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Abstract— Musculoskeletal robots are a class of compliant,
tendon-driven robots that can be used in robotics applications,
as well as in the study of biological motor systems. Unfor-
tunately, there is little progress in controlling such systems.
Modern non-linear control approaches are used to overcome
the challenges posed by the muscle compliance, the multi-DoF
joints, as well as unmodeled dynamic effects such as friction.
A controller is derived for a generic model of musculoskeletal
robots utilizing a multidimensional form of Dynamic Surface
Control (DSC), an extension to backstepping. This controller
is extended by an adaptive neural network to compensate for
both muscle and joint friction. The developed controllers are
evaluated against the state of the art Computed Force Control
(CFC), an application of feedback linearization, for a spherical
joint which is actuated by five muscles.
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I. INTRODUCTION

Within the last decade, focus in robotics research has

shifted to more human-friendly robots. When physical

human-robot interaction is considered, collisions may not be

fully avoidable. In case of a rigid impact, a robot without

passive compliance is very likely to damage itself or its

surroundings, as active compliance is limited by sensor band-

width and control frequency [1]. By employing tendon-driven

actuation, actuators can be placed with more freedom, to e. g.

improve the weight distribution of the robot. Musculoskeletal

robots combine this type of actuation with the advantages

of passively compliant robots. Prominent examples for these

robots are Kenshiro [2] and the ECCEROBOTS [3].

Even though research of the last years has produced

extremely impressive robots, the field of controlling such

robots has made very little progress, so far. While demon-

strations of these robots show usually only Feedforward

(FFW) control, the existing feedback control techniques [4],

[5] have failed to scale to more complex structures. This is

due to the fact that musculoskeletal robots in general exhibit

several characteristics that are usually not present in previous

tendon-driven systems. These include complex joint types,

like spherical joints, difficult to model muscle kinematics and

elastic muscles. Passive compliance in the muscles dimin-

ishes the control performance of existing control techniques

like Computed Force Control (CFC) [6].

In this paper, control techniques are developed, taking

inspiration from Na et. al [7] who developed an adaptive

neural dynamic surface controller for a single Degree of
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Freedom (DoF) servo system. We extend a multidimensional

approach to backstepping by Oh and Lee [8] with Dynamic

Surface Control (DSC) [9] and adaptive neural networks to

significantly improve control performance for musculoskele-

tal robots.

II. MODELING

A generic model for the class of musculoskeletal robots is

developed, starting with a model for the skeletal dynamics,

the muscle dynamics, and finally the muscle kinematics.

Generally, the number of DoF of a robot denotes the number

of joints. However, due to the introduction of passive compli-

ance in the muscles, this definition needs to be extended. We

call the number of skeletal DoF n and the number of muscles

m. Hence the total number of DoF of such a system is n+m

with m actuators, yielding an underactuated system.

A. Skeletal Dynamics

For conventional robots, the inverse dynamics relate the

joint torques τ with the joint accelerations q̈ for a state of

the robot, given by (q, q̇). It can be expressed in the so called

canonical form:

τ = H(q)q̈ + C(q, q̇)q̇ + τG(q) (1)

while H(q), the mass matrix, is an n×n symmetric, positive

definite matrix, expressing the robot inertia, C(q, q̇) is an

n × n matrix, which accounts for Coriolis and centrifugal

effects, and τG(q) is the vector of gravity terms. Even

though muscles exhibit significant compliance, the skeleton

of musculoskeletal robots can, in most cases, be assumed as

rigid links between the joints. Hence, (1) can be used as a

general model of the skeletal dynamics. In the presence of

spherical joints, however, difficulties arise in representing the

joint positions. The three dimensional rotation of a spherical

joint can be expressed in several different ways. Due to

its lack of singularities, the unit quaternion description of

rotation was chosen [10]. To account for the fact, that the

dimensionality of a quaternion is higher than the represented

DoF, the positional coordinate q is replaced by α, containing

the quaternion representation of spherical joints, as well as

the angular representation of the other, e. g. revolute, joints.

