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Abstract—Main-stream Automatic Speech Recognition sys-
tems are based on modelling acoustic sub-word units such
as phonemes. Phonemisation dictionaries and language model
based decoding techniques are applied to transform the phoneme
hypothesis into orthographic transcriptions. Direct modelling
of graphemes as sub-word units using HMM has not been
successful. We investigate a novel ASR approach using Bidirec-
tional Long Short-Term Memory Recurrent Neural Networks
and Connectionist Temporal Classification, which is capable of
transcribing graphemes directly and yields results highly compet-
itive with phoneme transcription. In design of such a grapheme
based speech recognition system phonemisation dictionaries are
no longer required. All that is needed is text transcribed on the
sentence level, which greatly simplifies the training procedure.
The novel approach is evaluated extensively on the Wall Street
Journal 1 corpus.

I. INTRODUCTION

Up to now Automatic Speech Recognition (ASR) has been

based on modelling acoustic sub-word units, i.e. phonemes.

Few attempts have been made to model graphemes (i.e. letters,

numbers, punctuation marks etc.) directly. Due to the HMM-

based modelling used in most state-of-the-art speech recogni-

tion systems phoneme based modelling was preferred, since

phonemes obviously are closely related to the acoustic obser-

vations. In order to model graphemes directly an HMM system

must consider much more context, which is tricky, and requires

advanced methods such as using context dependent n-gram

models and long-term features. In the last few years a novel

method for speech recognition has been published [1] which

- without modifications - is in principle able to transcribe

letters directly by modelling long-range context. The method

uses Bidirectional Long Short-Term Memory (BLSTM) Re-

current Neural Networks (RNN) [2] with the Connectionist

Temporal Classification (CTC) output layer [1]. We refer to

the combined system as BLSTM-CTC. It has proven highly

successful for sequence transcription tasks involving difficult,

real-world data [3], [4], including phoneme recognition on the

TIMIT corpus [5]. Similar network architectures have been

used for other speech related recognition tasks where context

information is beneficial, e. g. [6], [7].

To evaluate the ability of these networks to transcribe

speech directly to graphemes we apply BLSTM-CTC to a

grapheme based speech recognition task employing the 1993

Wall Street Journal 1 (WSJ1) corpus. We believe grapheme

recognition using BLSTM-CTC is very interesting since the

networks in theory can learn local acoustic modelling as

well as long-range contextual information such as language

modelling or vocabulary. The approach is principally language

independent. For training recognisers for various languages

only a set of written transcriptions of the recordings without

phonemisations is required. Such an approach is especially

advantageous for languages lacking a well defined phoneme

set (cf. [8]).

This paper is structured as follows: section II gives a brief

overview of related work of grapheme based speech recogni-

tion. The BLSTM-CTC architecture is explained in section III.

The database and the evaluation procedure are presented in

section IV. The results obtained with BLSTM-CTC for both

phoneme and grapheme recognition are discussed in section V

before we summarise our findings and provide an outlook in

section VI.

II. RELATED WORK

Up to now, only few - compared to phoneme based ASR

- publications exist addressing direct grapheme transcription

of spoken utterances (e.g. [9], [10], [11], [12]). This is not

surprising since, for the English language at least, no direct

relation between written text and acoustic realisation (pro-

nunciation) exists. Since HMM locally model acoustic sub-

word units, they are unable to handle the long-range context

information required to interpret different context dependent

pronunciations belonging to the same lexical representation.

Killer investigates grapheme based ASR in [9], where an

innovative decision tree based clustering method is used in

order to build context dependent tri-grapheme models for using

letters instead of phonemes as sub-word units. Moreover, [9]

investigates HMM based grapheme recognition for multiple

languages. The main conclusion is that grapheme recogni-

tion works well for languages such as German where the

graphemes correspond closely to the phonemes, but is inferior

to phoneme based recognition for languages such as English
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that lack this close correspondence. A similar work is reported

in [13].

