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Abstract— Estimating the domain of attraction (DA) of an
equilibrium point is a long-standing yet still challenging issue
in nonlinear system analysis. The method using the sublevelset
of Lyapunov functions is proven to be efficient, but sometimes
conservative compared to the estimate via invariant sets. This
paper studies the estimation problem of the DA for autonomous
polynomial system by using the invariance principle. The main
idea is to estimate the DA via sublevel sets of a positive
polynomial, which characterizes the boundary of invariantsets.
This new type of invariant sets admits the condition that
the derivative of Lyapunov functions is non-positive, which
generalizes the sublevel set method via Lyapunov functions. An
iterative algorithm is then proposed for enlarging the estimate
of the DA. Finally, the effectiveness of the proposed methodis
illustrated by numerical examples.

I. I NTRODUCTION

For a given locally asymptotically stable equilibrium point,
the domain of attraction (DA) is a set of initial states for
which all trajectories starting from this region converge to
the equilibrium point. By estimating the DA, one can directly
predict the stability and the safety margin of systems with
respect to a given initial state. Since long time ago, estimat-
ing the DA has always been closely related to engineering
implementations, e.g., transient stability analysis of power
systems and chemical reaction prediction [1]. More recently,
its implementation has expanded quickly into the areas of
clinical immunotherapy, ecological economy and biological
systems, just to name a few [2]. For more applications, please
check the survey [1] and the book [3].

Amongst the pioneering explorations, Zubov proposed
a necessary and sufficient condition for the existence of
Lyapunov function with respect to the DA of an equilibrium
point [4]. This condition enables us to obtain the exact DA
by solving a partial differential equation, which is called
Zubov equation(also see its extensions: Zubov-like equation
or Zubov generalized equation [5]). Based on [4], a new
concept ofmaximal Lyapunov functionswas defined: It is
characterized by a partial differential equation and can be
approximated by rational polynomial functions [6]. These
methods can provide the actual DA, whereas they have
to calculate the solution of Zubov-like equations, which is
generally not easy to obtain. In order to avoid solving the
Zubov equation, some effective methods have been proposed.
These methods can be roughly classified into two categories:
Lyapunov methodsandnon-Lyapunov methods.
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Lyapunov methods exploit the sublevel set of Lyapunov
functions for constructing an invariant and contractive set
to inner-approximate the DA of the equilibrium point. This
method has been widely studied in the last decade, thanks to
the progress of real algebraic geometry [7] and positive poly-
nomials [8], especially the sum-of-squares (SOS) technique
[9]–[13]. Various effective approaches have been proposed
by using different sublevel sets of distinct types of Lyapunov
functions [14]–[22].Quadratic Lyapunov functionsapprox-
imate the DA efficiently, and conditions of Linear Matrix
Inequalities (LMIs) are proposed by computing the Lyapunov
matrix [20], [21]. In [18], a local triangulation strategy
was proposed for two-dimensional systems viapiecewise
affine Lyapunov functions. In [17], polyhedral Lyapunov
functionsare constructed for quadratic systems. In [14], SOS
programming conditions are proposed by usingpolynomial
Lyapunov functions. Based on [14],pointwise maximum
Lyapunov functionsare formulated by searching feasible
polynomial Lyapunov functions [15]. Also based on [14],
the DA can be estimated by a union of sublevel sets by
using a continuous family of polynomial Lyapunov functions
[16]. A more recent work usedrational polynomial Lyapunov
functionsand obtained less conservative results compared to
polynomial ones [19].

Non-Lyapunov methods, by contrast, do not use the sub-
level set of Lyapunov functions [23]–[26]. In [23], an outer-
approximation of the DA is computed by a primal infinite
dimensional linear programming (LP) problem, which can
be further transformed into the dual problem of SOS pro-
gramming by using the moment theory. Extended from [23],
a convex approach has been proposed to compute the inner-
approximation of the DA by alternatively over-approximating
the complement of the DA [24]. Very recently, a new
approach was proposed to estimate the DA of polynomial
systems by using invariant sets in contrast to sublevel sets
of Lyapunov functions [26]: An iterative algorithm was
provided based on SOS programming. This method obtains
less conservative results by using invariant sets, but it still
demands a Lyapunov function to formulate the invariant set.