This leads to the following modified joint space dynamic

equation:

τ = H(α)q̈ + C(α, q̇) + τG(α) (2)

Therefore, a relationship between the derivative of α and the

rotational velocities q̇ needs to be obtained. The mapping

of the derivative of a quaternion and the corresponding
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rotational velocities is well known [11]. We define a matrix

A(α), as a diagonal matrix, in which each revolute joint is

represented by a 1 and each spherical joint is represented by

the corresponding mapping, such that [12]:

α̇ = A(α)q̇ (3)

B. Muscle Dynamics

A muscle in a musculoskeletal robot with electromagnetic

actuators consists of a brushed permanent magnet Direct

Current (DC) motor, gearbox, tendon, and an elastic element.

The model considered here is a standard model for this type

of actuator, which is simplified by neglecting the current as

a system state:

θ̈ = −
c2M

RAJT
θ̇ −

rs

r2GηGJT
f +

cM

RAJT rG
vA (4)

where vA, RA and cM are the armature voltage, resistance

and the motor constant, respectively. The actuator velocity is

represented by θ̇ and the load torque by the muscle force f

times the radius rs of the spindle that winds up the tendon.

Finally, the gearbox is accounted for by a reduction ratio rG
and a factor of efficiency ηG.

This actuator model is extended by a model of the elastic

element with a possibly non-linear stress-strain relationship,

which is represented by a spring stiffness K(f):

ḟ = K(f)(l̇ + rsθ̇) (5)

where the change in spring expansion is expressed as the

change in muscle length l̇ and the change in tendon length,

due to turning the spindle.

C. Muscle Kinematics

The muscle kinematics describe the force transmission of

the muscles and is hence a geometric representation of how

muscles interact with the skeleton. It can be captured by the

so called muscle Jacobian which is defined as the partial

derivative of the muscle lengths l with respect to the joint

angles q. By the principle of virtual work it can be shown

that the muscle Jacobian L(q) can be transferred in the force

torque domain [13]:

L(q) =
∂l

∂q
←→ τ = −LT (q)f (6)

where the minus sign arises from the definition of a positive

force being associated with muscle shortening. Note that any

flexibility in the muscles does not affect this purely geometric

relation, as it essentially expresses the (negative) matrix of

muscle lever arms. In the presence of spherical joints, the

pose of the robot is represented by α. Hence Lα(α) is defined

as the partial derivative of the muscle lengths with respect

to the pose vector as follows:

Lα(α) =
∂l

∂α
(7)

A(α) can be introduced from (3), yielding:

∂l

∂t
= Lα(α)

∂α

∂t
= Lα(α)A(α)

∂q

∂t
(8)

and the muscle Jacobian L(α) can be rewritten as follows:

L(α) =
∂l

∂q
= Lα(α)A(α) (9)

A generalized model can be defined by introducing (6) into

(2) and (5):

H(α)q̈ + C(α, q̇)q̇ + τG(α) = −L(α)
Tx1 (10)

ẋ1 = K(x1) [L(α)q̇ + rsx2] (11)

ẋ2 = −
c2M

RAJT
x2 −

rs

r2GηGJT
x1 +

cM

RAJT rG
vA (12)

The system states of (11) and (12) have been replaced by

x1 and x2 which denote the muscle force f and the actuator

velocity θ̇, respectively. Note that the system state of the

first equation x0 = [α, q̇]T is made up of both the pose

and the joint velocity. It is obvious that (10)–(12) presents

a so called strict-feedback system, where the first equation

relates the system state x0 to its derivative and takes the

system state of the next equation x1 as an input. Similarly,

the ith system equation (i ∈ {1, . . . , k}, where k is the depth

of the system) is a function of xi and the previous system

states x0, . . . , xi−1 and takes xi+1 as an input. A general

definition of strict-feedback can be found in [14].

