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Abstract— Estimating the domain of attraction (DA) of an Lyapunov methods exploit the sublevel set of Lyapunov
equilibrium point is a long-standing yet still challenging issue  functions for constructing an invariant and contractiveé se
in nonlinear system analysis. The method using the sublevskt to inner-approximate the DA of the equilibrium point. This

of Lyapunov functions is proven to be efficient, but sometime . L
conservative compared to the estimate via invariant sets. His method has been widely studied in the last decade, thanks to

paper studies the estimation problem of the DA for autonomos  the progress of real algebraic geometry [7] and positivg-pol
polynomial system by using the invariance principle. The man  nomials [8], especially the sum-of-squares (SOS) tecteniqu
idea is to estimate the DA via sublevel sets of a positive [9]-[13]. Various effective approaches have been proposed
polynomial, which characterizes the boundary of invariantsets. by using different sublevel sets of distinct types of Lyapun

This new type of invariant sets admits the condition that . . .
the derivative of Lyapunov functions is non-positive, whit functions [14]-[22].Quadratic Lyapunov functionapprox-

generalizes the sublevel set method via Lyapunov functionén  imate the DA efficiently, and conditions of Linear Matrix
iterative algorithm is then proposed for enlarging the estinate  Inequalities (LMIs) are proposed by computing the Lyapunov
of the DA. Finally, the effectiveness of the proposed methots  matrix [20], [21]. In [18], a local triangulation strategy

llustrated by numerical examples. was proposed for two-dimensional systems piacewise
affine Lyapunov functionsin [17], polyhedral Lyapunov
|. INTRODUCTION functionsare constructed for quadratic systems. In [14], SOS

programming conditions are proposed by uspaynomial
Lyapunov functionsBased on [14],pointwise maximum
Lyapunov functionsare formulated by searching feasible
I . S : polynomial Lyapunov functions [15]. Also based on [14],
the equilibrium point. By estimating the DA, one can dirgctl ﬁhe DA can be estimated by a union of sublevel sets by

predict the stability and the safety margin of systems with . . : .
. o . . . _using a continuous family of polynomial Lyapunov functions
respect to a given initial state. Since long time ago, estim : .
16]. A more recent work useitional polynomial Lyapunov

ing the DA has always been closely related to engineeri . . .
. . . . . nctionsand obtained less conservative results compared to
implementations, e.g., transient stability analysis ofveo .

polynomial ones [19].

systems and chemical reaction prediction [1]. More regentl Non-Lyapunov methods, by contrast, do not use the sub-

its implementation has expanded quickly into the areas ?efvel set of Lyapunov functions [23]-[26]. In [23], an outer

clinical immunotherapy, ecological economy and b'OIOg'Caapproximation of the DA is computed by a primal infinite

systems, justto name a few [2]. For more applications, F'Ieaaimensional linear programming (LP) problem, which can
check the survey [1] and the book [3]. g; further transformed into the dual problem of SOS pro-

For a given locally asymptotically stable equilibrium pin
the domain of attraction (DA) is a set of initial states for
which all trajectories starting from this region converge t

Amongst the pioneering explorations, Zubov: propose amming by using the moment theory. Extended from [23]
a necessary and sufficient condition for the existence convex approach has been proposed to compute the innér-
Lyapunov function with respect to the DA of an equ”ibriumapproximation of the DA by alternatively over-approxinmai
point [4]. This condition enables us to obtain the exact D’%he complement of the DA [24]. Very recently, a new

by solving a partial differential equation, which is Ca"edapproach was proposed to estimate the DA of polynomial

ZubzovbequauonjaI?o sdee Its ixtenzonsgZub(;)v-l|ke4equat|or§ystems by using invariant sets in contrast to sublevel sets
or Zubov generalized equation [5]). Based on [4], a ne f Lyapunov functions [26]: An iterative algorithm was