Inspired by the work in [26], and based on the work in
[3], [27] in the category of Lyapunov method, this paper uses
invariant principles to inner-approximate the DA without
searching for a Lyapunov function. The main contributions
of this paper are listed as follows:

• An approach is proposed for computing the largest
estimate of the DA for nonlinear systems based on the
Barbashin-Krasovskii-LaSalle principle. A new type of
invariant set, as the sublevel set of a family of positive



polynomials, is proposed to be the inner-approximation
of the DA (Section III-A).

• Based on the real Positivstellensatz, the estimation
problem of the DA can be reduced to a local SOS
programming problem. By further exploiting the Square
Matrix Representation (SMR) of local SOS, we can
compute a lower bound of the largest estimate of the
DA. This can be achieved by solving a generalized
eigenvalue problem (Section III-B and Section III-C).

• Two strategies are proposed for computing the largest
estimate of the DA with variable polynomials, which
characterize the boundaries of invariant sets. Based on
these strategies, an algorithm is given for enlarging the
estimate of the DA via invariant sets (Section III-D).

II. PRELIMINARIES

Notations:N,R: natural and real number sets;R+: positive
real number set;0n: origin of R

n; R
n
0 : R

n\{0n}; AT :
transpose ofA; A > 0 (A ≥ 0): symmetric positive
definite (semidefinite) matrixA; A⊗B: Kronecker product
of matricesA andB; deg(f): degree of polynomial function
f ; trace(A): trace of matrixA; diag(v): a square diagonal
matrix with the elements of vectorv on the main diagonal;
(∗)TAB in a form of SMR:BTAB. Let P be the set of
polynomials andPn×m the set of matrix polynomials with
dimensionn × m. A polynomial p(x) ∈ P is nonnegative
if p(x) ≥ 0 for all x ∈ R

n. A useful way of establishing
p(x) ≥ 0 consists of checking whetherp(x) can be described
as a sum of squares of polynomials (SOS), i.e.,p(x) =∑k

i=1 pi(x)
2 for some p1, . . . , pk ∈ P . The set of SOS

polynomials is denoted byPSOS. If p(x) ∈ PSOS becomes0
only for x = 0n, we call p(x) local SOSdenoted byPSOS

0 .

A. Model Formulation

In this paper, we consider the following autonomous
dynamical system:

ẋ(t) = f(x(t)), (1)

wherex ∈ R
n is the state vector,x(0) ∈ R

n is the initial
state,χ(t;x(0)) denotes the solution of system (1),f :
R
n → R is a nonlinear function satisfying the local Lipschitz

condition. In the sequel, we will omit the argumentst andx
of functions whenever possible for the brevity of notations.

Remark 1: In this paper, we are interested in estimating the
DA of an isolated stable equilibrium point. Without loss of
generality, we place the equilibrium point at the origin.�

Let us introduce the DA of the origin: It is the set of initial
states for which the system asymptotically converges to the
origin, i.e.,

D =
{
x(0) ∈ R

n : lim
t→+∞

χ(t;x(0)) = 0n

}
,

whereχ is the solution of system (1). The setI is invariant
if x(0) = χ(0;x(0)) ∈ I ⇒ χ(t;x(0)) ∈ I, ∀t ∈ R. If this
condition only holds fort ≥ 0, thenI is positive invariant.

B. Problem Formulation

In this paper, we aim to use the invariant set to estimate the
DA of the origin. Since the sublevel set method of Lyapunov
functions is the dominating method in this area, we first
introduce this method and then compare it with the method
via invariant sets. Specifically, letV (x) be a Lyapunov
function of system (1) for the origin, which satisfies∀x ∈
R
n
0 : V (x) > 0, V (0n) = 0, lim‖x‖→∞ V (x) = ∞ and

the time derivative ofV (x) along the trajectories of (1) is
locally negative definite [28]. We introduce the sublevel set
of V (x) as

V(c) =
{
x ∈ R

n : V (x) ≤ c
}
, (2)

where c ∈ R+. For system (1),V(c) is an estimate ofD
if there exists a positive scalarc such that∀x ∈ V(c) \
{0n} : V̇ (x) < 0 [28].

An important observation in [28] is that the sublevel set
of a Lyapunov functionV(c) for estimating the DA is simple
but usually conservative compared to the method of invariant
sets based onLaSalles’s invariance theorem. This motivates
us to find an invariant set which is more general and thus
less conservative than the setV(c) to estimate the DA. See
Fig. 1 for the relationship of different methods.
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Fig. 1. An illustration for estimating the DA by using different methods.
The light pink area stands for the DA. The blue area indicatesthe inner-
estimate of the DA by using invariant sets. The green area indicates the
inner-estimate of the DA by using the sublevel set of Lyapunov functions.

