
10 Model-Based Analysis and Development of

Dependable Systems

Christian Buckl1, Alois Knoll2, Ina Schieferdecker3, and Justyna Zander3

1 fortiss GmbH, Germany
buckl@fortiss.org

2 Technische Universität München, Germany
knoll@in.tum.de

3 Technical University Berlin, Germany, Fraunhofer FOKUS, Germany
{ina.schieferdecker,justyna.zander}@fokus.fraunhofer.de

Abstract. The term dependability was defined in the 1980s to encom-
pass aspects like fault tolerance and system reliability. According to IFIP,
it is defined as the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers. Hence, depen-
dability is the capability of a system to successfully and safely complete
its mission. This chapter concentrates on safety and reliability aspects.
It starts with a review of the basic terminology including, for example,
fault, failure, availability, and integrity. In the following, a mathematical
model of fault-tolerant systems is defined. It is used in the further sec-
tions for comparison with different techniques for safety and reliability
analysis. Also selected currently available model-based development tools
are reviewed. A summary and identification of future research challenges
conclude the chapter.

10.1 Introduction

In the last years, the trend to replace mechanical/electrical solutions by software
centric solutions has been intensified. Even systems with strong requirements on
safety and reliability are automated by the use of computer systems. Although
the term dependability comprises several other aspects as well, the focus of this
chapter is set on safe and/or reliable systems. These systems have to be designed
fault-tolerant to fulfill the targeted requirements.

Typically, fault-tolerance is achieved by running the applications on replicated
hardware and/or software components. The resulting complexity of the conside-
red systems raises major concerns, in particular with respect to the validation
and analysis of performance, timing, and dependability-related requirements,
but also with respect to development times. Model-driven engineering addresses
the problem of complexity by increasing the level of abstraction and by partial
or total automation of selected phases within the development process.

Several tools are available for modeling dependable systems, many of them
based on the Unified Modeling Language [1]. This chapter, however, focuses on
model-driven methods that automate phases in the development process either

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 271–293, 2010.
� Springer-Verlag Berlin Heidelberg 2010

272 C. Buckl et al.

by automating the dependability analysis for certain system architectures, or by
automating the code generation process.

The chapter starts with a definition of terms relevant for dependable systems
in Sec. 10.2. Section 10.3 presents a generic model of fault-tolerant systems
based on the work of Arora and Kulkarni [2, 3]. Section 10.4 discusses existing
approaches for reliability and safety analysis. Subsequently, three examples of
model-driven tools in the area of safety-critical systems are analyzed in Sec. 10.5.
The chapter is concluded by a summary and the identification of some research
challenges in Sec. 10.6.

10.2 An Overview on Dependability

The term dependability was defined in the 1980s to unite relevant aspects [4].
Laprie defined computer system dependability as the quality of the delivered
service such that reliance can justifiable be placed on this service. Avizienis et
al. [5] defined six attributes of dependable systems as depicted in Figure 10.1:
availability, reliability, safety, confidentiality, integrity, and maintainability. As
mentioned before, this chapter focuses mainly on safety and reliability aspects.

Dependability

Reliability MaintainabilitySafety IntegrityConfidentialityAvailability

Fig. 10.1. Dependability Aspects

Definition 10.1. Safety is defined as the freedom from those conditions that
can cause death, injury, occupational illness, or damage to or loss of equipment
or property [6]. It is also the expectation that a system does not, under defined
conditions, lead to a state in which human life is endangered [7].

Definition 10.2. Functional safety is part of the overall safety that depends
on a system or equipment operating correctly in response to its inputs [8].

In case when the correct behavior cannot be guaranteed a safety-critical system
should be brought into a safe mode (e.g., an emergency stop) instead of conti-
nuing to deliver the specified function. This is the main difference in comparison
to reliability:

Definition 10.3. Reliability is the ability of a device, system, or process to
perform a required function under given environmental and operational condi-
tions, and for a stated period of time [9].

Both, safety and reliability of a system can be impacted by faults, errors,
and failures. The system must handle them appropriately to achieve safety and

Model-Based Analysis and Development of Dependable Systems 273

reliability (i.e., it must be designed as fault-tolerant). The terms fault, error, and
failure can be explained best by using a three-universe model of Pradhan [10].
This model, an adaptation of the four-universe model introduced by Avizie-
nis [11], describes the different phases of the evolution from a fault to a failure.

The first universe is the physical universe, where faults occur.

Definition 10.4. A fault is a physical defect, imperfection, or flaw that occurs
within some hardware or software component [10].

Faults can be dormant for a long time and not influence the execution of the
component. When a fault is activated, the effects can be observed in the infor-
mational universe, classified as the second universe in [10].

Definition 10.5. An error is the manifestation of a fault [10].

Errors can be detected by the component itself, if some rules are defined to
evaluate the state of the component. However, these tests may not be able to
identify the cause of the error (i.e., the fault). Initially, errors are only reflected
in parts of the component’s state. If the error is not detected early enough by
the component, the error may cause a subsequent failure.

It is important to notice that different definitions for fault and error are used
in the literature as they are closely related concepts. Throughout this chapter,
we will try to use the terms as defined in the previous definitions. However, if in
the described projects or approaches the terms are used differently, we will use
the terminology of the projects.

Definition 10.6. A failure of a component occurs when the component de-
viates from the specified behavior [12].

Hence, the third universe is the external universe, where the deviation from
the expected behavior of a component can be observed. Consequently, a failure
is the event that can be detected by interacting components. Thereby, a failure
of a component can be a fault to its environment.

There are various reasons for faults. For instance, a fault can be a design
fault, a physical fault, or an operational fault. While design faults are always
active, physical faults are activated spontaneously with a certain probability.
Faults can be classified according to their effect, as well. The effect can either
be in the value domain or in the time domain [13]. Faults in the time domain
are, for example, lost or delayed messages in a communication channel, but
also replicated messages. Faults in the value domain are, for instance, erroneous
results or bit flips in a message.

Fault-tolerance is the technique to guarantee that despite the presence of
faults a system provides the specified behavior to its outer boundaries [4]. Fault-
tolerance is always based on the effective deployment of redundancy, additional
means that are not required to provide the specified behavior in the absence of
faults. It is important to note, that redundancy is not only restricted to replica-
ting hardware: the type of redundancy ranges from software or data redundancy
to time and hardware redundancy.

274 C. Buckl et al.

A concrete selection and implementation of fault-tolerance mechanism de-
pends on the number and types of the expected faults. These assumptions are
summarized in the fault hypothesis.