concept quaximal Lyapuno_v funct_ionwas o_lefined: It is rovided based on SOS programming. This method obtains
charact_enzte(; kt))y a ?artlalll dn;ferent_|all ;equ?_tlon agd _?r;]m k%ss conservative results by using invariant sets, builit st
approximated by rational polynomial functions [6]. Thes emands a Lyapunov function to formulate the invariant set.
methods can prowdg the actual I,DA' whergas theY h"’}Velnspired by the work in [26], and based on the work in
to calculate the solution of Zubov-like equa’upns, wh|ch i 3], [27] in the category of Lyapunov method, this paper uses
generally no_t easy to obta|r_1_ In order to avoid solving th ariant principles to inner-approximate the DA without
Zubov equation, some effective methc_;gls h_ave been PrOPOSERrching for a Lyapunov function. The main contributions
These methods can be roughly classified into two categoriess ihis paper are listed as follows:
Lyapunov methodand non-Lyapunov methods « An approach is proposed for computing the largest
. - . . N estimate of the DA for nonlinear systems based on the
The authors are with the Institutif Informatik, Technische Universit

Minchen, Boltzmannstrae 3, 85748 Garching beiinthen, Germany. _Barbgshln-Krasovskn-LaSaIIe principle. A_neW typg _Of
E-mail: {hand, el gui ndy, al t hof f }@n. tum de invariant set, as the sublevel set of a family of positive



polynomials, is proposed to be the inner-approximatioB. Problem Formulation

of the DA (Section IlI-A). In this paper, we aim to use the invariant set to estimate the
- Based on the real Positivstellensatz, the estimatiofa of the origin. Since the sublevel set method of Lyapunov
problem of the DA can be reduced to a local SOSynctions is the dominating method in this area, we first
programming problem. By further exploiting the Squargntroduce this method and then compare it with the method
Matrix Representation (SMR) of local SOS, we cania invariant sets. Specifically, le¥'(z) be a Lyapunov
compute a lower bound of the largest estimate of thgnction of system (1) for the origin, which satisfigs €
DA. This can be achieved by solving a generalizeq%z : V() >0, V(0,) = 0, lim .. V(z) = oo and
eigenvalue problem (Section II-B and Section 1I-C). the time derivative ol (z) along the trajectories of (1) is

. TW(_) strategies are prc_)posed_ for computing the |afgeﬁ$cally negative definite [28]. We introduce the sublevdl se
estimate of the DA with variable polynomials, which gf V(z) as

characterize the boundaries of invariant sets. Based on
these strategies, an algorithm is given for enlarging the V(e) = {l eR":V(x) < 6}7 (2

estimate of the DA via invariant sets (Section 11I-D). wherec € R,. For system (1))(c) is an estimate oD
=+ )

Il. PRELIMINARIES if there exists a positive scalar such thatvz € V(c) \
{0} : V(z) < 0[28].

NotationsN, R: natural and real number sel; : positive  An important observation in [28] is that the sublevel set
real number set0,: origin of R"; Ry: R"\{0,}; A”: of a Lyapunov function(c) for estimating the DA is simple
transpose ofd; A > 0 (A > 0): symmetric positive but usually conservative compared to the method of invarian
definite (semidefinite) matrixl; A @ B: Kronecker product sets based ohaSalles’s invariance theoreriThis motivates
of matricesA and B; ded f): degree of polynomial function us to find an invariant set which is more general and thus
f; tracg A): trace of matrixA; diag(v): a square diagonal less conservative than the $étc) to estimate the DA. See
matrix with the elements of vectar on the main diagonal; Fig. 1 for the relationship of different methods.

(x)TAB in a form of SMR: BT AB. Let P be the set of
polynomials andP™*"™ the set of matrix polynomials with
dimensionn x m. A polynomial p(z) € P is nonnegative
if p(z) > 0 for all z € R™. A useful way of establishing

p(x) > 0 consists of checking whethg(z) can be described
as a sum of squares of polynomials (SOS), iz) =
Zlepi(w)Q for somepy,...,pr € P. The set of SOS

polynomials is denoted bSOS. If p(z) € PSOSbecomes)
only for z = 0,,, we callp(x) local SOSdenoted byP$OS.