Let us now propose the main problem we are concerned
with: Find a functionW (x) and a positive scalarc such that

W(c) =
{
x ∈ R

n :W (x) ≤ c
}

(3)

is an invariant set, and the estimate of the DA is maximized
under a certain selected criteria, i.e., by solving

µ = sup
c, W

ρ(W(c))

s.t.

{
W(c) ⊆ D,
W(c) is a positive invariant set,

(4)

where ρ is a measure ofW(c) depicting the user-defined
criteria. It is worth noting that problem (4) is an inner-
approximation problem of the DA, which is non-convex due
to the construction of invariant sets and the high nonlinearity
of ρ.



III. M AIN RESULTS

In this section, we first provide a method to estimate the
DA via a new type of invariant set. Then, we execute our
method by an iterative algorithm, in which each step will be
introduced by each subsection.

A. Estimate via the Invariant Principle

First, the following invariant principle is introduced:

Lemma 1 (Barbashin’s theorem [28]):Let x = 0n be an
equilibrium point for (1) and letW (x) be a continuously
differentiable positive definite function on a domainA con-
taining the origin, such thaṫW (x) ≤ 0. Let

S = {x ∈ A| Ẇ (x) = 0} (5)

and suppose that no other solution can stay identically inS,
other than the trivial solutionx ≡ 0n. Then, the origin is
locally asymptotically stable. �

If the functionW in Lemma 1 is assumed to be a con-
tinuously differentiable, radially unbounded, and a positive
definite function, the conclusion of Lemma 1 becomes: The
origin is globally asymptotically stable. This turns out tobe
theKrasovskii’s theorem[28]. Note that Barbashin’s theorem
and Krasovskii’s theorem are specializations of LaSalle’s
theorem for the case of a single equilibrium point.

Remark 2 (Difference from Lyapunov stability theory):
The Barbashin-Krasovkii theorem requires thatẆ (x) ≤ 0,
while the Lyapunov functionV (x) has to satisfy the more
strict condition thatV̇ (x) < 0, ∀x ∈ A/{0n}. In other
words, the Lyapunov stability condition is a special case of
the Barbashin-Krasovkii invariance theorem. However, one
needs to establish that the maximum invariant set inS of
(5) is the origin, which may not be simple in general.�

In order to overcome this obstacle, a sufficient condition is
provided by establishing the higher-order derivative ofW (x)
and a new type of invariant set is developed for estimating
the DA.

Theorem 1:Let W (x) : R
n → R+ be a positive definite

analytic function onW(c) = {x ∈ R
n| W (x) ≤ c} and

W (0n) = 0. If there exists a natural numberk such that
{
W (2k+1)(x) < 0, ∀x ∈ W(c)/{0n},

W (j)(x) = 0, j = 0, 1, 2, . . . , 2k,
(6)

whereW (0) ≡ 0 andW (j) is the j-th time derivative ofW
with respect tot 1, then,W(c) is an estimate of the DA, i.e.,
W(c) ⊆ D.

Proof: We first prove that 1)W(c) is an invariant set: Then
we show that 2) the origin is the only positive invariant set
in {x ∈ W(c)| Ẇ = 0}.

1)W(c) is an invariant set: SinceW (x) is positive definite
on W(c)/{0n}, then W(c) is compact. According to [1,
Theorem 3.1], and taking into account the assumption thatf

1For example,W (1)(x) = 〈∇W,f(x)〉 where〈·, ·〉 is the inner product
of two vectors,∇W is the gradient ofW , i.e.,∇W = ( ∂W

∂x1
, . . . , ∂W

∂xn
).

satisfies the local Lipschitz condition, one can conclude that
system (1) has a unique solution for allx(0) ∈ W(c). For
the continuity ofχ(t, x(0)), it follows that

Ẇ (x(t)) ≤ 0 ⇒W (x(t)) ≤W (x(0)) ≤ c, ∀t ≥ 0.

Thus, all the solutionsχ(t, x(0)) remain in the setW(c).
2) The origin is the only positive invariant set in{x ∈

W(c)| Ẇ = 0}: This condition holds if we can show that
0n is locally asymptotically stable for allx ∈ W(c). Since
W (x) > 0 for all W(c)/{0n}, we only need to prove that
under condition (6), the statementlimt→∞W (x) = 0 holds,
which directly yieldslimt→∞ x = 0. This can be proven by
using a contradiction. Let us assume thatlimt→∞W (x) = a
and a 6= 0, and that there exist a timeT and a setB as a
neighborhood of0n such thatχ(t, x(0)) is not in B for all
t ≥ T .