III. COMPUTED FORCE CONTROL

Most tendon-driven controllers utilize feedback lineariza-

tion, by linearizing (10) and introducing some linear control

law. Hence a tendon force needed for a certain movement

is computed and is therefore often called Computed Force

Control (CFC) or Computed Muscle Control. A trajectory

tracking form of this type can be given as follows [6]:

− LT fd = H [q̈d +D(q̇d − q̇) + P∆q] + Cq̇ + τG (13)

where ∆q = qd − q denotes the error in the angle, which is

later redefined to account for the utilization of quaternions,

and P and D are positive control gains. The redundancy in

the muscle space can be resolved in several different ways,

where the most common one is to solve a quadratic program

of the following form to obtain the muscle forces [6]:

min
fd
||fd||

2
subject to

{

−LT (α)fd = τd

fd ≥ fmin

(14)

There is a drawback in this approach which is that these

controllers rely on perfect low-level control. When muscles

with passive compliance are considered this is impossible

to achieve, as the elastic element leads to slowed system

dynamics, i. e. the actuator has to expand the elastic element

until the reference force is reached. In larger assemblies this

can lead to oscillations or even instability.

IV. DYNAMIC SURFACE CONTROL

Apart from feedback linearization, there are several tech-

niques that have been used before in robotics to derive non-

linear controllers. For flexible-joint robots, the technique of

passivity based control has been utilized extensively [15].

However, this method does not provide a systematic syntheti-

zation approach. If the system model can be reformulated to
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form a strict-feedback system, as in (10)–(12), the method of

backstepping can be applied [14]. In this method, a controller

φ1 for the first system, i. e. equation (10), is found assuming

the next state x1 as virtual control signal. In the case of

equation (10) we will adopt a nonlinear controller developed

by Oh and Lee [8] for trajectory tracking of flexible joint

robots in extension to our musculoskeletal problem:

φ1 = −LT+ {H [q̈d + Λ1(q̇d − q̇)] + C [q̇d + Λ1∆q]

+τG −Kdr} (15)

while LT+ denotes the pseudo inverse of the muscle Jaco-

bian, which is associated with the result of the quadratic

program in (14). Λ1 is a diagonal control gain matrix with

positive elements. The generalized tracking error r is defined

as follows:

r = q̇ − q̇d − Λ1∆q (16)

In the next step, the dynamics of x1, i. e. equation (11), need

to be controlled so that x1 converges to φ1 by designing a

suitable controller φ2 for the virtual control signal of x2 in

the dynamics of (11). Within the backstepping technique, this

requires the calculation of the time derivative of φ1 and the

consideration of interaction terms in the combined dynamics

of x0 and x1 through a stepped Lyapunov analysis. In the

next step, the dynamics of x2 are controlled using equation

(12). This again requires time derivatives in particular for φ2.

This backstepping from x0 to x2 accounts for the interaction

dynamics of the controllers but creates an explosion of

complexity due to the applied time derivatives. For this

purpose Swaroop et. al. [9] developed Dynamic Surface

Control (DSC) which utilizes a set of first order low-pass

filters in between each level of the control laws to realize

stable numeric differentiation. Each of these filters is applied

to the signal of the (virtual) controller output φi and is

defined such that:

µiṡi + si = φi i = {1, . . . , k} (17)

where µi is the filter constant and si the filter output. Thus,

the closed loop dynamics for state x0 also considering the

change of coordinate z1 = x1 − s1, evaluate to:

Hṙ + Cr +Kdr = −LT [z1 − µ1ṡ1] . (18)

This now requires to control the virtual error z1. Within the

next step, the dynamics of the virtual control signal x1 can

be analyzed by rewriting (11):

ẋ1 = f1(α, q̇, x1) + g1(x1)x2 (19)

and introducing it into the derivative of z1:

ż1 = ẋ1 − ṡ1 = f1 + g1x2 − ṡ1 (20)

