
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Ciechanowicz, David, Aydt, Heiko, Lees, Michael,
Knoll, Alois and Hamacher, Thomas

TUM-I1341

A Universal Scheme for Modeling Energy
Systems

Page 1

A Universal Scheme for Modeling Energy Systems

David Ciechanowicz
a,d

, Heiko Aydt
a
, Michael Lees

b
, Alois Knoll

c
, Thomas Hamacher

d

aTUM CREATE Ltd.

Singapore

{david.ciechanowicz |
heiko.aydt}@tum-create.edu.sg

bNanyang Technological

University (NTU)

School of Computer
Engineering

Singapore
mhlees@ntu.edu.sg

cTechnische Universität

München (TUM)

Institute for Informatics VI
Robotics and Embedded

Systems
Germany

knoll@in.tum.de

dTechnische Universität

München (TUM)

Energy Economy and
Application Technology

Germany
thomas.hamacher@tum.de

Abstract

For the modeling of energy systems a language is needed that is conceptually well-defined and gives a graphical

representation. The most prominent approach, the extended Reference Energy System (eRES) suffers from

shortcomings in the conceptual definition. Therefore, the alternative language Universal Scheme for modeling

Energy Systems (USES) is being developed. The advantage of USES is its clearly defined concepts and their

relationships between each other. USES is minimal in respect to its concepts meaning no unnecessary

exceptions are introduced. A complete formal description of the syntax of USES taking advantage of both,

graph theory and the UML class diagram language is created in this paper while also showing its usage on a

real-world example.

Keywords: Modeling Energy Systems, Universal Scheme, USES, Formal specification, Meta model

1 Introduction

Energy is critical to the social, economic, and technical development of mankind. Different stages have to be

run through to get the primary energy occurrences of nature in a usable form to its consumers. Together, all

involved parties in this process form a network of the various technologies in which extraction, refinement,

conversion, transportation, distribution, and utilization of different forms of energy take place to provide a set of

services [BHZ04]. Such a network is called an energy system. It involves multiple interconnected energy chains

which are to some extent competing against each other since more than one path along the energy chains leads

to the provision of the same energy service. An energy chain consists of sequential series of linked stages,

alternating commodities (e.g. energy goods) and processes (e.g. energy conversions). The latter include the

above mentioned links starting from extraction and ending with utilization, but are not limited to them.

A simple example of a general energy chain is depicted in Figure 1. The illustrated steps that are to be taken to

transform any primary energy (in this example crude oil) into a useful energy (heat) are neither exhausting nor

are all of them necessary in every case. The storage process for example is non-compulsory, whereas more than

one utilization process may be chained one after another. It is the purpose of an energy system to fulfill the

demand for energy services which are, according to Figure 1, a combination of various input factors. These

include the used technologies, infrastructure, labor, materials and energy carriers which are, as stated above,

partly substitutable against each other.

Extraction &
Refinement

Conversion
Transportation
& Distribution

Storage Utilization
Primary
energy

Secondary
energy

Final
energy

Final
energy

Oil-well derrick Crude oil Oil refinery Petrol Power grid Electricity Battery Electricity Boiler

Useful
energy

Heat

Energy service

Hot water

Figure 1: General energy chain from the extraction to the provision of energy services.

Energy systems can be of paramount complexity, especially when investigating high-resolution, large-scale

energy systems with a huge amount of interconnected energy chains. Nowadays, the traditional architecture of a

Page 2

power system, a specialized variant of an energy system only considering energy chains involving electrical

energy, goes to its limits. It is therefore superseded by smart grids with diverse, intermittent and decentralized

energy sources. In [YaIs02] super distributed energy systems are described which are controlled decentralized

and autonomously. As stated in [Hi07] the paradigms of (energy) systems are changing from a system to a

system-of-systems (SoS) approach, from being disciplinary to multidisciplinary and from an optimal to an

adaptive approach. To understand, investigate, and plan the functionality of such complex energy systems

simulations are needed which are based on computational models

Large-scale simulations of complex energy systems are compute intensive and thus require efficient simulation

models. The most common existing modeling scheme, the extended Reference Energy System (eRES) approach

[BSS98], gives a simplified image of the reality in a conceptual and representational way. Its syntax, however, is

inconsistent, complex, and bears a lot of exceptions. In this paper the Universal Scheme for modeling Energy

Systems (USES), an alternative language with a simple graphical representation and a well-defined syntax, is

thus proposed.