Definition 10.7. The fault hypothesis contains the assumptions about pos-
sible faults, their probability, and their effects to the components of a system.

Based on the concrete fault hypothesis, the developer has to select appropriate
mechanisms to tolerate these faults. Most of the different mechanisms are known
since the 1950’s due to the unreliability of the components at that time [5]. In
general, one can divide the applied fault-tolerance mechanisms into four groups:
error detection, error recovery, error handling / masking, and integration.

Definition 10.8. Error detection allows the detection and localization of er-
rors.

Detecting an error is the first step to achieve the fault-tolerance. After an error
is detected, the component has to analyze the affected subcomponents and the
error type. This is essential to perform error recovery.

Definition 10.9. Error recovery transforms a system state that contains one
or more errors into a state without detected errors [5].

There are different mechanisms to perform error recovery. The two most pro-
minent types are rollback and rollforward recovery. Rollback is realized by
restoring a previous state of the component [10]. This state is saved in a check-
point before the component detects the error. The difficulty of a rollback reco-
very arises from designing and generating the checkpoints. Especially, if several
components must be set back the realization may demand more efforts. The roll-
forward recovery uses application knowledge to compute a new, correct state out
of the erroneous state. Usually, this transformation implicates a reduced quality
of service.

Regardless of the concrete error recovery mechanism it is essential to ensure
that the same fault is not activated again.

Definition 10.10. Error handling prevents system’s state corruption after
the detection of a fault.

To correctly perform the error handling the first step is the localization of the
error and the identification of its cause. Within the second step, the fault is
isolated by excluding the affected component from further interactions with other
components. The affected component might be replaced by spare components.
Further possibilities are to use other components to deliver the functionality
in addition to the already delivered functionality or to degrade the system (i.e.,
graceful degradation). The isolated component can then be repaired, typically
by an external agent.

If a sufficient level of redundancy is employed in the system, explicit error
detection is not required. Instead one can use error masking.

Model-Based Analysis and Development of Dependable Systems 275

Definition 10.11. Error masking guarantees that programs continually sa-
tisfy their intended specification, even in the presence of faults [14].

Typical examples for error masking are hot-redundant systems, where several
redundant units are executed in parallel. Errors can be detected by comparing
the results. If the master unit is affected by an error, another correct unit imme-
diately takes over the master’s task. The erroneous unit is excluded and can be
repaired in the following. After a successful repair, it is necessary to reintegrate
the repaired unit into the system to preserve the intended dependability:

Definition 10.12. Integration allows a repaired component to resume with its
intended behavior and interaction.

For a successful integration, the state synchronization is essential. All parti-
cipating units must agree on a new system state. A correct implementation of
the state synchronization is an important, though complicated step.

The dependency goals and fault assumption determine the type of the fault-
tolerance mechanism applied in a system.

10.3 A Generic Model of Fault-Tolerant Systems

The development of dependable systems can be supported by modeling. On the
one hand, models are used to analyze the dependability of the system, (e.g.,
by using fault trees as discussed in Sec. 10.4. On the other hand, model-driven
approaches can be used for generation of code related to fault-tolerance mecha-
nisms.

In this section, a generic mathematical model of dependable systems is given.
It is based on the work of Arora et al. [2, 3]. Based on this model, we can
identify the basic aspects required to describe dependable system and compare
the differenct models used by the tools discussed in this paper.

In the following, we start by specifying the execution of a system. Subse-
quently, we introduce the effects of faults and of fault-tolerance mechanisms.

10.3.1 System Operation without Faults

Definition 10.13. A system S = (V, Π) can be described by a finite set of va-
riables V = {v1, ..., vn} and a finite set of processes Π = {π1, ..., πm}. The do-
main Di is finite for each variable vi. A state s of system S is the valuation
(d1, ...dn) with di ∈ Di of the program variables in V. A transition is a function
tr : Vin → Vout that transforms a state s into the resulting state s′ by changing
the values of the variables in the set Vout ⊆ V based on the values of the variables
in the set Vin ⊆ V.

Definition 10.14. The system is build up from a set of components C. A set
of variables Vc ⊆ V is associated with each component c ∈ C. Vc = Vc,internal∪
Vc,interface∪ Vc,environment is composed by three disjoint variable sets: the set of
internal variables Vc,internal, the set of interface variables Vc,interface, and the

276 C. Buckl et al.

set of environment variables Vc,environment. Internal variables can only be ac-
cessed and altered by the set of processes associated with C: Πc ⊆ Π. Interface
variables are used for component interaction and can be accessed by all interac-
ting processes. Environment variables are variables that are shared between the
component and the environment of the system. Note that environment variables
can only accessed by exactly one component. This set can be again divided into
the input variables Vc,input that are read from the environment and the output
variables that are written to the environment Vc,output.

Components can also be structured in a hierarchical way. A component
c ∈ C may consist of several subcomponents c1, ..., cn ⊂ C. The set of inter-
face variables Vc,interface ⊆

⋃
1≤i≤n Vci,interface of c is a subset of the inter-

face variables of its subcomponents c1...cn. The set of environment variables
Vc,environment =

⋃
1≤i≤n Vci,interface is the union set of all environment variables

of the subcomponents.

Definition 10.15. The functional behavior of a component c ∈ C is reflected by
the corresponding processes Πc. Let Vinterface = {v|v ∈ Vc′,interface ∧ c′ ∈ C} be
the set of all interface variables. Πc is specified as a finite set of operations of
the form guard → transition, where guard : Vguard → B is a Boolean expres-
sion over a subset Vguard ⊆ Vc ∪ Vinterface ∪ Vc,input and transition : Vin → Vout
is the appendant transition with Vin ⊆ Vc ∪ Vinterface ∪ Vc,input and Vout ⊆ Vc∪
Vinterface ∪ Vc,output. We refer to the old value of a variable by v and to the new
value by the primed variable v′.

The processes are expected to be deterministic, meaning that for each state s at
most one guard can evaluate to true. This condition can be easily implemented
by using one variable as a program counter and including this variable into the
guard expression.

However, by allowing different processes to coexist simultaneously, non-de-
terminism is introduced. There is no semantics which process will perform its
operation, if several processes have an enabled operation. While non-determinism
is not desirable for modeling the normal execution of the system, it is required
to model faults due to the non-deterministic behavior of faults. To achieve de-
terminism of the system execution, the interplay between different processes can
be implemented in a deterministic way by specifying adequate guards in such a
manner that for each possible state at most one process is enabled. To reach this
goal, one might need to introduce auxiliary interface variables or use the value
of time for time-triggered systems.