A. Model Formulation D

In this paper, we consider the following autonomous
dynamical system:
. i _ Fig. 1. An illustration for estimating the DA by using difart methods.
@(t) = f(z(t)), (1) The light pink area stands for the DA. The blue area indic#tesinner-

. . o estimate of the DA by using invariant sets. The green arewdtes the
wherez € R™ is the state vectorp(0) € R™ is the initial inner-estimate of the DA by using the sublevel set of Lyapufumctions.

state, x(t; z(0)) denotes the solution of system (1j, :
R™ — R is a nonlinear function satisfying the local Lipschitz | ot ;s now propose the main problem we are concerned
condition. In the sequel, we will omit the argumen&snda i Fing a functioni¥ () and a positive scalar such that

of functions whenever possible for the brevity of notations

. . o Wz{GR”:W'<} 3
Remark 1:In this paper, we are interested in estimating the (c) v (z) <e 3)
DA of an isolated stable equilibrium point. Without loss ofis an invariant set, and the estimate of the DA is maximized
generality, we place the equilibrium point at the origiid  under a certain selected criteria, i.e., by solving

Let us introduce the DA of the origin: It is the set of initial p= sup p(W(c))
stgtgs for which the system asymptotically converges to the . ’ W(e) C D, (4)
orngm, 1.€., W(c) is a positive invariant set

D= {x(o) eR™: lim x(¢t;z(0)) = On}, where p is a measure o¥V(c) depicting the user-defined
fortee criteria. It is worth noting that problem (4) is an inner-
wherey is the solution of system (1). The sgtis invariant  approximation problem of the DA, which is non-convex due
if 2(0) = x(0;x(0)) € Z = x(t;x(0)) € Z, Vt € R. If this  to the construction of invariant sets and the high nonlitear
condition only holds fort > 0, thenZ is positive invariant  of p.



[1l. M AIN RESULTS satisfies the local Lipschitz condition, one can concluae th

In this section, we first provide a method to estimate th&YStem (1) has a unique solution for all0) € W(c). For
DA via a new type of invariant set. Then, we execute ouf® continuity ofx(z,z(0)), it follows that
method by an iterative algorithm, in which each step will be W(x(t)) <0= W(z(t) < W((0) <ec Vt>0.
introduced by each subsection.

. . ) o Thus, all the solutiong(¢, z(0)) remain in the seW(c).

A. Estimate via the Invariant Principle 2) The origin is the only positive invariant set ix €

First, the following invariant principle is introduced: W(c)] W = 0}: This condition holds if we can show that
0, is locally asymptotically stable for alt € W(c). Since
W (z) > 0 for all W(c)/{0,}, we only need to prove that
under condition (6), the stateméit;_, ., W (x) = 0 holds,
which directly yieldslim;_,., x = 0. This can be proven by
using a contradiction. Let us assume that; .., W(z) = a
S={xe A W(x)=0} (5) anda # 0, and that there exist a tinf€ and a set3 as a

neighborhood of),, such thaty (¢, z(0)) is not in B for all
and suppose that no other solution can stay identically,in ; > 7

other than the trivial solution: = 0,,. Then, the origin is  pefine the set€ = {z € W(c)| W(z) = 0} and& =
locally asymptotically stable. 0 ¢/B. From condition (6), one could assume that there exists
If the function W in Lemma 1 is assumed to be a con-2 & such that

tinuously differentiable, radially unbounded, and a pesit max,ce WD (2) = —, Vo € W(c)/{0,},
definite function, the conclusion of Lemma 1 becomes: The W(z)=0, j=0,1,2,...,2k,

Lemma 1 (Barbashin’s theorem [28]Let x = 0,, be an

equilibrium point for (1) and lef¥ (z) be a continuously
differentiable positive definite function on a domaihcon-

taining the origin, such that/(z) < 0. Let

origin is globally asymptotically stable. This turns outlie

the Krasovskii's theoreni28]. Note that Barbashin’s theorem Where y is a positive scalar. By integrating’?**1) with
and Krasovskii's theorem are specializations of LaSalle’espect to the time intervat, 7], one has

theorem for the case of a single equilibrium point.

t t
Remark 2 (Difference from Lyapunov stability theory): W(x(t)) — W(x(T)) = / / Wk g
The Barbashin-Krasovkii theorem requires th&iz) < 0, T T
while the Lyapunov functior//(z) has to satisfy the more 2k+1

strict condition thatV(z) < 0, Vz € A/{0,}. In other
words, the Lyapunov stability condition is a special case of
the Barbashin-Krasovkii invariance theorem. However, one
needs to establish that the maximum invariant se& iof
(5) is the origin, which may not be simple in general..] _

IN

/Tt.../Tt(—fy)ds

2k+1

"/(t _ T)2k+1
) o o 2k +1)!