Define the setsC = {x ∈ W(c)| Ẇ (x) = 0} and E =
C/B. From condition (6), one could assume that there exists
a k such that

{
maxx∈E W

(2k+1)(x) = −γ, ∀x ∈ W(c)/{0n},
W (j)(x) = 0, j = 0, 1, 2, . . . , 2k,

whereγ is a positive scalar. By integratingW (2k+1) with
respect to the time interval[t, T ], one has

W (x(t))−W (x(T )) =

∫ t

T

. . .

∫ t

T︸ ︷︷ ︸
2k+1

W (2k+1)ds

≤

∫ t

T

. . .

∫ t

T︸ ︷︷ ︸
2k+1

(−γ)ds

= −
γ(t− T )2k+1

(2k + 1)!
,

which results inW (x(t)) ≤ W (x(T )) − γ(t−T )2k+1

(2k+1)! . As t
goes to infinity, one has thatlimt→∞W (x) = −∞, which
contradicts with the fact thatW (x) is positive definite on
W(c)/{0n}. Thus, from Lemma 1,0n is locally asymptoti-
cally stable for allx ∈ W(c), which ends this proof. �

Remark 3:For Theorem 1, it is worth noting that

• The sublevel set method of Lyapunov functions can be
deemed as a special case of the proposed method. By
settingk = 0 in (6), W (x) turns out to be a Lyapunov
function of (1) andW(c) is a sublevel set of a Lyapunov
function, which is also a contractive and invariant set.

• Observe that Theorem 1 only provides a sufficient
condition that enables the origin to be the maximum
invariant set inS of (5). The conservatism originates
from the fact that Theorem 1 holds only forW (x) with
the highest even derivativeW (j) = 0. Another source
of conservatism is that, as mentioned in [28], one could
construct an invariant setW(c) while the functionW (x)
is not necessarily positive definite. Methods for reducing
the conservatisms will be discussed in Section V.�
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Fig. 2. The prototypical single degree of freedom system.

For the above result, a deliberately simple example is given
for illustration:

Example 1 (An excitation-free vibratory system [29]):A
spring-mass-damper model is considered in Fig. 2, where

x1(t) := displacement of the center of mass,
x2(t) := ẋ1(t), i.e., velocity of the object,
F (t) := external excitation force,
m := mass of the object,
h := elastic stiffness coefficient,
u := viscous damping coefficient.

For an excitation-free system,F (t) = 0 andm,h, u ∈ R+.
From Newton’s second law of motion, one has

ẋ1(t) = x2(t),

ẋ2(t) = −
u

m
x2(t)−

h

m
x1(t).

Let x = (x1, x2)
T , we first consider the Lyapunov function

candidateV1(x) = 0.5hx21 + 0.5mx22. In order to check the
stability of this system and compute the DA, the derivative
of V1 is: V̇1(x) = −ux22. It yields that V̇1 = 0 for all the
states on thex2-axis. Based on Lyapunov stability theory,
the origin is not guaranteed to be stable. Thus, no sublevel
set ofV1 can be used as the estimate of the DA.

In contrast, we considerW1(x) = V1(x) by using The-
orem 1. Provided thatẆ1(x) = W

(2)
1 (x) = 0, one has

x2 = 0 andW (3)
1 = −uh2

m2 x
2
1 < 0, ∀x ∈ {x|x2 = 0}/{02}.

Therefore the global stability of the origin is ensured by
using the proposed method. In addition,W (x) satisfying
condition (6) is usually not unique. One could also consider
W2(x) = 0.25hx41 + 0.25mx42 with Ẇ2(x) = W

(2)
2 (x) =

W
(3)
2 (x) = W

(4)
2 (x) = 0. It yields that x2 = 0 and

W
(5)
2 = − 24uh4

m4 x41 < 0, ∀x ∈ {x|x2 = 0}/{02}. Thus,
the estimates of the DA can be obtained via some level sets
of W1(x) andW2(x), as shown in Fig. 3. �

For the ease of understanding, we provide a flowchart of
the iterative algorithm in Fig. 4, where Step 1enlarges the
estimate of the DA with fixedW (x) by solving an SOS
programming problem; Step 2converts this problem to a
quasi-convex optimization problem; Step 3searches for the
optimalW (x) that provides the largest estimate of the DA
with fixed auxiliary functionsr(x) ands(x), which will be
introduced in the next subsection.
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Fig. 3. The estimates of the DA by usingW1(x) andW2(x).
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Fig. 4. Algorithm flowchart of the proposed approach.