Thus, the virtual control for the state x2 is:

φ2 = g−1
1 [ṡ1 + Lr − Λ2z1 − f1] , (21)

where Λ2 is a diagonal control gain matrix with positive

elements. The term Lr will be clarified later. The dynamics

of state x2 are rewritten from (12):

ẋ2 = f2(x1, x2) + g2vA (22)

and introduced into the dynamics for the second change of

coordinate z2 = x2 − s2:

ż2 = ẋ2 − ṡ2 = f2 + g2vA − ṡ2 (23)

For these error dynamics a controller is found:

φ3 = g−1
2 [ṡ2 − g1z1 − Λ3z2 − f2] , (24)

where Λ3 is again a diagonal control gain matrix with

positive elements and the choice of the term g1z1 is explained

later. This control law is subsequently to be applied, i. e.

vA = φ3 (see Fig. 1).

It is evident that all three control laws, the two virtual

control laws (15),(21) and the actual control law (24) require

the use of the derivatives ṡi. They can now be numerically

determined by the following term:

ṡi =
φi − si

µi
= −

ei

µi
(25)

The method causes an error due to the filter ei = si − φi

which is differentiated to obtain the following error dynam-

ics:

ėi = ṡi − φ̇i = −
ei

µi
+ ξi(. . .) (26)

where ξi has been shown to be a bounded continuous

function [9], [16], [17] of the system states, their derivatives,

and the controller in some bounded set. Without loss of

generality, it can be assumed that the controller is only

operated within certain bounds and we can define an upper

bound to ėi.

For revolute joints the error in the angle ∆q is simply equal

to the angular difference. In the case of spherical joints, it

needs to be redefined as follows for a single spherical joint:

∆q = η~ǫd − ηd~ǫ− S(~ǫd)~ǫ (27)

which is zero if and only if the delta rotation is zero, i. e. α

matches the demand αd. The measured and desired rotations

are expressed as quaternions, where η is the real and ~ǫ the

three dimensional imaginary part. S(·) is the skew symmetric

operator. This definition arises from the stability analysis of

quaternion control. In particular, r = 0 implies exponential

convergence, while ‖r‖ < ǫr for small positive scalar ǫr
implies bounded tracking of α with respect to αd [18].

Considering these prerequisites, the following result shows

ultimate bounded stability for the DSC:

Lemma 1: Consider the musculoskeletal robot from (10)–

(12) and the DSC from (15),(21) and (24). If the closed loop

gains satisfy

Imµ1 ≤ ke(c1LL
T + Im)−1 (28)

Imµ2 ≤ ke(c2g
T
1 g1 + Im)−1 (29)

Kd ≥ In
1

4c1
(30)

Λ2 ≥ Im
1

4c2
(31)

Λ3 ≥ 0 (32)
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α,q̇

Trajectory
Controller

Muscle
Jacobian

Quadratic
program

Actuator
Velocity

Low-level
Control

vA

Muscle
Force

filter filter

φ1

L(α)r − f1(α, q̇, f)

φ2

z1 θ

f

αd

q̇d
q̈d

Fig. 1: Block Diagram of Dynamic Surface Control. The controller consists of three levels, starting with the controller for

the skeletal dynamics, comprising the trajectory controller and the muscle Jacobian. The other two levels are the muscle

force and the actuator velocity controllers. First order filters are added to obtain numeric derivatives of of φi.

for positive design parameters ke, c1 and c2, then the

dynamic surface tracking control achieves ultimate bounded

stability in (r, z1, e1, z2, e2).
Proof: The closed loop dynamics of the first system,

evaluate to (18) for which a Lyapunov function candidate is

chosen [7]:

V1 =
1

2
rTHr +

ke

2
eT1 e1 (33)

where ke is a positive design parameter. Due to the property

of the inertia Matrix being positive definite, it can be seen

that V1(r, e1) > 0 for any r, e1 6= 0. It can be shown that

[Ḣ − 2C] is skew symmetric [10]. Therefore the Lyapunov

function derivative evaluates to the following, after introduc-

ing the closed loop dynamics from (18):