In order to overcome this obstacle, a sufficient condition is
provided by establishing the higher-order derivativéiofz) — which results inW (z(t)) < W (z(T)) — % Ast
and a new type of invariant set is developed for estimatingoes to infinity, one has thaim,_, ., W (z) = —co, which
the DA. contradicts with the fact thalV (x) is positive definite on
W(c)/{0,}. Thus, from Lemma 19, is locally asymptoti-

Theorem 1:Let W(z) : R® — R, be a positive definite ; .
cally stable for allz € W(c), which ends this proof. O

analytic function onW(c) = {z € R"| W(z) < ¢} and

W(0,) = 0. If there exists a natural numbérsuch that Remark 3:For Theorem 1, it is worth noting that
WD (1) < 0, Yz € W(c)/{0n}, 5 « The sublevel set method of Lyapunov functions can be
{ W@(z) =0, j=0,1,2,...,2k, (6) deemed as a special case of the proposed method. By
settingk = 0 in (6), W(z) turns out to be a Lyapunov
whereW(©) = 0 and W) is the j-th time derivative ofi¥’ function of (1) and/V(c) is a sublevel set of a Lyapunov
with respect ta 1, then,)W(c) is an estimate of the DA, i.e., function, which is also a contractive and invariant set.
W(c) C D. o Observe that Theorem 1 only provides a sufficient
Proof: We first prove that 1)V(c) is an invariant set: Then condition that enables the origin to be the maximum
we show that 2) the origin is the only positive invariant set  invariant set inS of (5). The conservatism originates
in {x € W(c)| W =0}. from the fact that Theorem 1 holds only far (z) with
1) W(c) is an invariant set: Sinc# (z) is positive definite the highest even derivativid’) = 0. Another source
on W(c)/{0,}, then W(c) is compact. According to [1, of conservatism is that, as mentioned in [28], one could

Theorem 3.1], and taking into account the assumption that construct an invariant sé¥(c) while the functioniV (z)
_ _ is not necessarily positive definite. Methods for reducing
tFor exampleV ) (z) = (VW, f(x)) where(., - is the inner product the conservatisms will be discussed in Section V(I

of two vectors,VW is the gradient ofV/, i.e., VIW = (%’ S D )
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Fig. 2. The prototypical single degree of freedom system. "SI~~~ SNoss-------2 /7000

For the above result, a deliberately simple example is given o 5 0 > 2
for illustration:

Wy
SIIIIr s

Example 1 (An excitation-free vibratory system [298: Fig. 3. The estimates of the DA by using (z) and Wa(z).
spring-mass-damper model is considered in Fig. 2, where

z1(t) = displacement of the center of mass, M
xo(t) = a1(t), i.e., velocity of the object,
F(t) = external excitation force, B
. Algorithm initialization
m = mass of the object, i
h = elastic stiffness coefficient,
w = Viscous damplng coefficient. ————————>{ Step 1: Enlarging estimate with a fixed W (z)

!

Step 2: Quasi-convex optimization via SMR ‘

For an excitation-free syster(t) = 0 andm, h,u € R.

From Newton’s second law of motion, one has !
Step 3: Searching for the optimal W (z)
1 (t) = 22(t),
U h
To(t) = ——ax2(t) — —x1(¢
) = —a(t) — (1)

Modification

Let z = (x1,72)T, we first consider the Lyapunov function

candidateV; (z) = 0.5ha? + 0.5ma3. In order to check the Ve
stability of this system and compute the DA, the derivative
of V1 is: Vi(z) = —ua2. It yields thatV;, = 0 for all the Output W*(c") /—'{ Stop }

states on thery-axis. Based on Lyapunov stability theory,
the origin is not guaranteed to be stable. Thus, no sublevel Fig. 4. Algorithm flowchart of the proposed approach.
set of V7 can be used as the estimate of the DA.

