of 

targets may become huge as time passes. Regarding to 

this paper, features are treated as the multiple 

measurements originated from the extended target. The 

overloaded phenomenon is therefore eliminated. Third, 

with the particle or Sequential Monte Carlo (SMC) 

implementation, the Bernoulli filter is advantageous in a 

non-linear environment whereas the PHD filter requires 

an additional clustering step. 

An off-the-shelf platform provides data under real 

traffic scenarios for evaluating the proposed approach 

[18]. Experimental results exhibit the performance in a 

large scale urban environment. 

The structure of this paper is organized as follows: 

Section 2. describes details about the preprocessing 

phase. Section 3. introduces the mathematic background 

of the Bernoulli filter. Section 4. presents experimental 

results. Finally, the paper is concluded in Section 5. 

 

2. PREPROCESSING PHASE 
 

2.1. Feature extraction 

For SfM based visual odometry techniques, features 

are extracted under changes in lighting and viewpoint, 

also fast to detect. Various features are investigated 

based on their properties, e. g. Harris corner feature [19], 

SIFT feature [20], SURF feature and Kanade-Lucas-

Tomasi feature [21,22].  

In this paper, SURF feature descriptor is utilized due 

to its computation properties under real time require-

ments. Features are considered as the multiple measure-

ments which originated from the extended target in 

vehicle coordinates. 
 

2.2. Transformation between image coordinates and 

vehicle coordinates 

In this step, we determine the mapping between the im-

age coordinates [ , ]
T

u v  of a tracked pixel and the ve-

hicle coordinates [ , , ]
T

x y z  of the corresponding point. 

First, we introduce the used coordinate systems (see Fig. 

1). The vehicle coordinates [ , , ]
T

x y z  are defined in a 

three-dimensional Cartesian coordinate system with ori-

gin in the middle of the rear axle; the camera coordinate 

[ , , ]
T

c c c
x y z  is described in a three-dimensional Carte-

sian coordinate system with origin in the optical center of 

the camera, and the image coordinates [ , ]
T

u v  are de-

fined in a two-dimensional Cartesian coordinate system 

with origin in the upper left corner of the image. For an 

easy implementation of the transformation, we will use 

homogeneous coordinates hereafter. 

 

2.2.1 Transformation from vehicle coordinates to cam-

era coordinates 

Considering the object in the image as a rigid body, the 

transformation from the vehicle coordinates to camera 

coordinates is represented by six independent extrinsic 

parameters. These are the three translation parameters 

within the translation vector [ , , ] ,
T

t t t
T x y z=  and the 

three rotation parameters within the rotation matrix 

.

x y z
R R R R=  R is the rotation matrix corresponding to 

the product of rotations around the z-axis (rotation ma-

trix Rz), y-axis (rotation matrix Ry) and x-axis (rotation 

matrix Rx). In summary, the transformation between ve-

hicle and camera coordinates is 

.
0 1

1

c

c

c

x
x

R T y
y

z
z

⎡ ⎤
⎡ ⎤ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 (1) 

 

2.2.2 Transformation from camera coordinates to image 

coordinates 

For stereo camera system, we have two camera coordi-

nates: left camera coordinates [ , , ]
l l l T

c c c
x y z  and right 

camera coordinates [ , , ]
r r r T

c c c
x y z  (see Fig. 1). For an easy 

implementation of the transformation we will use the 

camera coordinate [ , , ]
T

c c c
x y z  instead of the left cam-

era coordinates [ , , ] .
l l l

c c c

T
x y z  We calculate the 3D coor-

dinates of the pixel from both stereo images in the cam-

era coordinates (left camera coordinates). Three-dimen-

sional objects of a scene are projected onto the two-

dimensional surface of the camera sensor. From a stan-

dardized projection of a point [ , , ]
T

c c c
P x y z=  in ve-

hicle coordinates system based on pinhole model, we can 

get its image coordinates [ , ] .
T

u v  

x

y

z
xcyc

zcv u
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Fig. 1. Different coordinates systems. 
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fx
u
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z

⎡ ⎤
+⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ +⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 

where 
0 0

[ , ]u v  is the point of camera optical axis and 

image plane intersection, f is the camera focal length. 