V̇1 =
1

2
rT Ḣr + rTHṙ + kee

T
1 ė1

=− rTKdr − rTLT z1 + rTLTµ1ṡ1 + kee
T
1 ė1 (34)

The dynamics of z1 are stated in (20). The control law φ2

for the muscle dynamics from (21) his used to obtained the

closed loop dynamics by means of z2 = x2 − s2:

ż1 = f1 + g1[z2 + φ2 − µ2ṡ2]− ṡ1

= g1z2 − Λ2z1 + Lr − g1µ2ṡ2 (35)

for which we provide a Lyapunov function candidate:

V2 = V1 +
1

2
zT1 z1 +

ke

2
eT2 e2 (36)

After differentiation, we can introduce the closed loop dy-

namics from (35):

V̇2 =V̇1 + zT1 ż1 + kee
T
2 ė2

=− rTKdr − zT1 Λ2z1 + rTLTµ1ṡ1 − zT1 g1µ2ṡ2

+ kee
T
1 ė1 + kee

T
2 ė2 (37)

Similar to the previous step, the dynamics of z2 are in (23)

for which a controller is found in (24), so that for vA = φ3:

ż2 = −Λ3z2 − g1z1 (38)

Again, a Lyapunov function candidate is provided:

V3 = V2 +
1

2
zT2 z2 (39)

which is differentiated and merged with (38):

V̇3 =V̇2 + zT2 ż2

=− rTKdr − zT1 Λ2z1 − z2Λ3z2 + rTLTµ1ṡ1

− zT1 g1µ2ṡ2 + kee
T
1 ė1 + kee

T
2 ė2 (40)

By introducing the dynamics from (25) and (26) for ṡi and

ėi respectively, V3 can be extended to finally apply Young’s

inequality [19] which yields an upper bound for V̇3:

V̇3 =− rTKdr − zT1 Λ2z1 − zT2 Λ3z2

− rTLT e1 + zT1 g1e2

−
ke

µ1
eT1 e1 −

ke

µ2
eT2 e2 + kee

T
1 ξ1(. . .) + kee

T
2 ξ2(. . .)

≤− rTKdr − zT1 Λ2z1 − zT2 Λ3z2

+
rT r

4c1
+ c1e

T
1 LL

T e1 +
zT1 z1

4c2
+ c2e

T
2 g

T
1 g1e2

−
ke

µ1
eT1 e1 −

ke

µ2
eT2 e2 +

eT1 e1

4c3
+

eT2 e2

4c4
+ c3k

2
eξ

T
1 (. . .)ξ1(. . .) + c4k

2
eξ

T
2 (. . .)ξ2(. . .) (41)

From the definition of ξi(. . .) in (26) it can be seen that

|ξi(. . .)| has an upper bound that is defined as Mi [7]. For

simplicity, c3/4 are chosen to be 1
4 . Therefore V̇3 implies:

V̇3 ≤− rT
[

Kd − In
1

4c1

]

r − zT1

[

Λ2 − Im
1

4c2

]

z1

− zT2 Λ3z2 − eT1

[

Im
ke

µ1
− c1LL

T − Im

]

e1

− eT2

[

Im
ke

µ2
− c2g

T
1 g1 − Im

]

e2

+
1

4
k2eM

T
1 M1 +

1

4
k2eM

T
2 M2 (42)

where c1/2 and ke can be chosen arbitrarily in R>0. Consid-

ering now the conditions of (28)–(32), stability of the overall

closed loop system is proven (see also [7] and [9]).