In contrast, we considel;(z) = Vi(z) by using The-
orem 1. Provided thai’, (z) = W{”(z) = 0, one has p_step 1 Estimation with FixedV (x)
2y = 0 and W = —h242 0 Ve € {z]zs = 0}/{02}. _ _ o
Therefore the global stability of the origin is ensured by " this subsection, a method based on SOS programming is
using the proposed method. In additiol](z) satisfying ProPosed to enlarge the Sai(c) by selecting a fixedV(x),

condition (6) is usually not unique. One could also considerS-+ W€ aim at finding

W%gc) = 0.25/1@;; + 0.25ma} with Wa(x) = D(z) = Y= sup ¢ Ko

Wy (x) = Wy’ (z) = 0. It yields thatzs = 0 and

WP = 24 < Ve € {afz; = 0}/{02}. Thus, such that (6) holds.

the estimates of the DA can be obtained via some level setsTo this end, we consider autonomous nonlinear systems
of Wi (z) andWa(x), as shown in Fig. 3. O  with polynomial vector fields. This class of systems can be

For th f und di ide a fl h e]3<tended to non-polynomial vector fields by using polynomi-
or t e ease of un grsta_m Ing, we provide a flowchart qj approximation or recasting them into rational vectodfel
the iterative algorithm in Fig. 4, where Stepehlarges the [3], which is outside the scope of this paper
estimate O.f the DbAI W{thstflxe(;W(x) tbyths_olvmgblan StOS First, let us introduce a lemma which extends from the
brogramming problem, Slep Lonverts his problem 10 a .\ q) ynown Real Positivstellensatz (P-satz) [7], [30].i§'h

guasi-convex optimization problem; Steps8arches for the | h f local heck th itivity of
optimal W (x) that provides the largest estimate of the pacma uses the cone of local SOS to check the positivity o

with fixed auxiliary functions-(xz) and s(x), which will be a polynomial on a semialgebraic set.
introduced in the next subsection. Lemma 2 ([27]): For polynomials ay,...,am, b1,...,b




andp, define a set

B

{r eR™:q;(x) =0, Vi=1,...,m,
@(.23)20, ijl,,l}

8

Let B be compact. Conditiovz € B : p(x) > 0 can be
established if

{

SOS
Iy, rm €P, S1,...,8 € PO

p— 0 ria; — Y05y sibi € PSOS ®)

C. Step 2 Quasi-Convex Optimization via SMR

Notice that the condition (11) of Theorem 2 is usually
hard to establish since the product of a local S@8) and
a scalarc makes it a bilinear inequality, which is non-convex
in nature Bisection methodanditeration algorithms of SOS
programmingare introduced to cope with this issue, but they
cannot handle the local SOS directly.

In this subsection, the SMR method is adopted for the local
SOS, i.e.po(z) € PSOS and an approach is proposed by
transforming the problem (11) into a generalized eigerevalu

Remark 4:Condition (9) becomes a necessary and sufficieq)tromem. First we will introduce the SMR for the set of
condition if there exists no degree limit for the auxiliary|ocal SOS. Consider a polynomig(z) of degreedeg(po)
functionss; and if one could find a polynomidl in set5  jithout the constant and linear terms, m(z) € PSOS. For

such thath~'[0, 00) is compact inR™. Please find [30] for +this class of polynomial, its SMR is as follows:
O

the instance of SOS cones.

po(x) = (+)7(Po + L(9)d(n, dy, ), (14)

Based on Lemma 2, a condition of local SOS program-

ming can be proposed to obtain a lower boundyah (7).

Theorem 2:Assume there exist a natural numberand a
positive definite functiorV (x) satisfying

|

and there exist a group of polynomiats(xz) € P, j
0,1,...,2k, and a polynomiak(z) € P5OS such thate is
the optimum of the following polynomial optimization

Vo € RE: W(z) >0, W(0,) =0,
im0 W) = o0,
WO (z) =0, Vj=0,1,...

(10)
) 2k)

C= sup c

c, s

—w(% ¢, T(:U), S(l)) € PSOS,
S't'{ vz e W(e) \ (0.},

where

Y(z,c,r(x), s(z))

(11)

WD (2) 4 s(x) (¢ — W (z))
+ o ri(@W9 (@),

(12)
in which r(z) = [ro(x), 1 (), .., re(2)]T. We recall that
W is the j-th derivative of W with W = 0. Then,
c <.