B. Step 1: Estimation with FixedW (x)

In this subsection, a method based on SOS programming is
proposed to enlarge the setW(c) by selecting a fixedW (x),
i.e., we aim at finding

γ = sup c (7)

such that (6) holds.
To this end, we consider autonomous nonlinear systems

with polynomial vector fields. This class of systems can be
extended to non-polynomial vector fields by using polynomi-
al approximation or recasting them into rational vector fields
[3], which is outside the scope of this paper.

First, let us introduce a lemma which extends from the
well-known Real Positivstellensatz (P-satz) [7], [30]. This
lemma uses the cone of local SOS to check the positivity of
a polynomial on a semialgebraic set.

Lemma 2 ([27]): For polynomials a1, . . . , am, b1, . . . , bl



andp, define a set

B = {x ∈ R
n : ai(x) = 0, ∀i = 1, . . . ,m,

bi(x) ≥ 0, ∀j = 1, . . . , l}.
(8)

Let B be compact. Condition∀x ∈ B : p(x) > 0 can be
established if

{
∃r1, . . . , rm ∈ P , s1, . . . , sl ∈ PSOS

0 ,

p−
∑m

i=1 riai −
∑l

i=1 sibi ∈ PSOS
0 .

(9)

Remark 4:Condition (9) becomes a necessary and sufficient
condition if there exists no degree limit for the auxiliary
functionssi and if one could find a polynomialb in setB
such thatb−1[0,∞) is compact inRn. Please find [30] for
the instance of SOS cones. �

Based on Lemma 2, a condition of local SOS program-
ming can be proposed to obtain a lower bound ofγ in (7).

Theorem 2:Assume there exist a natural numberk and a
positive definite functionW (x) satisfying





∀x ∈ R
n
0 : W (x) > 0, W (0n) = 0,

lim‖x‖→∞W (x) = ∞,

W (j)(x) = 0, ∀j = 0, 1, . . . , 2k,
(10)

and there exist a group of polynomialsrj(x) ∈ P , j =
0, 1, . . . , 2k, and a polynomials(x) ∈ PSOS

0 such thatc̄ is
the optimum of the following polynomial optimization

c̄ = sup
c, r, s

c

s.t.

{
−ψ(x, c, r(x), s(x)) ∈ PSOS

0 ,
∀x ∈ W(c) \ {0n},

(11)

where

ψ(x, c, r(x), s(x)) = W (2k+1)(x) + s(x)(c−W (x))

+
∑2k
j=0 rj(x)W

(j)(x),
(12)

in which r(x) = [r0(x), r1(x), . . . , r2k(x)]
T . We recall that

W (j) is the j-th derivative ofW with W (0) ≡ 0. Then,
c̄ ≤ γ.

Proof: Suppose (11) holds, then−ψ(x, c, s(x)) ands(x)
are local SOS. From Lemma 2, it yields that

∃k : W (2k+1)(x) < 0, (13)

for all x in {x ∈ R
n : W (j) = 0, j = 0, 1, . . .2k}

⋂
{x ∈

R
n : c−W (x) ≥ 0} \ {0n}, i.e., (6) holds. Therefore, from

Theorem 1,W(c̄) is an estimate of the DA with repect to
some natural numberk. Taking into account the definition
of γ in (7), it finally yields that c̄ is a lower bound ofγ,
which completes this proof. �

Remark 5:The above result converts the condition of (6)
to local SOS conditions by using Lemma 2. It paves the
way for proposing more tractable conditions via LMIs.
The conservatism level depends on the degree of auxiliary
functions and the existence of some additional auxiliary
functions relaxed from P-satz, see [9], [12], [14]. �

C. Step 2: Quasi-Convex Optimization via SMR

Notice that the condition (11) of Theorem 2 is usually
hard to establish since the product of a local SOSs(x) and
a scalarc makes it a bilinear inequality, which is non-convex
in nature.Bisection methodsanditeration algorithms of SOS
programmingare introduced to cope with this issue, but they
cannot handle the local SOS directly.