For very small µi the design parameter ke can be chosen

to be as small as necessary, without violating the stability

condition of (28)–(32), hence making the last two terms of

(42) arbitrarily small. However, this impairs at the same time

the numeric stability, as ṡi becomes sensitive to changes (see

(25)). In practice, a trade-off between numeric stability and a
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low tracking error has to be found. Hence, three novel control

laws have been developed for the subsystems (10)–(12): (i)

a trajectory tracking controller, (ii) a novel force controller

with compensation for muscle length changes and (iii) an

actuator velocity controller (see Fig. 1).

V. ADAPTIVE CONTROL

To prove stability of the previously developed controllers,

perfectly known system dynamics were assumed. However,

this assumption generally does not hold. One way to over-

come this problem, is to introduce adaptive terms into the

controller. This technique is applied in the following to

compensate for friction. Unlike conventional joint actuated

robots, a musculoskeletal robot does not only exhibit joint

friction (JF), but also friction in the tendon transmission

system, i. e. muscle friction (MF). Adaptive control for

friction compensation has been used widely in the field of

flexible joint robot control, utilizing a parametric friction

model, e. g. [20]. Radial Basis Function Networks (RBFNs),

a form of Artificial Neural Networks (ANNs), have also been

popular [21].

To find a controller that compensates both the joint, as

well as the muscle friction, (10) is rewritten as follows:

H(α)q̈ + C(α, q̇)q̇ + τG(α) + τF (q̇)

= −LT (α) [x1 − fF (x1)] (43)

At this point, two simplifications are made to improve

convergence of the adaptive terms: (i) the joint friction is

assumed to be only a function of the joint velocity q̇ [21] and

(ii) the muscle friction is only governed by Coulomb friction,

i. e. only a function of the transmitted force x1. Without loss

of generality, let τF (q̇) and fF (x1) be bounded functions:

|τF (q̇)| < τF ∀q̇ ∈ {−q̇min, q̇max} (44)

|fF (x1)| < f
F

∀x1 ∈ {0, fmax} (45)

Similar to the gravity compensation term τG, the two friction

terms can be integrated into the controller,

φ1 = −LT+ {H(q̈d + Λ1(q̇d − q̇)) + C(q̇d + Λ1∆q)

+τG −Kdr + τ̂F }+ f̂F (46)

where τ̂F and f̂F denote estimations of the unknown func-

tions. Friction terms can be well approximated by RBFNs

which are defined as a vector of RBFs Φ and a vector of

weights Θ such that φ = ΘTΦ [21]. Due to the fact that

τF ∈ R
n and fF ∈ R

m, the two compensators are defined as

vectors of RBFNs, where φJFj and φMFj denote the jth entry

of each of these vectors, respectively. A general definition for

each RBF can be given as follows,

Φijk(xij) = exp−
(xij − cik)

T (xij − cik)

σ2
ik

(47)

where i ∈ {JF,MF} and j ∈ {1, . . . , o} with o as the

number of RBFNs per friction compensator which is n for

the joint friction and m for the muscle friction. Finally

k ∈ {1, . . . , l}, where l denotes the number of neurons. The

l × 1 vector of neurons Φij is pre-multiplied with the 1× l

vector of weights Θ̂T
ij .

τ̂Fj = Θ̂T
JFjΦJFj f̂Fj = Θ̂T

MFjΦMFj (48)

For the proposed control law, the closed loop dynamics are

Hṙ1 + Cr +Kdr + τ̃F − LT f̃F = −LT [z1 − µ1ṡ1] (49)

where τ̃F = τF− τ̂F and f̃F = fF− f̂F represent the respec-

tive estimation errors. An adaptation rule for the weights is

found, utilizing the method of gradient descent [21],

˙̂
Θij = −ΓijΦijrij − ΣiΘ̂ij (50)

where Γij is the respective learning factor. Note that the

adaptation rule includes the so called σ-Modification [22].