Proof: Suppose (11) holds, theay(z, ¢, s(x)) and s(x)
are local SOS. From Lemma 2, it yields that

Ik WD (z) <0, (13)

forall z in {x ¢ R* : WU =0, j =0,1,...2k}{z €
R" : c— W (z) > 0} \ {0,}, i.e., (6) holds. Therefore, from
Theorem 1,W/(¢) is an estimate of the DA with repect to
some natural numbet. Taking into account the definition
of v in (7), it finally yields thatc is a lower bound ofy,
which completes this proof. O

Remark 5: The above result converts the condition of (6)p
to local SOS conditions by using Lemma 2. It paves thé
way for proposing more tractable conditions via LMis.
The conservatism level depends on the degree of auxilia
functions and the existence of some additional auxiliar

functions relaxed from P-satz, see [9], [12], [14]. O

where (x)T AB is short for BT AB given in Section II;P,

is denoted by the SMR matrix g (x); n is the number of
variables;d,, is the smallest integer not less th&4REe),
ie.,dy, = [2PT: 6(n, d,, ) € RU™o) is a power vector
containing all monomials of degree less or equaldig
without degred; and L(¢) is a parameterization of the space

< {L(8) € RHmdpg)xUnudpo) . 1,(5) = LT(6),
()T L(8)d(n, dp,) = 0},
(15)

in which 6 € R?(™d»0) is a vector of free parameters. The
functions ofi(n, d,, ) andd(n, d,, ) can be obtained similarly
to [12]. For the ease of understanding, an illustration of an
SMR is given.

Example 2:Given the polynomialp;(z) = 525 + 42° +
4z + 72, we haved,, = 3, n = 1 and ¢(n,dp,) =
(3,22, 2)T. Then,p;(x) can be written as follows,
5 2 0 0 0 =9
P=(240),L0)=| 0 26 0 |.
0 0 7 - 0 O
]
Define q(z) = S22 r@WY () and let

deg(WE+1)) — deg(W) < deg(s) and deg(W ++1)) —
deg(WW) < deg(r;), forall j = 0,1,...,2k. By exploiting
the representation introduced in (14), we have the followin
expressions of SMR:

W) = ()" We(n,dy), (16)
s(z) = (+)7S¢(n,dy), (17)
ri(@) = (x)"R;o(n,dy)), (18)
() (*)T\Tj(év Cy Rj’ §)¢(n’dw)v (19)
for j =0,1,...,2k, whered € R?("4v) is a vector of free

arameters, antl’ ¢ R!(dw)xl(ndw) - § ¢ RIn.de)xI(n,d:)
ndv (s, c, @, S) € RU™dw)xl(ndy) are symmetric matrices.
Let D(), Q(R;), A1(S) and A2(S) be SMR matrices of
W/ (2), g(x), s(x) and W (z)s(z), respectively, with
{;gspect to the power vectar(n, d,,). From (12), it yields

U(4, c, Rj,g) = D(5) + Q(Rj) + CA1(§) — Az(g),



whered € R?(™4v) is a vector of free parameters. The fol-wherelV is the SMR matrix of¥/ (z) in (16) and vo{W (7))
lowing result transforms the condition (11) into a geneedi  is proportional tow. Then, a linear approximation of

eigenvalue problem (GEVP) via SMR. vol(W(v)) can be provided as
Theorem 3:For the given positive scalarg;, ¢2, a nat- vol(W(9)) ~ T (23)
ural number k, and a selected polynomial/(z) = tracg W)

TWo(n,d,) fulfilling (10), the polynomial ¢(z) = _
Sl)s(x)ﬂ(—n@gﬂ)/(x)s(x) g:( (*))TA(E)Z(g dy) th§e(ll)ower The main idea is to minimize dét’) (the product of positive
bound of+ can be obtained by el eigenvalues) by approximating the minimum of trdée
- (the sum of positive eigenvalues). Thus, a strategy is given
&

= (20) for searching the optimdll/ (x).