This formula can be expressed in homogeneous coordin-

ates as 

0

0

0 0

0 0 .

1 0 0 1 0
1

c

c

c

c

x
u f u

y
z v f v

z

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

 (3) 

From (1) and (3), we can express the relationship 

between the vehicle coordinates [ , , ]
T

x y z  of a point in 

the space to its image coordinates [ , ]
T

u v  as follows: 

0

0

0 0

0 0 .
0 1

1 0 0 1 0
1

c

x
u f u

R T y
z v f v

z

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

 (4) 

Rearranging the above equation, we can transform the 

pixels from image coordinates to vehicle coordinates. 

 

3. TRACKING PHASE 

 

3.1. Standard Bayes filter 

The standard formulation of the Bayes filtering frame-

work is described by two equations: 

1 1
( , ),

( , )

k k k

k k k

x F x w

z H x v

− −

=

=

 (5) 

referred to as the motion process and the measurement 

process, respectively. F is a nonlinear transition function 

defining the evolution of the state as a Markov process. 

H defines the relationship between the state and the 

measurement. wk, vk are the process and observation 

noises with covariance Qk and Rk. 

 

3.2. Overview on RFS 

The RFS is a hidden Markov chain model with set-

valued states and set-valued observations. The RFS 

approach to multiple-target tracking is an emerging and 

promising alternative to the traditional association 

methods. It is an approximation to alleviate the 

computational intractability of the optimal multi-target 

Bayes filter, proposed by Mahler [23]. 

A RFS X is specified by its cardinality distribution 

( ) {X }n P nρ = =  with a joint symmetric distributions 

1
( ,..., )

n n
x xρ =  where 

1
,, ,,

n
n …∈ ∈x x� X  Furthermore, 

as a finite-set valued random variable, the PDF and 

moments of the RFS X are also defined. Regarding to 

Mahler’s finite set statistics (FISST) theory, the PDF of a 

RFS X is denoted by (X)f  as following: 

1 1
({ , , }) ! ( ) ( , , ),

n n n
f n n pρ= ⋅ ⋅x x x x� �  (6) 

while the set integral is defined as 

1 1

1

1
( ) ( ) ({ , , } ,)

!
n n

n

f f f d d
n

δ

∞

=

= ∅ + …∑∫ X X x x x x�  (7) 

where the integration of f (X) is equal to 1. Furthermore, 

the following RFS components are also related to the 

proposed approach. 

 

• Bernoulli RFS 

For Bernoulli RFS, ρ(n) is considered as a Bernoulli 

distribution which is either empty (with probability 1– q) 

or have one element (with probability q), distributed over 

the whole state space X  based on PDF p(x). The PDF 

is as following: 

1 , if
( )

( ) if { }.

q
f

q p

− = ∅⎧
= ⎨

⋅ =⎩

X
X

x X x
 (8) 

• IID Cluster RFS 

With known cardinality | ,|X  the RFS X is consisted 

of IID random variables. The PDF is defined as: 

( ) | | ! (| |) ( ).f pρ

∈

= ⋅ ⋅∏
x X

X X X x  (9) 

• Poisson RFS 

A Poisson RFS is a special case of the IID cluster RFS 

whose PDF is defined as: 

( ) ( ).f e p
λ

λ
−

∈

= ∏
x X

X x  (10) 

• Binomial RFS 

The cardinality distribution of RFS X is considered as 

binomial distribution with parameter L (binary experi-

ments total numbers) and p0 (each experiment success 

probability), while the PDF is defined as following: 

| | | |
00

!
( ) (1 ) ( ).

( | |)!