Definition 10.16. Time is modeled similar to a component and represented
by one process ΠTime realizing the time progress and a variable vtime containing
the current time. ΠTime reflects the logical time and cannot be affected by any
faults. In contrast, the local time on the individual computational nodes of the
distributed system is derived from the components describing the behavior of the
clocks used in the system, the related process, and its variables. The transitions
can describe their temporal behavior by adapting the local time variable.

Model-Based Analysis and Development of Dependable Systems 277

Until now, the system has been considered in the absence of faults and wi-
thout any fault-tolerance mechanisms. The first step to reach fault-tolerance is
to translate the safety specification into a set of properties that must be valid
for the application. While Arora et al. use computations and sequences of sub-
sequent states to express safety properties we use state predicates P to express
properties.

Definition 10.17. A state predicate P is a Boolean function over a set of
variables VP ⊂ V. The set of state predicates represents the specification of the
system and is therefore defined implementation-independent. Hence, the set of
variables VP ⊆

⋃
c∈C Vc,environment is a subset of all variables that can be observed

by the environment of the system.

It may be necessary to define auxiliary variables that record the progress of
the environment variables over time to express temporal properties. Establi-
shing these variables explicitly, a potentially unnecessary tracking of all variables
can be avoided. In general, only very few variables are needed for the history
state [14]. Liveness specifications can be expressed by state predicates using the
time process Πtime.

The transitive closure of the transitions of all processes defines the fault-free
system as depicted in Fig. 10.2. It is defined as all states that can be reached
beginning from some start states sstart. The state predicates P describing the
intended operation must be true for all states within this transitive closure.

10.3.2 Faults

The introduction of faults into our model of fault-tolerant system is straightfor-
ward and can be designed as a component FH.

Definition 10.18. The fault component is described as a set of variables Vc,FH
and processes Πc,FH that perform actions in accordance to the fault hypothesis.

Due to the non-deterministic behavior of processes, the non-deterministic beha-
vior of certain fault types appears. The propagation of an error depends, in turn,
on the interaction between different components and their implementation. The-
refore, it is necessary to define the behavior of a component in the presence of
faults. This can be done by changing the actions of Πc for a specific component.
These could be the introduction of new actions or the addition of conditions to a
guard. Both, additional elements and new actions can be based on the variables
Vc and Vc,FH.

A good example is a fail-stop [14], where an auxiliary variable upc denoting
the fault status of a component c can be introduced. For all actions of Pc, the
guard is expanded with a condition !upc to restrict the execution to such states
where the component is not affected by a fail-stop fault.

10.3.3 Fault-Tolerance Mechanism

Kulkarni and Arora [15, 3, 14] pointed out that it is sufficient to use detectors
and correctors to reach fault-tolerance.

278 C. Buckl et al.

Intended
Operation

Exceptional Operation
(fail-safe, graceful

degradation,...)

Behavior
Conflicting

Specification

Legend:
 Program Transition
 Fault Transition (in FaultHypothesis)
 Fault Transition (not in FaultHypothesis)
 Error Handling
 Error Recovery Transition
 Correct State
 Erroneous State
 Unsafe/Unreliable State

Fig. 10.2. Fault-Tolerance Concepts

Definition 10.19. Detectors de : V′ ⊆ V → B are Boolean functions that mo-
nitor the variables of a system and can detect errors. Using the definition of
predicates, a predicate d (Detector) detects a predicate e (erroneous state), if the
following conditions are satisfied for each possible sequences s0, s1, ...:

– Safeness: ∀i ≥ 0 : de(si) ⇒ e(si). This condition requires that, if the detec-
tor detects an erroneous state, the decision has to be correct. False positives
are not accepted.

– Eventual Detection: ∀i ≥ 0 : e(si) ⇒ ∃j ≥ i : de(sj)∨!e(sj). This condi-
tion requires that a detector will eventually detect a permanent erroneous
state.

– Stability: ∀i ≥ 0 : de(si) ⇒ de(si+1)∨!e(si+1). The detector is also requi-
red to be stable, that is, it should not signal the disappearance of an error if
the error is still present.

Definition 10.20. Correctors are actions of the form guard → transition
that transform an erroneous system into a correct system. The actions are trig-
gered by a detected error.

This notion is, however, very abstract and it is useful to distinguish between
different types of correctors. We will differentiate between operations for error
treatment, error recovery, proactive operations, and integration. Operations for
error treatment describe the reactions of the system when new errors are detec-
ted. A classic error treatment is the switch to a correct backup unit or a rollback

Model-Based Analysis and Development of Dependable Systems 279

recovery operation [16]. The operation may be based on previously executed
proactive operations that are executed to generate information redundancy
(e.g., in the form of checkpoints). The introduction of proactive operations al-
low a separation of fault-tolerance concepts and application logic. Erroneous
components are usually excluded from the system operation and can perform
error recovery operations offline. After a successful completion of the recovery
operations, the erroneous components can be integrated to guarantee the achie-
vement of the reliability goals. The integration operations perform the state
synchronization.

10.3.4 Summary: Modeling of Dependable Systems

When analyzing the discussed formal model, it becomes evident that it is ne-
cessary to model all three aspects of dependable systems: the normal operation,
the fault hypothesis, and the fault-tolerance mechanism. A strict separation of
the related mechanisms supports a better maintainability and increases the reu-
sability. However, most of the existing approaches do not support the modeling
of all three aspects or mix these aspects.

10.4 Reliability and Safety Analysis

Dependability analysis techniques have been developed so as to evaluate the
systems and correct the failures. Initially, reliability and/or availability were
the most interesting attributes to be analyzed. For that, just the binary states
(e.g., on or off) of the system and its components were considered. Therefore,
Boolean methods such as reliability block diagrams, fault or success trees were
adequate and sufficient. These classical methods are widespread. However, they
provide a static view of the system only. As embedded systems grew rapidly,
a dynamic view has been needed to analyze the dependability. Such a dynamic
view can represent multiple states of a system changing over time. An example of
a technique handling this behavior is Continuous Time Markov Chains approach.

The objective of the reliability analysis is to identify the kinds of system
failures that are to be expected (i.e., qualitative analysis) or the distribution
of the times-to-failure of a component, subsystem or system (i.e., quantitative
analysis). The reliability analysis is performed during system design or operation
to decide whether the reliability level of a system is acceptable or which parts
of a system are particularily critical. Its results indicate how and which parts of
the system should be improved.