Another interesting, yet only loosely related, ASR ap-

proach where grapheme recognition is used was published

in [14]. Here, grapheme based modelling is used in addition

to phoneme based modelling. Both, grapheme and phoneme

hypothesis are used in the decoding stage. The authors showed

that adding grapheme based modelling to a phoneme-only

system improved recognition accuracy.

III. BLSTM-CTC

Traditional feed-forward neural networks, such as multilayer

perceptrons, are static classifiers that consider fixed-size input

windows irrespective of surrounding context. This makes them

poorly suited to transcribing connected time-series such as

speech. Recurrent neural networks (RNN), where one or more

of the hidden network layers is connected to itself, have proven

more effective for speech transcription [2]. RNN can learn to

model past events by adjusting the weights of the feedback

connection, allowing them to make use of previous context.

However, analysis of the error flow in traditional RNN

revealed that long-range context is inaccessible to them be-

cause the backpropagated error either blows up or decays

over time (the vanishing gradient problem [15]). This led to

the introduction of the Long Short-Term Memory (LSTM)

RNN architecture, which is able to store information in linear

memory cells over a long period of time. An LSTM hidden

layer is composed of recurrently connected memory blocks,

each of which contains one or more recurrently connected

memory cells (see figure 1), along with three multiplicative

“gate” units: the input, output, and forget gates.
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Fig. 1. LSTM memory block with one memory cell whose contents are
protected and controlled by input, output and forget gates.

The cell input is multiplied by the activation of the input

gate, the cell output by that of the output gate, and the

previous cell values by the forget gate. The combined effect

of the gates is to allow the network to store and retrieve

information over long periods of time, thereby giving access

to long-range context information. By adjusting the weights

of the gates during training, the network learns “how much”

context to consider, thus theoretically being able to learn even

word level semantic context from the training transcriptions.

However, this has not been precisely researched yet. The

first few publications where LSTM networks are applied to

phoneme recognition tasks show good results, which is an

early indicator, that these networks are indeed able to model

higher level context.

LSTM can be further extended to bidirectional networks,

resulting in Bidirectional Long Short-Term Memory Recurrent

Neural Networks (BLSTM-RNN) [16]. Here, two separate

hidden layers are used to process the input data fowards and

backwards. Both layers are connected to the same output layer,

which can therefore make classifications based on both past

and future context (see figure 2). When applied to speech

recognition [2], [5], BLSTM-RNN has the advantage of being

able to model anticipatory co-articulation effects. However,

one major drawback is that the entire input sequence must

be available beforehand, which makes on-line classification

impossible. Yet, on-line classification is not required for many

applications, such as off-line transcription of broadcast speech.
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Fig. 2. Structure of a bidirectional network with input i, output o, as well
as two hidden layers (hf and hb)

In the past, time-series transcription with RNN has been

severely hampered by the fact that the target labels required

for training have to be pre-aligned with the inputs. For

phoneme recognition, this means that phonetic alignments

must be provided for the training data. HMM-based systems

perform alignments of the training sequences iteratively during

training and thus do not have this limitation. Recently, a

novel technique called Connectionist Temporal Classification

(CTC) has been published [1], which allows RNN to be

trained on unsegmented sequence data. The basic idea of

CTC is to interpret the network outputs as a probability

distribution over all possible label sequences, conditioned on

a given input sequence. Given this probability distribution, an

objective function can be derived that directly maximises the

probabilities of the correct labellings. The objective function

is differentiable and thus the network can be trained with

standard backpropagation through time [17].

A more detailed description of the CTC algorithm can be

found in [3]. A CTC output layer has L + 1 units, where

L is the number of labels to be recognised (e.g. the total

number of phonemes or graphemes). The additional output

is required to specify a blank label, which will be output for
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Fig. 3. Schematic topology of our multi-layer BLSTM-CTC networks used
for grapheme transcription.

no label or an unknown label. At each timestep the L + 1
outputs corresponding to the L labels and the blank label are

used to estimate the probabilities of observing the respective

labels. The combined sequence of outputs estimates the joint

probability of all possible alignments of all possible labellings

with the input sequence. The total probability for a particular

labelling can then be found by summing the probabilities of

all the alignments corresponding to it [1]. By analogy with

HMM, this process is referred as decoding. Using the CTC

token passing algorithm [3], the decoding procedure can be

extended to incorporate dictionaries and language models.