©1 + p2€
o ; Proposition 1: Assume that there exist polynomiaks €
hereé is the solution of the GEVP
W fl , H PSOS, s € P§OSandr; € P, Vj =0,1,...,2k, such that
é= inf e
o, e, R;, S ¢ = inf trace(W)
©1 + p2e >0, (21) W o
S >0, o d WW,x) € PFOS, WI(W,z) =0, (24)
eA(S) > D(3) + Q(R;) — Az(S). T (e, Woer(z), s(2)) € PSS
Proof: In this proof, we first show that 1) (21) is @ GEVP.Then, ;i; = 1 is an under-estimate of 0

Then, we demonstrate 2) (20) is the lower boundyof B
1) Optimization (21) is a GEVP: From [27, Lemma 4], Note that the condition of (24) could be transformed to
we haveA > 0 on the condition that¥ > 0 andS > 0, LMIs by using SMR introduced in the previous subsection.

which makes (21) a GEVP. Another promising method for handling the variablg x)
2) 7 in (20) is the lower bound of;: Based on the last IS to enlarge)V by using a set of chosen geometric shapes
inequality of (21, we have [14]. Specifically, we consider the optimization problem:
®(5,c,R;,5) = D(5)+Q(R;) 2= r ©
—eA(S) — Ao(S .
| ehlS)—ha(8) o f 9w, 29
: ™\ (10)— (11) hold

Considering (19) and

bz eor(@)s(@) = WE(@) 4 g(z) — W(z)s(x)
—e(pr + @2 W (x))s(x),

one can rewrite)(z, ¢, r(x), s(z)) into:

where
Gle)={z eR": ¥9(x) < e} (26)

and ¢(x) is a shape factor, e.g., a spherical form can be
- . obtained from{z € R™ : ¢¥(z) < e} by simply choosing
V(w,c,r(x),s(x) = ¥(@,7(2), 7750 (p1 +920)8(x)).  ¢(x) = ||z|>. Analogous to Theorem 2, another strategy
for computing the lower bound gf(WW(c)) can be given as

Notice that—e/(p1 + p2¢) is a monotonically decreasing
follows:

function which maps from the rande-(¢1/¢2), 0] into the
range[0, +00). Thus, (20) gives the lower bound §f [ proposition 2: Assume that there exist polynomials €

For more details of the GEVP, please see the book [31]7.3508’ s € Pg%°andr; € P, ¥j =0,1,..., 2k, such that

D. Step 3 Estimation with OptimallV () M2 = Sup €
— W,e,c
In this subsection, strategies for finding the optifia{x) (y—W)—5§—9) e psos 27)
are presentéd First, let us recall thap in problem (4) is a st W e PSOS Wi(z) =
user-selected measure which is usually chosen as —(z,c,r(x), 8(z)) € sos.
p(WV (7)) = vol(W(7)), Then, u, is an under-estimate of O

where vo[(W(v)) depicts the volume obV(y), and v is
introduced in (7). This allows us to pursue the optifié(z)
via maximizing the volume o#V (). However, vo{W(v))
is highly non-convex, which makes (4) a non-convex op-

To cope with (27), one could also construct a GEVP as
in Theorem 3. We will show both strategies by numerical
examples in the next section.

timization. To solve this problem, a typical method is to IV. EXAMPLES
approximate vaqW()) by introducing
n We execute the computation using MATLAB 2015a on
w= maxvif, vol(W (7)) « w, (22) a standard laptop with an 8GB DDR3 RAM and an Intel
de(W) Core i7-4712MQ processor. MATLAB toolboxes SeDuMi,

2For each iteration, the optimalW (z) is computed for allk € SDP_T‘?" _SMRSOFT and SOSTOOLS are u_sed for solving
{0,1,...,kq} whereky is a user-defined positive integer. semi-definite problems and SOS programming problems.



A. Example 3

Consider the following model from [15]:

:tl = T2,
iy = —(1—a2)x; — 29,

where the origind, is a locally asymptotically stable equi-
librium point with an unbounded DA.