In the following, we shortly describe selected, but typical reliability and safety
analysis methods:

– Failure Modes, Effects and Criticality Analysis (FMECA)
– Fault Tree Analysis (FTA)
– Markov Chains
– Model-based Testing (MBT)

280 C. Buckl et al.

10.4.1 The FMECA Method

The Failure Modes, Effects and Criticality Analysis (FMECA) is ba-
sically a qualitative reliability analysis method that uses a static view of the
system and/or its components. It analyzes potential failure modes within a sys-
tem, classifies the severity, and determines the failure’s effects on the system.
It is widely used in the manufacturing industries in various phases of the pro-
duct life cycle [17]. It also includes a criticality analysis that is used to chart
the probability of failure modes against the severity of their consequences. The
result highlights failure modes with relatively high probability and severity of
consequences, allowing remedial effort to be directed where it will produce the
greatest value [18].

FMECA is one of the first systematic approaches to failure analysis. It was
developed in the 1950s for the use in U.S. military systems. It is put forward
by international standards, in particular in SAE-ARP 5580 [19], IEC60812 [20],
and BS 5760-5 [21].

Applying FMECA the system is split into subsystems. Within each subsystem
the components and their relations are identified. Functional block diagrams are
used to represent them. For each component a detailed FMECA worksheet (see
Fig. 10.3) is specified. It includes:

– functions and operational modes;
– failure modes, their causes, and their detection methods;
– failures effects;
– failure rates and their severity; and
– a specification of risk reducing measures.

Ref.
no Function

Opera-
tional
mode

Failure
mode

Failure
cause or

mechanism
Detection
of failure

On the
subsystem

On the
system
function

Failure
rate

Severity
ranking

Risk
reducing
measures Comments

Description of unit Description of failure Effect of failure

System:

Ref. drawing no.:

Performed by:

Date: Page: of

Fig. 10.3. FMECA worksheet

Typically, FMECA is integrated in the design process right from the begin-
ning and updated during the development and maintenance. It is most often a
bottom-up technique. FMECA does not handle dependencies between compo-
nents, cannot handle systems with redundancy, and cannot cope with common
cause failures or cascading failures. As single events are considered, the effects of
sequences of events cannot be addressed. Furthermore, as FMECA has a focus
on hardware component failures human errors and software errors cannot well
be reflected.

On the other hand, FMECA is simple to apply. It requires, however, thorough
knowledge of a system and its environment. FMECA can be tailored to meet
specific industry or product needs. It helps to reveal weak points in the system

Model-Based Analysis and Development of Dependable Systems 281

structure during early phases of system design and by that, it can help to avoid
expensive design changes. FMECA is very effective where system failures are
caused by single components failures.

10.4.2 The Fault Tree Analysis Method

The Fault Tree Analysis (FTA) is used to show causes or combinations of
causes that then lead to overall system failures. It is basically a quantitative
reliability analysis method that uses a static view of a system.

A fault tree is a logic diagram that displays the interrelationships between
a potential critical event in a system and the causes for this event. It analyzes
combinations of causes using Boolean logic with and- and or-gates. The fault
tree analysis (FTA) method was developed at Bell Telephone Laboratories [22].
It was extended by Boeing and became a part of the IEC 61025 standard [23].

FTA is used in the design phase to reveal hidden failures caused by underlying
combinations of faults or errors. During system operation, it is used to identify
potential hazardous combinations of component failure and operator or proce-
dural faults. It is also used in combination with FMECA to analyze selected
system parts.

top event

or

intermediate
event

1 2

intermediate
event

basic event

and

or

4 5

basic event basic event

3

basic event basic event

Fig. 10.4. A Fault Tree

A fault tree (see Fig. 10.4) is constructed following the procedure provided
below:

(1) Select a top level event for analysis.
(2) Identify faults that could lead to the top level event and that represent an

immediate, necessary, or sufficient cause that results in the upper event.
(3) Connect these fault events to the top event using logical and- or or-gates.
(4) Proceed level by level until all fault events have been described in an appro-

priate level of resolution.

282 C. Buckl et al.

Given a fault tree, the minimal cut sets can be determined: for a given event,
the set of basic events that lead to this event are identified. In a qualitative
analysis of a fault tree, the minimal cut sets give potential combinations of
environmental factors, human errors, normal events, and component failures
that may result in a critical event in the system.

For a quantitative analysis, failure rates for each basic event are assigned
which are then cummulated to the probability of the top event (i.e., the unwanted
incident) by assuming that all the basic event parts of the minimal cut set of
the top event are independent and happen simultaneously.

Fault trees provide a static view on event combinations that may cause in-
cidents. They cannot accurately model system dynamics. A fault tree is just
a Boolean method (failure or success only). For the quantitative analysis, ba-
sic events are assumed to be statistically independent, so that the results are
imprecise whenever this assumption does not hold.

Fault trees provide a clear picture of component failures and other events that
may cause unwanted incidents. The graphical model is well known and fairly
simple to explain. It forces users to understand the details of a system and to
discover weaknesses at an early stage. It is able to handle common cause failures
if component dependencies are well defined. It addresses redundant components
in a system. Last but not least, the static nature of fault trees may be mitigated
using scenario-based simulation of fault trees.

10.4.3 Markov Analysis

The Markov chain is a mathematical model for the random evolution of a
memoryless system, for which the likelihood of a future state, at any given mo-
ment, depends only on the present system state and not on any past states.
For reliability analysis Markov chains (also called Markov models) and their va-
rious flavors have been extensively used. Markov analysis enables a quantitative
reliability analysis of the dynamic system behavior.

For Markov modeling the states of a system and transitions between them are
considered. The system transitions are typically between a perfect state and a
failure state. Transition probabilities define the degradation/failure rates and the
repair rates. The Markov model has been developed by Andrej A. Markov [24].
It has been included in the standards IEC 61165 [25] and IEC 61508 [8].

A Markov model (see Fig. 10.5) is established according to the following
procedure:

(1) Define all system states including failure states such as operation, degrada-
tion, maintenance, or repair.

(2) Define transitions between the states and assign failure and repair rates.
(3) Define initial state probabilities.

For large systems Markov models are often exceedingly large, complicated, and
difficult to construct and validate. They suffer from the state space explosion
problem. On the other hand, Markov models are able to handle systems that

Model-Based Analysis and Development of Dependable Systems 283

DescriptionSystem state
3
2
1
0

Both components functioning
Component A in failed state
Component B in failed state
Both components in failed state

A two-component system

Its Markov model Its evolution over time

Its states

Fig. 10.5. Exemplified States Evolution over Time

exhibit strong dependencies between its components. System reconfiguration due
to failures, repair, and switching strategies can easily be described. The analysis
of a Markov model does not only give the probabilities for states, but also for
sequences of events.