In this subsection, the SMR method is adopted for the local
SOS, i.e.,p0(x) ∈ PSOS

0 , and an approach is proposed by
transforming the problem (11) into a generalized eigenvalue
problem. First we will introduce the SMR for the set of
local SOS. Consider a polynomialp0(x) of degreedeg(p0)
without the constant and linear terms, orp0(x) ∈ PSOS

0 . For
this class of polynomial, its SMR is as follows:

p0(x) = (∗)T (P̄0 + L(δ))φ(n, dp0), (14)

where(∗)TAB is short forBTAB given in Section II;P̄0

is denoted by the SMR matrix ofp0(x); n is the number of
variables;dp0 is the smallest integer not less thandeg(p0)2 ,
i.e.,dp0 = ⌈deg(p0)

2 ⌉; φ(n, dp0 ) ∈ R
l(n,dp0) is a power vector

containing all monomials of degree less or equal todp0
without degree0; andL(δ) is a parameterization of the space

L = {L(δ) ∈ R
l(n,dp0)×l(n,dp0) : L(δ) = LT (δ),

(∗)TL(δ)φ(n, dp0 ) = 0},
(15)

in which δ ∈ R
ϑ(n,dp0) is a vector of free parameters. The

functions ofl(n, dp0) andϑ(n, dp0) can be obtained similarly
to [12]. For the ease of understanding, an illustration of an
SMR is given.

Example 2:Given the polynomialp1(x) = 5x6 + 4x5 +
4x4 + 7x2, we havedp1 = 3, n = 1 and φ(n, dp1 ) =
(x3, x2, x)T . Then,p1(x) can be written as follows,

P =




5 2 0
2 4 0
0 0 7



 , L(δ) =




0 0 −δ
0 2δ 0
−δ 0 0



 .

�

Define q(x) =
∑2k

j=0 rj(x)W
(j)(x) and let

deg(W (2k+1)) − deg(W ) ≤ deg(s) and deg(W (2k+1)) −
deg(W (j)) ≤ deg(rj), for all j = 0, 1, . . . , 2k. By exploiting
the representation introduced in (14), we have the following
expressions of SMR:

W (x) = (∗)T ĎWφ(n, dw), (16)

s(x) = (∗)T sSφ(n, ds), (17)

rj(x) = (∗)T sRjφ(n, drj ), (18)

ψ(x) = (∗)T sΨ(δ, c, sRj, sS)φ(n, dψ), (19)

for j = 0, 1, . . . , 2k, whereδ ∈ R
ϑ(n,dψ) is a vector of free

parameters, andĎW ∈ R
l(n,dw)×l(n,dw), sS ∈ R

l(n,ds)×l(n,ds)

andΨ̄(δ, c, sQ, sS) ∈ R
l(n,dψ)×l(n,dψ) are symmetric matrices.

Let sD(δ), sQ( sRj), Λ1(S) and Λ2(S) be SMR matrices of
W (2k+1)(x), q(x), s(x) andW (x)s(x), respectively, with
respect to the power vectorφ(n, dψ). From (12), it yields

Ψ(δ, c, sRj, sS) = sD(δ) + sQ( sRj) + cΛ1(sS)− Λ2(sS),



whereδ ∈ R
ϑ(n,dψ) is a vector of free parameters. The fol-

lowing result transforms the condition (11) into a generalized
eigenvalue problem (GEVP) via SMR.

Theorem 3:For the given positive scalarsϕ1, ϕ2, a nat-
ural number k, and a selected polynomialW (x) =
(∗)T ĎWφ(n, dw) fulfilling (10), the polynomial ς(x) =
ϕ1s(x) + ϕ2W (x)s(x) = (∗)TΛ(sS)φ(n, dψ), the lower
bound ofγ can be obtained by

γ̃ = −
ẽ

ϕ1 + ϕ2ẽ
(20)

whereẽ is the solution of the GEVP

ẽ = inf
δ, e, sRj , sS

e

s.t.





ϕ1 + ϕ2e > 0,
sS > 0,
eΛ(sS) > sD(δ) + sQ( sRj)− Λ2(sS).

(21)

Proof: In this proof, we first show that 1) (21) is a GEVP.
Then, we demonstrate 2) (20) is the lower bound ofγ̃.

1) Optimization (21) is a GEVP: From [27, Lemma 4],
we haveΛ > 0 on the condition thatĎW > 0 and sS > 0,
which makes (21) a GEVP.

2) γ̃ in (20) is the lower bound of̃γ: Based on the last
inequality of (21), we have

Φ̃(δ, c, sRj, sS) = sD(δ) + sQ( sRj)
−eΛ(sS)− Λ2(sS)

< 0.