First, we apply the algorithm shown in Fig. 3 and use
Proposition 1 to compute the estimate of the DA. The
proposed method is compared to the polynomial Lyapunov
methods from [3], [27], by using the same enlarging strategy
From Fig. 5, it is not hard to see that the proposed method
which uses invariant sets constructed by Theorem 1, previde
the best result compared to the other methods. Furthermore
a method comparison is also provided by using Propositior
2, as shown in Fig. 6. By selecting the shape fa¢tor) =
2?2 + 22, the best estimate can be obtained by the proposed
method compared to the polynomial Lyapunov functiortig- 5. Example 3: The computational result by using Prdjmsil. The

. . ed solid line indicates the actual DA. The solid green linel ¢he dotted
methods. TABLE | shows the computational complexity 0{Jlue line indicate the estimates by using the optimal Lyapufunctions

the proposed method. with deg(V) = 4 and deg(V) = 6, perspectively. The solid black line
depicts the estimate via the proposed method with 1 anddeg(WW) = 6.
B. Example 4 Some trajectories are shown in red (converging) and bluer@ing).

We extend the implementations to a 3-dimensional system:

j,‘l = -2 + o3,
Lo = —Xo + X122, 3
3 = —I3,

in which the origin0s is locally asymptotically stable. By

using the proposed algorithm with Strategy 1, we have the
computational result shown in Fig. 7. It shows that the
proposed method provides a better performance comparedt
the sublevel set method via polynomial Lyapunov functions
(31, [27].

-1
V. CONCLUSION AND DISCUSSION
An approach is provided for estimating the DA of au- -2
tonomous polynomial systems by using a new type of invari-

ant sets. This method supplies a complementary perspectiv. =~ _3
to the sublevel set method of Lyapunov functions, and -
provides an expanded scope for searching the Lyapunov
function. Firstly, based on the Barbashin-Krasovskii-8#&S Fig. 6. Example 3: The computational result by using Prdjmsi2. The
invariant principle, a sufficient condition is provided tha cyan solid line indicates the selected shape of the subkefebfG from

; ; ; _ ; ; (26). The magenta dotted line indicates the estimates mgubie optimal
sublevel set of a pqunomdﬂ(@) IS an mner. approxmatlon Lyapunov functions withdeg(V') = 6. The solid black line depicts the
of the DA by Check|ng the hlghel’-Ol’der derlvatIVESWf(a:). estimate via proposed method with= 2 and deg(W) = 6.
Secondly, the largest estimation of the DA can be obtained
by solving a local SOS programming problem. This problem

is then transformed to a generalized eigenvalue problem by TABLE |
using the Square Matrix Representa’[ion_ Fina”y, two etrat THE COMPUTATIONAL TIME t. [sec] FOR THE DIFFERENT STRATEGIES
gies are proposed for searching the optifia(x), and an THE NUMBER OF ITERATIONn¢, AND THE DEGREE OFWV ().

iterative algorithm is provided to obtain the largest estien
of the DA via invariant sets. The examples demonstrate
the effectiveness of the proposed method compared to the
polynomial Lyapunov function methods. nt=5  mt=10 ng=20 n=5 ne=10 n4=20

Along with Remark 3, the main conservatism of this
approach stems from the fact that only a suboptimal solutionPropositon 1 16.17  37.51 ~ 81.17 3032  69.91  151.47
could be obtained for the GEVP (21), and the fact that (23)propositon 2  19.83 37.92 87.36 34.16 75.28 162.66
approximates the volume of sublevel setl®&f(z), which is

deg(W) =4 deg(W) =6




[10]

(11]
(12]
(13]
[14]
[15]
[16]
Fig. 7. Example 4: The computational result. The red regiepials the [17]
estimate of DA using polynomial Lyapunov functions witleg (V') = 4.
The dotted black lines depidt (z) = 0. The solid black lines indicate the
estimate via proposed method with= 1 anddeg(W) = 4.
(18]

highly non-convex. To cope with these problems, a promising®!
convex approach is proposed by using the moment theory and
the occupation measure. Conditions of LMIs are obtainedo]
other than a bilinear matrix inequality (BMI) [23], [24].
Another source of conservatism arises from the fact that onf,,;
inner-approximation of the exact DA can be obtained. To get
less conservative results, using rational polynomial imesh

as well as the union of a group of sublevel sets are probad?ez]
ways, to which our future efforts will be devoted [15], [16],
[32]. Moreover, reachable set computations also provide (&3]
useful perspective to reduce the conservatism level [33].
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