Although Markov models are a powerful and mathematically sound formalism
for analysing system reliability, a Markov model is considered to be too low-level,
which makes building a Markov model a tedious and error-prone task [26]. Hence
this method is not yet widely used, despite the considerable benefits offered by
Markov analysis [27].

10.4.4 Testing and Model-Based Testing

Testing is an analytic means for assessing the quality of systems [28, 29]. It ”can
never show the absence of failures” [30], but it aims at increasing the confidence
that a system meets its specified behavior. Testing is an activity performed for
improving the product quality by identifying defects and problems. It cannot
be undertaken in isolation. Instead, in order to be in any way successful and
efficient, it must be embedded in adequate system development process and
have interfaces to the respective sub-processes.

Model-based Testing (MBT) relates to a process of test generation from a
model of the system under test (SUT) by application of a number of sophisticated
methods. It can be understood as the automation of black-box or white-box test
design [29]. Several authors [31, 32, 33, 34, 35, 36] define MBT as testing in
which test cases are derived in whole or in part from a model that describes
some aspects of the SUT based on selected criteria in different contexts.

MBT allows tests to be linked directly to the SUT requirements, makes rea-
dability, understandability, and maintainability of tests easier. It helps to ensure
a repeatable and scientific basis for testing and it may give good coverage of all
the behaviors of the SUT [32]. Finally, it is a way to reduce the efforts and cost
for testing [37].

The term MBT is widely used today with slightly different meanings.
Surveys on selected MBT approaches are given in [38, 32, 29, 39, 40]. In the

284 C. Buckl et al.

automotive industry MBT is used to describe all testing activities that are related
to model-based development [41, 42]. To that end, the authors of [43, 44, 45, 46]
define MBT as a test process that usually encompasses a combination of dif-
ferent test methods which utilize the executable system model as a source of in-
formation. Thus, the automotive viewpoint on MBT is rather process-oriented.
A single testing technique is often not enough to provide an expected level of
test coverage. Though, it strongly depends on the targeted coverage criteria,
for example, white/box test criteria can be succesfully fulfilled with a single
method. Relating to all the test dimensions different test approaches should be
combined to complement each other (e.g., functional and structural). Then, ana-
lyzing testing activities throughout the entire test process, one can assume that
if sufficient test coverage has been achieved on model level, the test cases can be
reused for testing the control software generated from the model and the end-
product unit within the framework of back-to-back tests [47]. With this practice,
the functional equivalence between executable model, code, and product can be
verified [41].

10.4.5 Summary: Reliability and Safety Analysis

This section reviewed reliability and safety analysis methods and provided details
on FMECA, FTA, Markov models, and MBT. A comparison of these methods
is given in Table 10.1.

Table 10.1. Comparison of Dependability Analysis Methods

Method Modeling Concepts Dynamic Modeling Quantitative Eva-
luation

FMECA Components and
Failures

No No

FTA Events No Yes
Markov Models States and Transi-

tions
Yes Yes

Test Methods Any Yes Yes

Markov models and many testing methods allow to analyze system behavior
dynamically. Though, Markov chains are not wide-spread basically because of
their low abstraction level. Techniques described in Sec. 10.5, such as interaction-
based models, AADL, or proprietary solutions, can be applied as complementary
methods on a higher abstraction level.

10.5 Languages and Tool Support

After introducing the different methods for safety and reliability analysis, this
section discusses selected examples for model-based development tools that tar-
get the area of dependable systems. Since tools based on the Unified Modeling

Model-Based Analysis and Development of Dependable Systems 285

Language are already discussed in chapter UML for Software Safety and Certica-
tion, this section focuses on domain-specific approaches. Zougbi et al. pointed out
that generic UML-based tools have the disadvantage of not covering all neces-
sary aspects for modeling fault-tolerant real-time systems [48]. They also do not
support adequate code generators supporting transformations from more sophis-
ticated models than class diagrams and state charts [49]. The reason is mainly
the lack of precise semantics of the UML models [50, 51]. The main advantage
of domain-specific tools is the possibility to use restrictions (e.g., with respect to
the model of computation) suitable for the intended domain. Therefore, it is pos-
sible to offer a better tool support, for example extensive code generation ability
or formal verification. In the following, we discuss three concrete examples.

Within a project at the University of California in San Diego (UCSD), a
taxonomy of software failures and interaction-based models for logical and de-
ployment architectures were developed for the automotive domain [52]. Based on
these models, a verification tool has been developed that allows the generation
of models that can be feed into the SPIN model checker [53].

FTOS [54] is amodel-driven tool developedat theTechnicalUniversityMünchen
(TUM). It supports modeling of dependable systems and code generation for non-
functional properties such us scheduling, communication within the distributed
system, and fault-tolerance mechanisms. It is based on a meta code generation fra-
mework [55] and thus, supports expandability with respect to both the modeling
language and code generation ability.

The third tool developed by LAAS-CNRS [56, 57] is based on Architecture
Analysis and Design Language (AADL) [58]. The main contribution of this work
is the definition of reusable fault-tolerance patterns that can be used at architec-
tural level. These patterns can be instantiated and customized for a particular
system. By transforming the AADL model into a stochastic model, dependability
measures can be obtained.

10.5.1 Models

In the following, different approaches based on the applied models are discussed.
Note, the terminology provided at the beginning of this chapter is used in the
upcoming paragraphs independently of other variants proposed elsewhere (e.g.,
error and fault definitions).

Logical and Deployment Models. The first two approaches mentioned above offer
two models to specify the application logic and hardware architecture (i.e., plat-
form). In the UCSD approach, the Logical Model represents the Platform Inde-
pendent Model (PIM) and the Deployment Model the Platform Specific Model
(PSM) in the spirit of the Model Driven Architecture (MDA) [59]. The mapping
is achieved by a Mapping Model as depicted in Fig. 10.6. This contrasts the ap-
proach of FTOS, where the hardwaremodel is firstly defined and the resulting soft-
ware model refers to this hardware model. This approach is motivated by the fact
that the safety goals can only be reached when using the correct hardware architec-
ture [8]. In AADL, interacting application components (e.g., processes, threads,

286 C. Buckl et al.

Fault-tolerance mechanisms
Pro-active Operations, Error Detection, Online Error Treatment, Offline

Error Recovery

Hardware Architecture Model
Controller, Sensors, Actuators, Network Topology

Software Architecture Model
Software Components, Interaction Schedule (time-triggered)

Fault Model
Expected Faults, Effects on Hardware / Software Components

Deployment Model
Controller, Sensors, Actuators,

Connections

Logical Model
Services, Service Interaction (Messages)

Failures, Detectors, Mitigators

Mapping Model

Models by UCSD Models by TUM

Fig. 10.6. Models and their Dependencies

subprograms, and platform components, such as processors, memory, buses) are
specified as hierarchical collections in one model.