Considering (19) and

ψ̃(x, c, r(x), s(x)) = W (2k+1)(x) + q(x)−W (x)s(x)
−e(ϕ1 + ϕ2W (x))s(x),

one can rewriteψ̃(x, c, r(x), s(x)) into:

ψ̃(x, c, r(x), s(x)) = ψ̃(x, r(x), −e
ϕ1+ϕ2e

, (ϕ1 + ϕ2e)s(x)).

Notice that−e/(ϕ1 + ϕ2e) is a monotonically decreasing
function which maps from the range(−(ϕ1/ϕ2), 0] into the
range[0,+∞). Thus, (20) gives the lower bound ofγ̃. �

For more details of the GEVP, please see the book [31].

D. Step 3: Estimation with OptimalW (x)

In this subsection, strategies for finding the optimalW (x)
are presented2. First, let us recall thatρ in problem (4) is a
user-selected measure which is usually chosen as

ρ(W(γ)) = vol(W(γ)),

where vol(W(γ)) depicts the volume ofW(γ), and γ is
introduced in (7). This allows us to pursue the optimalW (x)
via maximizing the volume ofW(γ). However, vol(W(γ))
is highly non-convex, which makes (4) a non-convex op-
timization. To solve this problem, a typical method is to
approximate vol(W(γ)) by introducing

ω = max
γn

det(ĎW )
, vol(W(γ)) ∝ ω, (22)

2For each iteration, the optimalW (x) is computed for all k ∈
{0, 1, . . . , kd} wherekd is a user-defined positive integer.

whereĎW is the SMR matrix ofW (x) in (16) and vol(W(γ))
is proportional to ω. Then, a linear approximation of
vol(W(γ)) can be provided as

vol(W(γ)) ≈
γ

trace(ĎW )
. (23)

The main idea is to minimize det(ĎW ) (the product of positive
eigenvalues) by approximating the minimum of trace(ĎW )
(the sum of positive eigenvalues). Thus, a strategy is given
for searching the optimalW (x).

Proposition 1: Assume that there exist polynomials̃s ∈
PSOS, s ∈ PSOS

0 andrj ∈ P , ∀j = 0, 1, . . . , 2k, such that

ζ = inf
ĎW

trace(ĎW )

s.t.

{
W (ĎW,x) ∈ PSOS

0 , W j(ĎW,x) = 0,
−ψ(x,ĎW, c, r(x), s(x)) ∈ PSOS

0 .

(24)

Then,µ1 = γ
ζ

is an under-estimate ofρ. �

Note that the condition of (24) could be transformed to
LMIs by using SMR introduced in the previous subsection.

Another promising method for handling the variableW (x)
is to enlargeW by using a set of chosen geometric shapes
[14]. Specifically, we consider the optimization problem:

µ2 = sup
W,ǫ

ǫ

s.t.

{
G(ǫ) ⊆ W(γ),
(10)− (11) hold.

(25)

where

G(ǫ) = {x ∈ R
n : G (x) ≤ ǫ} (26)

and G (x) is a shape factor, e.g., a spherical form can be
obtained from{x ∈ R

n : G (x) ≤ ǫ} by simply choosing
G (x) = ‖x‖2. Analogous to Theorem 2, another strategy
for computing the lower bound ofρ(W(c)) can be given as
follows:

Proposition 2: Assume that there exist polynomials̃s ∈
PSOS, s ∈ PSOS

0 andrj ∈ P , ∀j = 0, 1, . . . , 2k, such that

µ2 = sup
W,ǫ,c

ǫ

s.t.






(γ −W )− s̃(ǫ − G ) ∈ PSOS,
W ∈ PSOS

0 , W j(x) = 0,
−ψ(x, c, r(x), s(x)) ∈ PSOS

0 .

(27)

Then,µ2 is an under-estimate ofρ. �

To cope with (27), one could also construct a GEVP as
in Theorem 3. We will show both strategies by numerical
examples in the next section.

IV. EXAMPLES

We execute the computation using MATLAB 2015a on
a standard laptop with an 8GB DDR3 RAM and an Intel
Core i7-4712MQ processor. MATLAB toolboxes SeDuMi,
SDPT3, SMRSOFT and SOSTOOLS are used for solving
semi-definite problems and SOS programming problems.



A. Example 3

Consider the following model from [15]:

ẋ1 = x2,
ẋ2 = −(1− x21)x1 − x2,

where the origin02 is a locally asymptotically stable equi-
librium point with an unbounded DA.