LL
f p p p

L

−

∈

= −

−

∏
X X

x X

X x
X

 (11) 

 

3.3. Mathematical background of Bernoulli filter 

The targets in a multi-target scenario at time k are 

represented as a finite set of vectors 
,1 , ( )

, ,
k k n k

…x x  

which take values from the state space .

n

∈
x�X  Under 

RFS framework, not only the number of targets nk but 

also the individual states are random and time-varying. 

Similarly, the observations are represented as a finite set 

of vectors 
,1 , ( )

, ,
k k m k

…z z  which take values from the 

observation space .

n

∈
z�Z  These finite sets are known 

as the multi-targets state and observation: 

,1 , ( )

{ , , } ( ),
k k k n k
= … ∈X x x F X  (12) 

,1 , ( )

{ , , } ( ),
k k k m k
= … ∈Z z z F Z  (13) 

where ( )F X  and ( )F Z  denote the sets of all finite 

subsets X  and ,Z  respectively. Assuming the target 

state is a Markov process with transitional density 

| 1 1( | )
k k k k

φ
− −

X X  whereas the probability density (
k k

ϕ Z  
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| )
k

X  denotes the likelihood function, the stochastic 

filtering problem is elegantly addressed under the RFS 

framework. 

Suppose at time 1k −  the posterior PDF of target 

state 
1| 1 1 1: 1

( | )
k k k k
f

− − − −

X Z  is known, the predicted and 

updated posterior densities are expressed as following: 

| 1 1: 1 | 1 1

1| 1 1 1: 1 1

( | ) ( | )

( | ) ,

k k k k k k k k

k k k k k

f

f

φ

δ

− − − −

− − − − −

=

⋅

∫X Z X X

X Z X

 (14) 

| 1 1: 1

| 1:

| 1 1: 1

( | ) ( | )
( | ) .

( | ) ( | )

k k k k k k k

k k k k

k k k k k

f
f

f

ϕ

ϕ δ

− −

− −

=

∫

Z X X Z
X Z

Z X X Z X

 (15) 

Integrals in (14) and (15) are set integrals and the 

expressions for transitional density and likelihood 

function are also set integrals. In a special case for 

Bernoulli RFS by assuming Xk is a singleton ( ( ) 0,f =X  

if | | 1),>X  the set integral simplifies to: 

( ) ( ) ({ })

1 ( ) 1.

f f f d

q q p d

δ = ∅ +

= − + =

∫ ∫

∫

X X x x

x x

 (16) 

The binary random variable {0,1}
k
∈ε  is introduced 

for modeling target appearance and disappearance during 

the whole period, where 1
k
=ε  illustrates that the target 

existing on time k. Dynamics of 
k
ε  is modeled by the 

first order Markov chain with a transitional probability 

matrix ,Ξ  which is defined as 
1

{ 1 |
ij k k

P j
−

Ξ = = −ε ε  

1}i= −  for , {1,2}.i j∈  The matrix is structured as 

following: 

1
,

1

b b

s s

p p

p p

−⎡ ⎤
Ξ = ⎢ ⎥−⎣ ⎦

 

where 
1

: { 1| 0}
b k k
p P

+
= = =ε ε  is the probability of target 

birth whereas 
1

: { 1| 1}
s k k

p P
+

= = =ε ε  is the probability 

of target survival. The PDF | 1( )
k k
b

−

x  also denotes the 

birth density once the target appears during the time 

interval 
1
.

k k
t t

−

−  Thus the Bernoulli RFS Xk is 

described by PDF | 1 1( | )
k k k k

φ
− −

X X  as following: 

| 1
| 1

1 ,
( | )

( )

b

k k

b k k

p

p b
φ

−

−

−⎧⎪
∅ = ⎨

⋅⎪⎩
X

x
 
if

if { },

= ∅

=

X

X x
 

| 1 1
| 1 1

1 ,
( | )

( | )

s

k k k k

s k k k k

p

p
φ

π− −

− −

−⎧⎪
= ⎨

⋅⎪⎩
X X

x x
 
if

if { }.

k

k

= ∅

=

X

X x
 

 (17) 

The set observation Zk is considered as the union of 

two random finite sets: 