Another major difference is the model of computation. The design of an
adequate model of computation can drastically leverage the implementation
complexity of fault-tolerant embedded systems [60]. FTOS uses the concept of
logical execution times [61] as a model of computation. This enhances the fault-
tolerance mechanisms [62]. Within the software model, all interaction points
between software components (i.e., actors) are specified with respect to time.
An event-triggered execution can only be realized on basis of this time-triggered
execution scheme. In contrast, the UCSD approach is based on a service-oriented
architecture, where message-passing is used as a means for component interac-
tion. The messages can be applied both for services executed on one controller
and for services executed in the distributed system. This contrasts the approach
in FTOS, where ports are used to realize the communication. AADL itself de-
fines no concrete model of computation. Dynamic aspects are described by the
selected operational model. This concept allows for the definition of different ope-
rational models for a system or a given system component to represent various
system configurations and connection topologies.

Fault Models. All the reviewed approaches force the user to specify the fault hy-
pothesis directly in the model. In the approach of the UCSD, a failure taxonomy
allows for the description of the possible failures. The base failure taxonomy is
depicted in Fig. 10.7. It can be augmented by domain specific failures. For each
failure the cause can be specified and hardware/software, permanent/temporary,
and unexpected/non occurrence behavior is distinguished. In addition, possible
failure effects are categorized as Nonhazardous, PotentiallyHazardous, and Ha-
zardous. The concrete effects and the affected components can be described in
the logical model. The approach in AADL is similar. AADL error models allow
for modeling component behavior in the presence of faults. Error models describe
error states, error events, and error propagation. By the occurrence property, the
arrival rate and probability of events and propagations can be specified.

In contrast to application specific errors, FTOS specifies a number of generic
fault effects for each software/hardware component type in a distinct model.

Model-Based Analysis and Development of Dependable Systems 287

Fig. 10.7. Failure Taxonomy [52]

For network components for instance, FTOS defines seven different fault effects
as suggested in the international standard IEC 61508 [8]: DataCorruption, Ti-
meDelay, DeletedTelegram, Repetition, InsertedTelegram, ResequencedTelegram,
AddressingError, and Masquerade. It is possible to specify which components
might be affected by which fault effect and constrain the number of simul-
taneous faults. Because of generic fault effects, generic fault detectors can be
applied. Code generation and verification are also supported [54].

Fault-Tolerance Mechanisms. The fault-tolerance mechanisms in the UCSD ap-
proach are specified in a similiar manner than the fault hypothesis within the
logical model. For each failure effect a detector has to be specified. Detectors
activate appropriate mitigators, similar to Arora’s concept of Detectors and Cor-
rectors. Services can be used both as unmanaged service that defines system be-
havior without considering failures, and managed service that are equipped with
detectors and mitigators. The services can be composed hierarchically allowing
the fault-tolerance mechanisms to be applied at different levels of abstractions.

FTOS extends the concept of Arora and uses a separate model to specify
the fault-tolerance mechanism. The system is split into fault containment units
(FCU) and sets of components that can be affected by faults. In addition, re-
levant sets of fault configurations, and functions mapping each FCU to correct
or false can be specified. At runtime, tests monitor one or more FCUs. If at
least one associated test assumes the FCU to be faulty, the status of this FCU is
set to false. Whenever the status of a FCU changes, the system determines the
active fault configuration set. Changes of this set can trigger reactions (error
treatment) by the system. Examples for error treatment operations are roll-
back operations or switches to a correct redundant unit. All error treatment
operations are performed online. They can lead to the exclusion of erroneous
components. The excluded components perform recovery operations offline

288 C. Buckl et al.

monitors

changes
 trigger

influences

exclusion
trigger

uses

completion
triggers

Fig. 10.8. Concept of Fault-Tolerance Mechanism

followed by tests to check the correctness of the repaired component. If suc-
cessful, the component request the integration into the running system. The
integration leads to a change of the active fault configuration set and triggers a
new iteration of reactions. The relationship between different types is illustrated
in Fig. 10.8.

For AADL, Rugina et al. propose different reusable fault-tolerance patterns
at the architectural level (e.g., hot standby). The interaction between different
components is specified within a dedicated pattern. The patterns should be
customized for a concrete application, for example, by defining error detection
strategies.

10.5.2 Implementations

All mentioned approaches have been tested in the context of different applica-
tions to point out the benefits of the model-based approach. UCSD used their
approach to verify a central locking system in the automotive domain. The mo-
del was translated into another model that could be directly feed into the SPIN
model checker. Based on the generated model one can verify the achievement of
the safety goals or use the produced counter examples to refactor the system’s
architecture.

FTOS has been applied to prove the efficiency of the code generation and the
possibility to cope with heterogeneous systems. One application is the classic
”inverted pendulum” controlled by a triple-modular redundancy (TMR) system.
Here, the generated code could be executed with a control response time of
2.5 milliseconds. Another application is the control of an elevator, consisting
of a hot-standby system executing the control logic and five microcontrollers
implementing the I/O functionality. Since the focus of FTOS is on the non-
functional requirements, the code implementing the control functionality has to
be provided manually. However, this gap can be closed by combining FTOS with
existing tools for the development of control functionality [54].

The work of LAAS CNRS is used for dependability analysis. AADL models
can be transformed to other models (e.g., stochastic Petri nets). In the context

Model-Based Analysis and Development of Dependable Systems 289

of a safety-critical subsystem of the French Air Traffic Control System, different
architecture solutions were compared to evaluate their availability. The complete
approach allows for a simple and fast evaluation of the design alternatives.

10.5.3 Summary: Language and Tool Support

Several tools for analysis and development of dependable systems are emerging.
They differ in the number of covered aspects and in their application domain.
For specific domains and application areas, these tools can facilitate the deve-
lopment/analysis process considerable. By using domain-specific concepts, such
as a specific model of computation, or restricting the application purpose of the
tool, these tools offer extensive code generation or analysis abilities. However,
there are no generic tools available that can be used in the development process
of arbitrary dependable systems.

10.6 Conclusion and Research Challenges

Within this chapter, we discussed the current state of the art with respect to
model-based tools in the context of dependable systems. As dependability com-
prises very different aspects ranging from availability to maintainability. Here,
safety and reliability were in focus. The chapter started with a definition of
the relevant terms and concepts. Subsequently, in Sec. 10.3 we defined a formal
model of a fault-tolerant system. This model can be used to discuss and com-
pare different approaches and to get a good understanding of the concepts of
fault-tolerant systems.