IV. EVALUATION

To evaluate our proposed grapheme recognition approach

we use the Wall-Street Journal 1 (WSJ1) corpus, which

contains a large number of read English speech utterances

spoken by American native English speakers. The WSJ1 sub-

set used in this work contains 38,275 turns from the 1993

SI200 training set. The turns have an average length of 7.6 s,

resulting in a total length of over 80 hours of speech material.

For phoneme transcription experiments a phonemisation using

39 phonemes was obtained using the CMU Pronouncing

Dictionary1. Thus, including an additional short pause label

marking word boundaries, 40 labels are used for phoneme

recognition. For grapheme recognition 28 labels are used, the

26 letters of the alphabet, the short pause (SP) label (for blanks

between words), and a label for the apostrophe (e.g. in words

like it’s).

The label string output by the net is compared to the corre-

sponding ground truth phonetic and graphemic transcriptions

and a Label Error Rate (LER) is computed based on the

number of insertions, substitutions and deletions according to

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

the following equation:

LER =
D − S − I

N
(1)

where D is the total number of deletions in the recognised

strings, S is the total number of substitutions, I the total

number of insertions, and N the total number of labels in

the test set.

As acoustic low-level features 12 Mel-Frequency Cepstral

Coefficients (MFCC) and log. energy (E) are used. Both are

extracted every 10 ms over a window of size 25 ms. For

HMM-based recognisers it is common practice to append

δ and δδ-coefficients to the MFCC. Although BLSTM-CTC

theoretically are able to learn to internally generate the addi-

tional information gained by those coefficients, our experience

has shown that feeding the BLSTM-CTC net those features

directly reduces training time and gives slightly better results.

Thus, we append δ and δδ coefficients resulting in 39 features

in total. All features were normalised to have zero mean and

unit variance using statistics computed from the training set.

We evaluate the proposed BLSTM-CTC on both grapheme

and phoneme transcription tasks on WSJ1. Evaluation is

performed using pre-defined speaker independent training,

validation and test sets. The training set contains 27,570

utterances from 144 speakers. The validation set contains

3,059 utterances from 16 speakers, and the test set contains

the 7,646 utterances from the remaining 40 speakers. Since

a larger test set yields more stable and significant results we

decided not to use the rather small standard evaluation sets,

as used in [18], for example. The validation set is used to

determine when training of the network should be aborted.

After every 5 training epochs an error test on the validation

set is conducted. If no improvement of LER on the validation

or training set is observed for more than 10 error tests, the

training is aborted. The best results reported are those obtained

on the test set with the network giving the best LER on the

validation set.

Topology Description
NET0 1 layer, 100 LSTM units, 1 cell each.
NET1 1 layer, 150 LSTM units, 1 cell each.
NET0H 1st layer, 78 feedforward units

2nd layer, 80 LSTM units, 1 cell each.
3rd layer, 27 LSTM units, 1 cell each.

NET1H 1st layer, 78 feedforward units
2nd layer, 120 LSTM units, 1 cell each.
3rd layer, 27 LSTM units, 1 cell each.

TABLE I
FOUR BLSTM-CTC HIDDEN-LAYER TOPOLOGIES.

Four BLSTM-CTC hidden layer topologies are investigated,

as detailed in table I. Common to all networks is a feed-

forward input layer of size 39 (one input for each feature)

as well as a CTC output layer of size 41 (including blank) for

phoneme transcription networks and size 29 (including blank)

for grapheme transcription networks. A novel architecture for

both phoneme and grapheme recognition is the hierarchical
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topology with three hidden layers as depicted in figure 3.