,
k k k
= ∪Z C W  (18) 

where Wk represents the measurements which originated 

from the targets. Ck represents the set of false detections, 

modeled by a Poisson distribution: 

{| | } , 0,1,2, ,
!

v

k

e
Pr v v

v

λ
λ

−

= = =C �  

( ) ( ),

k

k
e c

λ
κ λ

−

∈

= ∏
z C

C z  (19) 

where false detections are considered as IID random 

values with PDF c(z), intensity ( ).κ ⋅  

Wk consists of multiple measurements with detected 

probability pd. Assuming Lk generating points at time k, 

model the RFS 
,1 ,

{ , , }
kk k k L

=W w w�  as a binomial 

RFS which treats the individual points tracking issue to 

the extended target tracking. The PDF of RFS Wk is 

given by: 

| | | |!
( | { }) (1 )

( | |)!

( | ).

k k k

k

Lk

k dd

k k

k

L
p p

L

g

η
−

∈

= −

−

∏

W W

w W

W x
W

w xi

 

Similar to (17), the likelihood function for Zk is 

represented as empty and existing as: 

( | ) ( ),
k k

ϕ κ∅ =Z Z  (20) 

1: ( )

| || |

!
( | ) ( ){(1 )

( | | !)

( | )
(1 ) },

( )

k

Lk k

k

L k

k k d

k

L

dd

L
p

L

g
p p

c

ϕ κ

λ

Ω∈

−ΩΩ

∈Ω

= − +
− Ω

⋅ −

∑

∏

Z

z

Z x Z

z x

z

P

 

 (21) 

where 
1: ( )k kL Z
P  is the set of whole subsets of Z with 

cardinalities equal to 1, .,
k

L�  

According to (8), the Bernoulli RFS is therefore 

specified by: 

|

|
| |

1 ,
( | )

( )

k k

k k k k

k k k k

q
f

q s

−⎧⎪
= ⎨

⋅⎪⎩
X Z

x
  

if  

if  { },

k

k

= ∅

=

X

X x
 

where the posterior probability of target existence is 

considered as | 1: ;{ 1| }
k k k k
q P= = Zε  the posterior spatial 

PDF of target is considered as | 1: .( ) { | }
k k k k
s p=x x Z  

According to (14), the predict probability of existence 

and the spatial PDF of the Bernoulli filter are as 

following: 

| 1 1| 1 1| 1(1 )
k k b k k s k k
q p q p q

− − − − −

= − +  (22) 

1| 1 | 1

| 1

| 1

1| 1 | 1 1 1| 1 1 1

| 1

(1 ) ( )
( )

( | ) ( )
.

b k k k k

k k

k k

s k k k k k k k k k k

k k

p q b
s

q

p q s d

q

π

− − −

−

−

− − − − − − − −

−

−

= +

∫

x

x

x x x x

 (23) 

The above equations specify the prediction of the 

Bernoulli filter, whereas the update probabilities are 

based on (15) as following: 

| | 1
| 1

1

1
,k

k k k k

k k k

q q
q

−

−

− Δ

=

− Δ

 (24) 

|

| |

| |

( )

! ( | )
(1 )

( )( | |)!(1 )

1

k

k k

L k d

d k L

k d

k

s

L p g
p

cL p λ

Ω

− + Ω

∈Ω

− +

− Ω −
=

−Δ

∑ ∏
z

x

z x

z

 

| 1( ),
k k
s

−

⋅ x  (25) 
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where 

| |

| |

| 1

!
1 (1 )

( | |)!(1 )

( | ) ( )

.
( )

k

k

L k d

k d L

k d

k k

L p
p

L p

g s d

cλ

Ω

− + Ω

−

∈Ω

∈Ω

Δ = − − −

− Ω −

⋅

∑

∏∫

∏
z

z

z x x x

z

 

Using these random finite set models it is possible to 

construct extended target tracking analogous to the case 

of single-target tracking. 