To illustrate the state of the art of model-based methods for reliability and
safety analysis, Sec. 10.4 provided details on FMECA, FTA, Markov models,
and MBT. A comparison of these methods can be found in Table 10.1.

Finally, Sec. 10.5 gave insight in some tools from academia that show the po-
tential of model-based approaches with respect to formal verification and code
generation. By using domain-specific models, the system, fault hypothesis, and
fault-tolerance mechanisms can be specified. The presented tools allow the au-
tomatic synthesis of code or the translation into formal models that can be used
as input for verification tools.

Regarding future research challenges, three main areas can be identified: mo-
del use throughout the whole development process, tool support for formal ve-
rification, and designing adequate fault models.

In currently available tools, different models of the system are used in each
phase of the development process. Typically, these models can not be reused in
the next phases, nor is there an automated transformation into adequate mo-
dels. Especially in the area of dependable systems, where the developer has to
provide a complete tracing from requirements to the resulting system, an in-
tegrated model-based development process with extensive tool support ranging
from requirements analysis through code generation to validation would be tre-
mendously beneficial. Some promising results have been provided by industry in
the context of control systems [63, 40].

290 C. Buckl et al.

Furthermore, the integration of formal verification techniques is becoming
more and more essential. The current state of the art with very complex ma-
thematical models restricts the application to experts in formal verification. A
promising approach is the automatic synthesis of these models out of domain-
specific models that can be designed by non-experts. A major drawback is ho-
wever that the counter examples are presented using the mathematical models.
A translation back to original models is still an open research challenge.

Another major issue is the formal specification of the fault-hypothesis. Cur-
rently, this fault hypothesis is typically specified as a textual document that is
not machine-readable and usually inconsistent or even contradictory. A formal
model to specify the fault assumptions within the system model, which is also
linked to the basic faults described in the certification guidelines, is only partially
covered in some ongoing research (e.g., [54]).

Acknowledgements

We thank the anonymous referees for their valuable comments.

References

[1] Object Management Group: OMG Unified Modelling Language Specification.
2.1.2 edn. (November 2007)

[2] Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

[3] Arora, A., Kulkarni, S.S.: Detectors and correctors: A theory of fault-tolerance
components. In: International Conference on Distributed Computing Systems, pp.
436–443 (1998)

[4] Laprie, J.C.: Dependable computing and fault-tolerance: Concepts and termi-
nology. In: Proceedings of the 15th International Symposion on Fault Tolerant
Computing Systems, pp. 2–11 (June 1985)

[5] Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical report, LAAS-CNRS (April 2001)

[6] Department of Defense: Standard Practise for System Safety. MIL-STD-882D
(2000)

[7] United Kingdom Ministry of Defence: Safety Management Requirements for De-
fence Systems. Def Stan 00-56 (2000)

[8] International Electrotechnical Commission: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. IEC 61508 (2002)

[9] International Standards Organization: Quality management and quality assurance
- Vocabulary. ISO 8402-1986 (1986)

[10] Pradhan, D.K.: Fault-Tolerant Computer System Design. Prentice-Hall, Engle-
wood Cliffs (1996)

[11] Avizienis, A.: The four-universe information system model for the study of fault-
tolerance. In: International Symposium on Fault-Tolerant Computing, Santa Mo-
nica, CA, vol. 12, pp. 6–13 (June 1982)

[12] Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Springer, New
York (1990)

Model-Based Analysis and Development of Dependable Systems 291

[13] Powell, D., Chérèque, M., Drackley, D.: Fault-tolerance in delta-4. ACM SIGOPS
Operating Systems Review 25(2), 122–125 (1991)

[14] Arora, A., Kulkarni, S.S.: Designing masking fault-tolerance via nonmasking fault-
tolerance. IEEE Transactions on Software Engineering 24(6), 435–450 (1998)

[15] Kulkarni, S.S.: Component based design of fault-tolerance. PhD thesis, Ohio State
University, Adviser-Anish Arora (1999)

[16] Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design.
ACM Computing Surveys 10(2), 123–165 (1978)

[17] Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from Theory to Exe-
cution. American Society for Quality (2003)

[18] Haimes, Y.Y.: Risk Modeling, Assessment, and Management. Wiley, Chichester
(2005)

[19] Society of Automotive Engineers: Recommended Failure Modes and Effects Ana-
lysis (FMEA) Practices for Non-Automobile Applications. SAE ARP 5580 (2001)

[20] International Electrotechnical Commission: Analysis techniques for system relia-
bility - Procedure for failure mode and effects analysis (FMEA). IEC 60812:2006
(2006)

[21] British Standards: Reliability of systems, equipment and components. Guide to
the specification of dependability requirements. BS5760-4:2003 (2003)

[22] Ericson, C.: Fault Tree Analysis: A History. In: Proceedings of the 17th Interna-
tional System Safety Conference (1999)

[23] International Electrotechnical Commission: Fault Tree Analysis (FTA). IEC 61025
(1990)

[24] Markov, A.A.: In: Classical Text in Translation: An Example of Statistical In-
vestigation of the Text Eugene Onegin Concerning the Connection of Samples in
Chains. Science in Context. Cambridge Journals, 591–600 (2006)

[25] International Electrotechnical Commission: Application of Markov techniques.
IEC 61165:2006 (2006)

[26] Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic Fault Tree Analysis Using In-
put/Output Interactive Markov Chains. In: International Conference on Depen-
dable Systems and Networks, pp. 708–717 (2007)

[27] Hausler, P.A., Linger, R.C., Trammell, C.J.: Adopting Cleanroom software engi-
neering with a phased approach. IBM Syst. J. 33(1), 89–109 (1994)

[28] Wallmueller, E.: Software- Qualitätsmanagement in der Praxis. Hanser Verlag
(2001) (in German)

[29] Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2006)

[30] Dijkstra, E.W.: Notes on Structured Programming. Circulated Privately (April
1970)

[31] Bernard, E., Legeard, B., Luck, X., Peureux, F.: Generation of test sequences from
formal specifications: Gsm 11-11 standard case study. Softw. Pract. Exper. 34(10),
915–948 (2004)

[32] Utting, M.: Model-Based Testing. In: Proceedings of the Workshop on Verified
Software: Theory, Tools, and Experiments, VSTTE 2005 (2005)

[33] Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N.,
Veanes, M.: Model-Based Testing of Object-Oriented Reactive Systems with Spec
Explorer. Microsoft Research, MSR-TR-2005-59 (2005)