For training of all the networks in our experiments standard

backpropagation through time with a learn rate of 10−5 and a

momentum of 0.9 is used.

V. DISCUSSION OF RESULTS

Table II shows the results obtained on WSJ1 for grapheme

and phoneme transcription with BLSTM-CTC after a fixed

number of 100 training epochs.

[LER %] Grapheme Phoneme
NET0 30.8 23.4
NET1 26.6 19.9
NET0H 22.1 17.5
NET1H 19.9 15.7

TABLE II
LABEL ERROR RATE (LER) OBTAINED ON WSJ1. FOUR BLSTM-CTC

TOPOLOGIES FOR BOTH PHONEME AND GRAPHEME TRANSCRIPTION.
SPEAKER INDEPENDENT EVALUATION USING GIVEN TRAIN AND TEST

PARTITIONS. NO. OF TRAINING EPOCHS FIXED AT 100.

Among the four network topologies great differences in

transcription performance are observable. The multi-layer net-

work topologies perform far better than the single layer topolo-

gies. I.e. approx. 6-8% absolute for grapheme recognition

and 4-6% absolute for phoneme recognition. Networks with

more units in the hidden-layer outperform smaller networks.

Multiple layers might mimic the speech processing hierarchy

found in human speech perception, i.e. acoustic modelling,

word units, words, and grammar. HMM-based systems also

employ a similar hierarchy by including acoustic models

(HMM), dictionaries and language models. Other phoneme

recognition approaches, e.g. [19] also implement multiple

hierarchies. The benefit of BLSTM-CTC, however, is that an

arbitrary number of layers can be specified, where each layer

is able to automatically learn what and how much context to

model. Hierarchical LSTM topologies are already successfully

applied in other fields, e.g. handwriting recognition [3].

Overall it is clear that phoneme transcription yields slightly

better results than grapheme transcription. Even after training

the networks for more than 100 epochs, there is still a

gap between phoneme and grapheme transcription results.

However, we feel it is quite remarkable that BLSTM-CTC

grapheme recognition performance is close to phoneme recog-

nition performance, with no modification of the algorithm. The

HMM-based systems for phoneme recognition and grapheme

recognition must be tuned separately and show considerable

conceptual differences.

The phoneme recognition result of 15.7% is the best ob-

tained so far using BLSTM-CTC. 24.6% LER are reported

on the TIMIT corpus in [5]. TIMIT - similarly to WSJ1 -

contains read speech, however WSJ1 is larger than TIMIT,

which seems to be the main reason for the boost in recognition

performance. At the same time this shows that more training

data is highly beneficial, which is not new and also applies to

HMM-based systems.

Ground truth annotation:

AS OF APRIL FIRST ALL INTEREST
INCOME WILL BE TAXED AT TWENTY
PERCENT.

BLSTM-CTC transcribed grapheme string:

a s SP o f SP a i p r o l f i r s
t SP a l SP i n t e r e s t SP i
n c o m e SP w i l l SP b e SP t
a x t SP i t SP t w e n t i n SP
p e r c e n t SP

Final output after decoding:

AS OF APRIL FIRST AL INTEREST
INCOME WILL BE TAX T. IT TWENTY
PERCENT.

Fig. 4. WSJ1 example sentence 1. Average recognition case. Manual
annotation (top), BLSTM-CTC grapheme output - SP denotes short-pause,
i.e. a word boundary (middle), BLSTM-CTC grapheme output after dictionary
based (unweighted, no language model) decoding (bottom), see section III.
Correctly recognised words are printed in bold-face.

Ground truth annotation:

FINE ANSWERED HIS FRIEND JOHN
REILLY.

BLSTM-CTC transcribed grapheme string:

f i n SP a n s e r a g e s SP f r
SP a n j o n SP r i l y SP

Final output after decoding:

FINE AN SURGES FOR AN JON RILE.