It is to be noted that neither the predict nor the update 

equations have closed form solutions. The Sequential 

Monte Carlo method is proposed to provide a generic 

implementation of the Bernoulli filter. More details of 

the SMC Bernoulli filter is given [16]. 

 

3.4. Implementation details 

Under RFS framework, visual odometry is considered 

a special case for the Bernoulli filter by assuming Xk is a 

singleton ( ( ) 0,f =X  if | | 1).>X  Features are consi-

dered as multiple measurements that originated from the 

extended target ego-motion vector. Similar to the Bayes 

filter in (5), the Bernoulli filter also requires a motion 

process and a measurement process to represent the 

mapping between the state and the observation at each 

frame. 

In this paper, the state is defined as: 

d d d
, , , ,

d
,,

d d

T

k k k

k k k k

x y
x y

t t t

β
β

Δ Δ Δ⎡ ⎤
= Δ Δ Δ⎢ ⎥
⎣ ⎦

x  (26) 

where ( , , )
k k k
x y βΔ Δ Δ  is defined as the ego-motion 

vector at time k, 
d d d

d d d
( , , )k k kx y

t t t

βΔ Δ Δ
 is the corresponding 

velocity. Furthermore, ( , )
k k
x yΔ Δ  is also considered as 

the translation movement while 
k

βΔ  is the rotation 

change. Assuming the target has a constant velocity 

model, the state transition matrix F is defined: 

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1
.

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F  (27) 

The process noise is defined by: 

2 2 2 2 2 2

d d d

d d d

, , , , , .

k k kk x y x y

t t t

Q diag β βσ σ σ σ σ σ
Δ Δ Δ Δ Δ Δ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (28) 

Regarding the measurement process, the equation is 

established based on Euler’s rotation theorem as follow-

ing: 

1

1

cos sin
,

sin cos

k k k k k

k k k k k

x x x

y y y

β β

β β

+

+

Δ − Δ −Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ − Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (29) 

which maps the state to the associated features ( ,
k k
x y  

is considered as the feature’s position in vehicle coordi-

nates at time k). 

Algebraic manipulations on (29) obtains a pseudo 

measurement process as following: 
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where the observation noise is described as: 

2 2([ , ]).
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R diag σ σ=  (30) 

In this paper, measurements 
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x y x y

+ +
 are 

randomly generated by combining features pairs on con-

secutive frames. 

The state  
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is considered as the combination of the ego-motion vec-

tor and its velocity. The Bernoulli filter is utilized to 

track the object centroid instead of tracking individual 

scattering measurements. Visual odometry is therefore 

addressed by the Bernoulli filter as an extended target 

tracking problem as following: 

Measurements are considered as originating from the 

extended target and clutter, while the clutter doesn’t sa-

tisfy (29). The benefit of the Bernoulli filter is that it 

models the set-valued observations as RFS and allows 

the solution to the problem of dynamically estimating 

target in the presence of clutter and association in a 

Bayes filtering framework. Regarding to a standard 

Kalman filter, it needs a one-to-one relation between real 

measurements and real targets solved by data association. 

However, the Bernoulli filter overcomes this as it is an n-

to-one mapping (here n includes the true measurements 

and clutter), which is a robust way for tracking an ex-

tended target. The clutter influence (falsely associated 

pairs) is eliminated according to posterior density under 

Bayes rules. 

 

4. EXPERIMENTAL RESULTS 

 

The proposed approach is evaluated by an off-the-

shelf dataset from KITTI [18] which collects data from 

GPS, gyroscope and stereo camera at 10 frames/s with a 

resolution of 1344×391. All sequences correspond to the 

real traffic conditions in urban scenarios where the 

vehicle has the average speed of 40km/h. Features are 

detected by SURF descriptor while the tracking phase is 

processed in vehicle coordinates. A dead reckoning 

method is utilized to calculate the global trajectory at 

each frame [24]. 