The driving value for the adaptation rule is the error ri which

is defined as follows.

rJF = r rMF = −Lr (51)

It has been shown that an ANN of the given form can

approximate any continuous function up to a bounded error

ǫJF ∈ R
n and ǫMF ∈ R

m, respectively [23]. Therefore,

each friction term can be written as

Fij = ΘT
ijΦij + ǫij (52)

where Fi denotes the joint friction and the muscle friction,

respectively and |ǫi| ≤ ǫi. Therefore Θ̃ij = Θij − Θ̂ij can

be defined to denote the error in the weights, leading to the

following.

F̃ij = ΘT
ijΦij + ǫij − Θ̂T

ijΦij = Θ̃T
ijΦij + ǫij (53)

Theorem 1: Consider the stability conditions of (28)–(32)

for controlling the musculoskeletal robot from (10)–(12),

the modified first virtual control from (46), and the other

dynamic surface controllers from (21) and (24). The resulting

closed loop is Uniformly Ultimately Bounded (UUB).

Proof: A Lyapunov function is found by adding a term

for each of the errors in the weights to (39).

V = V3 +
1

2

n
∑

j=1

Θ̃T
JFjΓ

−1
JFjΘ̃JFj

+
1

2

m
∑

j=1

Θ̃T
MFjΓ

−1
MFjΘ̃MFj (54)

The derivative of the Lyapunov function is stated as follows:

V̇ =V̇3 − rT τ̃F + rTLT f̃F (55)

+

n
∑

j=1

Θ̃T
JFjΓ

−1
JFj

˙̃ΘJFj +

m
∑

j=1

Θ̃T
MFjΓ

−1
MFj

˙̃ΘMFj

Due to the fact that Θij is constant, it can be seen from

the definition of the error in the weights that
˙̃Θij = −

˙̂
Θij

683



allowing for the introduction of the adaptation law (50).

Again, Young’s inequality implies for V̇ ,

V̇ ≤+ V̇3 + ǫTJF |r|+ ǫTMF |Lr|

−

n
∑

j=1

Θ̃T
JFj

[

Γ−1
JFjΣJF −

1

4c5
Il

]

Θ̃JFj

−

m
∑

j=1

Θ̃T
MFj

[

Γ−1
MFjΣMF −

1

4c6
Il

]

Θ̃MFj

+ c5

n
∑

j=1

ΘT
JFjΣ

2
JFΓ

−2
JFjΘJFj

+ c6

m
∑

j=1

ΘT
MFjΣ

2
MFΓ

−2
MFjΘMFj (56)

where c5/6 are design parameters which can be chosen large

enough to retain stability while keeping the set of ultimate

boundedness small. Due to the fact that the DSC controller

has been shown to be UUB, the same is proven for the

adaptive control law, for gains given in (28)–(32).

VI. RESULTS

An evaluation of this control scheme was performed,

utilizing the simulation of a spherical joint that is spanned by

five muscles (see Fig. 2c). The muscles were attached asym-

metrically such that muscles (1) and (2) are positioned excen-

trically, to allow for rotational movements (see Fig. 2b). The

simulation model was implemented in MATLAB/Simulink,

utilizing the full dynamic model of muscles with linear

springs (K = 5000N m−1) and of the movable link. Ac-

tuator parameters were chosen to match a motor-gearbox

combination by Maxon motors (RE-25 + GP22HP). The

muscle kinematics were simulated by means of computing

muscle lever arms for given joint angles, assuming straight

line muscles. A friction model for the joint friction (43), as

well as friction due to the tendon routing was introduced.