[34] Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES
2006 and RV 2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

292 C. Buckl et al.

[35] Kamga, J., Herrmann, J., Joshi, P.: D-MINT Automotive Case Study. Deployment
of Model-Based Technologies to Industrial Testing (D-MINT), ITEA2 Project,
Deliverable 1.1 (2007)

[36] Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949, pp.
1–38. Springer, Heidelberg (2008)

[37] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sos-
tawa, B., Zölch, R., Stauner, T.: One evaluation of model-based testing and its
automation. In: ICSE 2005: Proceedings of the 27th International Conference on
Software Engineering, pp. 392–401. ACM, New York (2005)

[38] Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.: Model-Based
Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

[39] D-MINT Consortium: D-MINT Project - Deployment of Model-Based Technolo-
gies to Industrial Testing (2008), http://d-mint.org/ (last visited 01/05/09)

[40] Zander-Nowicka, J.: Model-based Testing of Real-Time Embedded Systems in the
Automotive Domain. PhD thesis, Technical University Berlin (2009)

[41] Conrad, M., Fey, I., Sadeghipour, S.: Systematic model-based testing of embedded
automotive software. Electr. Notes Theor. Comput. Sci. 111, 13–26 (2005)

[42] Bringmann, E., Krämer, A.: Model-based testing of automotive systems. In: ICST,
pp. 485–493. IEEE Computer Society, Los Alamitos (2008)

[43] Rau, A.: Model-Based Development of Embedded Automotive Control Systems.
PhD thesis, University of Tübingen (2002)

[44] Lamberg, K., Beine, M., Eschmann, M., Otterbach, R., Conrad, M., Fey, I.: Model-
Based Testing of Embedded Automotive Software Using MTest. In: Proceedings
of SAE World Congress, Detroit, US (2004); SAE technical paper 2004-01-1593

[45] Conrad, M.: Modell-Basierter Test Eingebetteter Software im Automobil: Aus-
wahl und Beschreibung von Testszenarien. PhD thesis, Technical University Berlin
(2004) (in German)

[46] Conrad, M.: A systematic approach to testing automotive control software. SAE
Technical Paper Series, 2004210039, Detroit USA (2004)

[47] Wiesbrock, H.W., Conrad, M., Fey, I., Pohlheim, H.: Ein Neues Automatisiertes
Auswerteverfahren für Regressions und Back-To-Back-Tests Eingebetteter Regel-
systeme. Softwaretechnik-Trends 22(3), 22–27 (2002) (in German)

[48] Zoughbi, G., Briand, L.C., Labiche, Y.: A uml profile for developing airworthiness-
compliant (rtca do-178b), safety-critical software. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 574–588.
Springer, Heidelberg (2007)

[49] Khan, M.U., Geihs, K., Gutbrodt, F., Gohner, P., Trauter, R.: Model-driven de-
velopment of real-time systems with uml 2.0 and c. In: MBD-MOMPES 2006:
Proceedings of the Fourth Workshop on Model-Based Development of Computer-
Based Systems and Third International Workshop on Model-Based Methodologies
for Pervasive and Embedded Software (MBD-MOMPES 2006), Washington, DC,
USA, pp. 33–42. IEEE Computer Society, Los Alamitos (2006)

[50] Johnson, I., Snook, C., Edmunds, A., Butler, M.: Rigorous development of reu-
sable, domain-specific components, for complex applications. In: CSDUML 2004
- 3rd International Workshop on Critical Systems Development with UML (2004)

[51] Bunse, C., Gross, H.G., Peper, C.: Applying a model-based approach for em-
bedded system development. In: EUROMICRO 2007: Proceedings of the 33rd
EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO 2007), Washington, DC, USA, pp. 121–128. IEEE Computer So-
ciety, Los Alamitos (2007)

http://d-mint.org/

Model-Based Analysis and Development of Dependable Systems 293

[52] Ermagan, V., Krueger, I., Menarini, M., ichi Mizutani, J., Oguchi, K., Weir,
D.: Towards model-based failure-management for automotive software. In: SEAS
2007: Proceedings of the 4th International Workshop on Software Engineering
for Automotive Systems, Washington, DC, USA. IEEE Computer Society, Los
Alamitos (2007)

[53] Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

[54] Buckl, C.: Model-Based Development of Fault-Tolerant Real-Time Systems. PhD
thesis, TU München (October 2008)

[55] Stahl, T., Voelter, M.: Model-Driven Software Development: Technology, Engi-
neering, Management, 1st edn. Wiley, Chichester (May 2006)

[56] Rugina, A.E., Feiler, P.H., Kanoun, K., Kaâniche, M.: Software dependability
modeling using an industry-standard architecture description language. CoRR
(2008)

[57] Rugina, A.E.: Dependability modeling and evaluation - From AADL to stochastic
Petri nets. PhD thesis, LAAS CNRS (2007)

[58] International Society of Automotive Engineers: SAE Architecture Analysis and
Design Language, AADL (November 2004)

[59] Miller, J., Mukerji, J.: MDA Guide. Object Management Group, Inc. (June 2003),
Version 1.0.1, omg/03-06-01

[60] Wensley, J., Lamport, L., Goldberg, J., Green, M., Levitt, K., Melliar-Smith, P.,
Shostak, R., Weinstock, C.: Sift: Design and analysis of a fault-tolerant computer
for aircraft control. Proceedings of the IEEE 66(10), 1240–1255 (1978)

[61] Henzinger, T.A.: Embedded software: Better models, better code. In: ICATPN,
pp. 35–36 (2004)

[62] Buckl, C., Regensburger, M., Knoll, A., Schrott, G.: A model-based code generator
in the context of safety-critical systems. In: Third Latin-American Symposium on
Dependable Computing - Fast Abstracts Volume, pp. 3–4 (2007)

[63] Nicolescu, G., Mosterman, P.J. (eds.): Model-Based Design for Embedded Sys-
tems. CRC Press, Boca Raton (2009)

	10 Model-Based Analysis and Development of Dependable Systems
	Introduction
	An Overview on Dependability
	A Generic Model of Fault-Tolerant Systems
	System Operation without Faults
	Faults
	Fault-Tolerance Mechanism
	Summary: Modeling of Dependable Systems

	Reliability and Safety Analysis
	The FMECA Method
	The Fault Tree Analysis Method
	Markov Analysis
	Testing and Model-Based Testing
	Summary: Reliability and Safety Analysis

	Languages and Tool Support
	Models
	Implementations
	Summary: Language and Tool Support

	Conclusion and Research Challenges
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