Comparative results for visual odometry between the 

PHD filter and the standard SfM techniques (RANSAC 
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based visual odometry) have already been investigated in 

our previous work [11,12]. In this paper, the focus is on 

the performance evaluation of the PHD filter and the 

Bernoulli filter. In the PHD implementation, a Gaussian 

Mixture PHD filter [14] is implemented to track 

individual features under linear Gaussian assumptions 

with a closed form solution. From the physical model in 

Euler’s rotation theorem, individual features are 

considered with the same velocity-motion vector while 

the vehicle’s ego-motion vector is therefore acquired by 

calculating the average velocities of each feature. 

Regarding the Bernoulli filter; a detector-output 

measurement model of Bernoulli particle filter is utilized 

(the pseudo code can be found in [16]). In Bernoulli 

implementation, the ego-motion vector is considered as 

an extended target while the features are considered as 

the multiple measurements originated from the extended 

target. Although the data association issue is avoided in 

both solutions, in contrast to the PHD filter, the Bernoulli 

filter calculates the ego-motion filter solely on the 

measurements. 

Fig. 2 illustrates the tracking phase in vehicle 

coordinates. There is a small region contains lots of 

features in Fig. 2, which is a challenge for RANSAC 

based visual odometry since features are not uniformly 

distributed throughout the whole space. Furthermore, 

those features are originated from moving objects that 

influence the estimation precision. However, under the 

RFS framework, the above issues are addressed by both 

PHD and Bernoulli filters. As illustrated in Fig. 2, the 

final estimations from the PHD filter are uniformly 

distributed and each state contributes the same import-

ance to calculate the ego-motion vector. Furthermore, 

since the PHD filter propagates the posterior intensity 

according to the dynamic system model, the estimation 

still keeps high precision although those features are 

stemming from moving objects. Finally, the ego-motion 

vector is acquired by calculating the average velocities of 

each state. With respect to the Bernoulli filter, the goal is 

to track the features’ centroid (ego-motion vector) 

instead of tracking individual features. Therefore, there is 

no Bernoulli representation in Fig. 2. As an extended 

target, features from consecutive two frames are 

considered as the measurements to directly estimate the 

ego-motion vector. Influences from moving objects are 

eliminated based on the posterior spatial probability 

density function. 

A number of ten scenarios are presented to illustrate 

the potential of the Bernoulli filter for visual odometry. 

In Fig. 3, the blue line denotes the true trajectories while 

the red and green lines denote the trajectories acquired 

by the Bernoulli filter and the PHD filter, respectively. It 

can be observed that both the PHD and the Bernoulli 

filters are close to the true trajectories, although the 

measurements set may contain the false associated 

features. 

Table 1 summarizes the results of the corresponding 

scenarios. The index illustrates the experiments in Fig. 3 

and the distance is the length of the experiment. 

Odometry error means the distance between the 

estimated location and the true location in the end. As we 

can see, the Bernoulli filter provides a more precise 

result in Figs. 3(a), (d), (e), (i) and Fig. 3(j), an almost 

equal result in Figs. 3(b), (f), (g) and Fig. 3(h), a worse 

result in Fig. 3(c). The reason why Fig. 3(c) has a huge 

bias is still being investigated. However, we can achieve 

the conclusion that the Bernoulli filter might be more 

suitable for visual odometry than the PHD filter. 

The contributions of utilizing Bernoulli filter for visual 

odometry are concluded as following: 

First, the matching process is avoided since the whole 

features are considered as the multiple measurements 

originated from the extended target. For a standard visual 

odometry algorithm, RANSAC has been widely utilized 

for motion estimation in the presence of outliers. It 

achieves its goal by iteratively selecting a random subset 

of the original data and the matching process is therefore 

required. However, the Bernoulli filter avoids the 

matching process by modeling a set-valued state and 

observation to consider the visual odometry as an 

extended target tracking problem. Furthermore, an n-to-

one mapping relationship between measurements and 

target is proposed which exhibits high performance in 

visual odometry. Clutter influence is eliminated 

according to the posterior density calculated by the 

Bernoulli filter. 

 

Table 1. Performance of the algorithms. 