The first was implemented by the Stribeck model [21]:

τF = τc + (τs − τc) · e
−|q̇/ωs|

δs

+ µv · q̇ (57)

where τc and τs denote the Coulomb and the static friction

torques, respectively, µv the viscous friction coefficient and

ωs the Stribeck velocity. The latter was kept simple by

assuming Coulomb friction which depends only on the

transmitted force and the Coulomb friction coefficient µc:

fF = µc · f (58)

The developed controllers, both adaptive and static, were

implemented and compared to CFC. The latter features a

central control law (13) and low-level muscle force con-

trollers. Similarly, the DSC control law can be separated into

a distributed muscle force controller, consisting of φ2 and φ3,

and a central trajectory controller φ1. Only the result of φ1

and a FFW part is needed for computing φ2 which is defined

as follows:

φ2FFW = L(α)r − f1(α, q̇, f) (59)

spherical

joint

muscles

movable

link

base

(a)

(1)

(2)

(3)

(5)

y

xz

(4)
rotation axis

30
◦

(b)

muscles

(2)(1)
(3) (5)(4)

attachment

points

(c)

Fig. 2: Simulation Model. (a) rendering of the model, (b) top

view, and (c) close-up of the muscle attachment points.

It needs to be evaluated centrally for each of the muscles and

communicated to the low-level controllers. This provides for

the central high-level and the distributed low-level control. In

this experiment a frequency of 200Hz and 1 kHz is assumed,

respectively.

The evaluation was performed by applying a reference

trajectory, leading to a movement of the spherical joint

around a fixed axis in the X-Y plane. This axis was chosen

to apply asymmetric loads to the muscles (see Fig. 2b).

Accordingly, a rotation of 45◦ was performed up and back

down again, leading to a trajectory of 15 s. This trajectory

was initially executed, utilizing CFC and DSC, for friction

coefficients which have little effect on the control perfor-

mance (τs = 0.01N m, τc = 0.008N m and µc = 0.0, see

Fig. 3a-b). For all experiments, the control parameters were

tuned to exhibit similar control effort, i. e. the motor voltage

vA was in the same range. It can be seen from this experiment

that the average error in the position was lower for DSC by

an order of magnitude (see Fig. 3a-b) which can be given

for the CFC and the DSC control law as 0.052 rad (∼ 3.0◦)

and 0.004 rad (∼ 0.2◦), respectively Furthermore, the CFC

controller exhibits a considerable steady state offset in the

Z-Axis which is the longitudinal axis of the cylinders. This

problem could possibly be addressed by increased control

gains. However, due to neglected low-level dynamics, this

can quickly lead to oscillations.

In a second set of experiments, the friction coefficients

were increased to match the characteristics that are found in

actual systems (τs = 0.05N m, τc = 0.04N m and µc = 0.4).

Other parameters of simulation and controller were kept

identical. As expected, performing the same experiment with

increased friction led to increased trajectory tracking errors

for both the CFC, as well as the DSC controller (see Fig. 3c-

d). Both exhibit significant steady state offsets. Average

position errors for CFC and DSC can be given as 0.080 rad

(∼ 3.9◦) and 0.069 rad (∼ 4.6◦), respectively. Therefore, the

adaptive controller, developed in Section V was evaluated
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Fig. 3: Controller Performance. The joint velocity errors ∆q̇ and the joint angle error ∆q is depicted over the trajectory for

the different control scenarios, (a-b) low friction and (c-e) high friction.

for the same system (see Fig. 3e). Parameters for the RBFN

compensators were chosen to match friction models, leading

to 11 neurons with equidistant RBF centers for the muscle

friction and 15 neurons with centers spaced logarithmically

for the joint friction. The latter allows for capturing the

non-linear behavior of the Stribeck model around zero. The

average position error for the second trial (see Fig. 3e) can

be given as 0.009 rad (∼ 0.5◦).

VII. CONCLUSIONS

A generic control framework for the class of muscu-

loskeletal robots was presented, comprising a general model

and an improved control law, based on the non-linear control

techniques of backstepping and DSC. It features an holistic

controller which includes the compliance in the muscles,

as well as the actuator dynamics. The previously developed

CFC, based on feedback linearization, neglected these effects

and handled them as a disturbance. The control law devel-

oped in this work led to an improved control performance,

which was shown in the simulation of a spherical joint with

five muscles. In the presence of joint, as well as muscle

friction, the control performance was significantly improved

by the introduction of adaptive friction compensators, based

on RBFNs.
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