First, we apply the algorithm shown in Fig. 3 and use
Proposition 1 to compute the estimate of the DA. The
proposed method is compared to the polynomial Lyapunov
methods from [3], [27], by using the same enlarging strategy.
From Fig. 5, it is not hard to see that the proposed method,
which uses invariant sets constructed by Theorem 1, provides
the best result compared to the other methods. Furthermore,
a method comparison is also provided by using Proposition
2, as shown in Fig. 6. By selecting the shape factorG(x) =
x21 + x22, the best estimate can be obtained by the proposed
method compared to the polynomial Lyapunov function
methods. TABLE I shows the computational complexity of
the proposed method.

B. Example 4

We extend the implementations to a 3-dimensional system:

ẋ1 = −x1 + x2x3,
ẋ2 = −x2 + x1x2,
ẋ3 = −x3,

in which the origin03 is locally asymptotically stable. By
using the proposed algorithm with Strategy 1, we have the
computational result shown in Fig. 7. It shows that the
proposed method provides a better performance compared to
the sublevel set method via polynomial Lyapunov functions
[3], [27].

V. CONCLUSION AND DISCUSSION

An approach is provided for estimating the DA of au-
tonomous polynomial systems by using a new type of invari-
ant sets. This method supplies a complementary perspective
to the sublevel set method of Lyapunov functions, and
provides an expanded scope for searching the Lyapunov
function. Firstly, based on the Barbashin-Krasovskii-LaSalle
invariant principle, a sufficient condition is provided that a
sublevel set of a polynomialW (x) is an inner-approximation
of the DA by checking the higher-order derivatives ofW (x).
Secondly, the largest estimation of the DA can be obtained
by solving a local SOS programming problem. This problem
is then transformed to a generalized eigenvalue problem by
using the Square Matrix Representation. Finally, two strate-
gies are proposed for searching the optimalW (x), and an
iterative algorithm is provided to obtain the largest estimate
of the DA via invariant sets. The examples demonstrate
the effectiveness of the proposed method compared to the
polynomial Lyapunov function methods.

Along with Remark 3, the main conservatism of this
approach stems from the fact that only a suboptimal solution
could be obtained for the GEVP (21), and the fact that (23)
approximates the volume of sublevel set ofW (x), which is
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Fig. 5. Example 3: The computational result by using Proposition 1. The
red solid line indicates the actual DA. The solid green line and the dotted
blue line indicate the estimates by using the optimal Lyapunov functions
with deg(V ) = 4 and deg(V ) = 6, perspectively. The solid black line
depicts the estimate via the proposed method withk = 1 anddeg(W ) = 6.
Some trajectories are shown in red (converging) and blue (diverging).

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

x1

x
2

Fig. 6. Example 3: The computational result by using Proposition 2. The
cyan solid line indicates the selected shape of the sublevelset ofG from
(26). The magenta dotted line indicates the estimates by using the optimal
Lyapunov functions withdeg(V ) = 6. The solid black line depicts the
estimate via proposed method withk = 2 anddeg(W ) = 6.

TABLE I

THE COMPUTATIONAL TIME tc [sec] FOR THE DIFFERENT STRATEGIES,

THE NUMBER OF ITERATIONnt , AND THE DEGREE OFW (x).

deg(W ) = 4 deg(W ) = 6

nt=5 nt=10 nt=20 nt=5 nt=10 nt=20

Proposition 1 16.17 37.51 81.17 30.32 69.91 151.47

Proposition 2 19.83 37.92 87.36 34.16 75.28 162.66
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Fig. 7. Example 4: The computational result. The red region depicts the
estimate of DA using polynomial Lyapunov functions withdeg(V ) = 4.
The dotted black lines depicṫV (x) = 0. The solid black lines indicate the
estimate via proposed method withk = 1 anddeg(W ) = 4.

highly non-convex. To cope with these problems, a promising
convex approach is proposed by using the moment theory and
the occupation measure. Conditions of LMIs are obtained
other than a bilinear matrix inequality (BMI) [23], [24].
Another source of conservatism arises from the fact that only
inner-approximation of the exact DA can be obtained. To get
less conservative results, using rational polynomial methods
as well as the union of a group of sublevel sets are probable
ways, to which our future efforts will be devoted [15], [16],
[32]. Moreover, reachable set computations also provide a
useful perspective to reduce the conservatism level [33].
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