Index Distance Frames
Bernoulli 

Odometry Error 

PHD 

Odometry Error

a 429m 1423 5.1m(1.2%) 10.3m(2.4%) 

b 582m 354 8.1m(1.4%) 8.3m(1.42%) 

c 297m 818 7.14m(2.4%) 3.7m(1.24%) 

d 233m 966 2.3m(0.99%) 5.6m(2.4%) 

e 560m 1248 5.6m(1%) 8.3m(1.5%) 

f 400m 601 3.7m(0.92%) 3.61m(0.9%) 

g 260m 447 0.5m(0.19%) 0.75m(0.28%)

h 92m 111 0.753m(0.82%) 0.95m(1.1%) 

i 196m 341 1.8m(0.91%) 4.5m(2.3%) 

j 490m 1401 7.28m(1.49%) 8.1m(1.4%) 
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Fig. 2. Features in vehicle coordinates. 
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Fig. 3. Visual odometry result. Red line is the Bernoulli 

filter estimation. Green line is the PHD filter 

estimation. Blue line is the True trajectory. 

 

Second, unevenly distributed features are considered 

as multiple measurements from an extended target 

whereas the effective extracting techniques are therefore 

avoided. Unevenly distributed features may influence the 

estimation results both provided by RANSAC and the 

PHD filter. Regarding to RANSAC approach, the 

influence exists in the initiation process since it requires 

a random subset during the iteratively process. On the 

other hand, although the PHD filter has the merging and 

pruning techniques to consider aggregated features as a 

single target, how to calculate the optimal merging 

threshold is still an issue. With respect to the Bernoulli 

filter, features are considered as the set-valued observa-

tion to update the ego-motion vector which allows the 

solution to the problem of dynamically tracking target 

without considering measurements’ distribution. Features 

aggregated in a small region only influences individual 

targets, in contrast to the extended target tracking. 

Third, the Bernoulli filter propagates the posterior 

intensity to eliminate the influences in condition that the 

features stemming from the moving objects. For feature 

based visual odometry approaches, how to remove 

features originating from moving objects is a challenge. 

Most researchers utilize the RANSAC approach by 

considering those features as outliers. However, as 

features are mostly from moving objects, those from 

static objects may be considered as the outliers. Within 

the RFS framework, the Bernoulli filter addresses this 

challenge by propagating the Bernoulli distribution 

which approximates the posterior density at each frame. 

According to the dynamic motion model (equation (5)), 

features from the moving objects are eliminated as 

clutter by Bayes filtering. 

Last, the computation requirement is guaranteed. 

Compared to the standard SfM techniques which focus 

on individual features, the Bernoulli filter only tracks the 

ego-motion vector. In the PHD implementation, the ego-

motion vector is calculated by averaging the correspond-

ing velocities of the whole targets. The number of targets 

may become huge as time passes. Regarding the 

Bernoulli filter, features are treated as multiple 

measurements originated from an extended target. The 

overloaded phenomenon is therefore eliminated. 

 

5. CONCLUSION 

 

Visual odometry in urban scenarios is challenging due 

to a large amount of outliers. The PHD filter for visual 

odometry has already been investigated in our previous 

work. The average states of features are calculated to 

approximate the ego-motion vector under RFS 

framework. In this paper, a Bernoulli filter is proposed to 

address visual odometry in another way. Features are 

considered multiple measurements which originated 

from an extended target while the ego-motion vector is 

considered as the state of the target. Compared to the 

PHD solution, the Bernoulli filter estimates the state 

instead of tracking individual features, which provides a 

recursive filtering algorithm in the presence of associ-

ation uncertainty. The overloaded issue is also avoided 

since the tracking process is solely focused on the 

extended target itself. Furthermore, the proposed Bernoulli 

filter avoids the clustering step necessary within the PHD 

filter, which makes the Bernoulli filter better adaptable in 

non-linear environments. The effectiveness of the pro-

posed approach has been illustrated through experiments 

and an improvement in performance was achieved. 
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