Fig. 5. WSJ1 example sentence 2. Bad recognition case. Manual annotation
(top), BLSTM-CTC grapheme output - SP denotes short-pause, i.e. a word
boundary (middle), BLSTM-CTC grapheme output after dictionary based
(unweighted, no language model) decoding (bottom), see section III. Correctly
recognised words are printed in bold-face.

For the reader to get an impression of the types of recog-

nition errors the networks commonly make, we provide the

recognition result of two selected utterance from the test set

in figures 4 (example 1) and 5 (example 2). Example 1 is

an example of an average recognition result, where example 2

shows a result with more errors, below average. When looking

at example 1 it can be seen that the words INTEREST and

PERCENT are both correctly recognised on the grapheme

level, even though the ‘c’ in PERCENT is pronounced as

an ‘s’, just like the ‘s’ in INTEREST. This indicates that

BLSTM-CTC networks are indeed very flexible and are able to

model higher level context and thus being able to distinguish

the different orthographies from the surrounding graphemes.
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However, this does not seem to work as expected in all cases,

e.g. if we look at APRIL in example 1, we see that it is

transcribed as a i p r o l, which is pretty close to the

phonetic representation. Such errors might be related to the

lack of training data for specific words. This is a notable

drawback of the proposed approach: Words occurring very

seldom in the acoustic training data will not be learnt as

well as more frequently occurring ones. It is not possible to

train separate language and acoustic models as with HMM

based approaches, where the language model can be trained

from a far larger collection of texts and transcripts. However,

when a large amount of transcribed acoustic training data is

available, the presented approach is very easy to apply, and a

recogniser can be built fully data-driven for any corpus and any

language. Applying a language model on top of the BLSTM-

CTC is another option. However, we believe that a phoneme

based BLSTM-CTC system is better suited for decoding with

a language model, since acoustically similar words can be very

different on the grapheme level, not so on the phoneme level.

VI. CONCLUSION AND OUTLOOK

We have demonstrated a novel approach for recognition

of large vocabulary read English speech, which is capable

of recognising graphemes (i.e. letters) directly. No phonemi-

sation dictionary is required, thus the approach is language

independent and can be applied without modifications to

any orthographically transcribed speech corpus. Recognition

performance for graphemes was compared to phoneme recog-

nition performance using the proposed approach. Phoneme

recognition performance still remains superior to grapheme

recognition performance, however, the gap is very small, espe-

cially for multi-layer BLSTM-CTC neural network topologies.

These were found to be superior to single layer topologies on

both tasks (phoneme and grapheme).
In future work we will investigate other topologies us-

ing more layers including sub-sampling feed-forward layers

between the recurrent LSTM layers, as the results herein

show that grapheme recognition benefits slightly more from

hierarchical networks than phoneme recognition. We will also

compare decoding results of grapheme and phoneme strings

and report corresponding Word Error Rates. Furthermore, we

plan to investigate a combined phoneme/grapheme BLSTM-

CTC system to increase overall performance. Finally, we will

investigate grapheme recognition on multi-lingual corpora and

databases containing natural, spontaneous, and emotionally

coloured speech.
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[10] S. Stüker and T. Schultz, “A grapheme based speech recognition system
for russian,” in Proceedings of the 9th International Conference ”Speech
And Computer” SPECOM’2004. Saint-Petersburg, Russia: Anatolya,
September 2004, pp. 297–303.

[11] S. Kanthak and H. Ney, “Context-dependent acoustic modeling using
graphemes for large vocabulary speech recognition,” in Proceedings the
2002 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP’02), vol. 1. Orlando, Florida, USA: IEEE, 2002,
pp. 845–848.

[12] E. G. Schukat-Talamazzini, H. Niemann, W. Eckert, T. Kuhn, and
S. Rieck, “Automatic speech recognition without phonemes,” in Pro-
ceedings of the 3rd European Conference on Speech Communication and
Technology EUROSPEECH’93. Berlin, Germany: ISCA, September
1993, pp. 129–132.
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