Having a clear and well-defined formal syntax definition of a language offers several advantages. From an

implementation perspective, simulation models can be easily verified against the formal specification.

Furthermore, a standardized method for modeling energy systems can be established which facilitates

interoperability of different simulation models and exchange of models and data between different research

groups. Another advantage of having a formal specification is the ability to easily generate synthetic power

systems that can be used for simulation-based what-if scenario analysis.

Section 2 focuses on the conceptual and representational definition of USES. Besides an informal syntax

definition two formal ones, using graph theory and the UML class diagram language, are given in Section 3.

After exemplarily converting a real-world energy system into USES in Section 4 its advantages as well as

possible applications of USES regarding model verification and building software systems are deliberated in

Section 5 which concludes this paper and gives an outlook on possible further application contexts of USES.

2 Conceptual and Representational Description

One modeling language has exactly one conceptual aspect while having one to many representational aspects. In

this section the conceptual description as well as the default graphical representation of USES is depletive

presented. Other graphical representations may be introduced keeping the conceptual description. By means of

an abstract energy system all of the concepts and most of their relationships among each other are depicted by

concrete elements in Figure 2 taking advantage of the graphical USES representation.

Legend:

Commodity
Intermediate

Process

Aggregated
Source
Process

Source
Process

Sink
Process

Aggr. Inter-
mediate
Process

Aggregated
Sink

Process

Aggregated Source Process

Source
Process

Source
Process

Intermediate
Process

Aggregated
Sink

Process

Aggregated Sink Process

Intermediate
Process

Source
Process

Sink
Process

Aggregated Intermediate Process

Intermediate
Process

Intermediate
Process

Intermediate
Process

Source
Process

Aggregated
Intermediate

Process

Figure 2: Abstract energy system showing the relationships between all of the defining elements of USES

including their sub-elements by taking advantage of the default graphical USES representation.

Page 3

Since the syntax of USES is based on graph theory networks of any context can be modeled with USES. It is

indeed universal in respect to the use of its expressions and therefore in its semantic but the description of the

semantics in this context is limited to the use-case of modeling energy systems. USES avails itself of the

concept of inheritance [Se12]. Elements can be refined or specialized, respectively. The specialized element

always inherits the properties and attributes of their respective aggregated element, and may possesses

additional properties or attributes to provide the desired specialization.

2.1 Process

A Process is a representation of a physical device which transforms commodities (see below) into other

commodities. It can be distinguished between energy supply processes and processes that make use of the

supplied energy. The first group may consist of power plants, refineries, transmission and distribution

infrastructure, energy storage devices among others. The second group is comprised of all electronic devices,

such as refrigerators, electric vehicles, or computers, for example. They can have multiple inputs and multiple

outputs. Processes are generalized. For a usage they have to be further specialized into intermediate, source, and

sink processes (see below) due to a different set of properties. Generalized processes are only conceptually used

in this form. Only the specialized variants have a graphical representation.

 Intermediate Process

An intermediate process may have multiple inputs and multiple outputs. Intermediate processes are

used whenever the transformation of the inputs to the outputs can be easily described, e.g. in form of

one or more equations in a mathematical model. They are also generalized and can be used as such but

can indeed be further specialized into aggregated intermediate processes (see below). Figure 3 shows

the default representation of an intermediate process.

Intermediate
Process

...

...

...

...

Figure 3: Default representation of an intermediate process.

 Source Process

In a USES diagram every modeled energy chain has to start with a source process having only outputs

but no inputs. The energy chain ends with a sink process (see below). Source processes therefore

provide the outgoing commodity by e.g. harvesting or generating it. They are also generalized and can

be used as such but can indeed be further specialized into aggregated source processes (see below).

Figure 4 shows the default representation of a source process.

Source
Process

...

...

Figure 4: Default representation of a source process.

 Sink Process

In a USES diagram every modeled energy chain has to end with a sink process having only inputs but

no outputs. The energy chain starts with a source process. Sink processes therefore consume the

ingoing commodity by e.g. converting it into a service. They are also generalized and can be used as

such but can indeed be further specialized into aggregated sink processes (see below). Figure 5 shows

the default representation of a sink process.

Sink
Process

...

...

Figure 5: Default representation of a sink process.

 Aggregated Process

In a USES model an aggregated source/intermediate/sink process behaves as a process in respect to the

relationship with other elements on the same hierarchical level but additionally serves as a host for an

Page 4

energy sub-system which resides on a below lying layer as regards content. The energy sub-system also

consists of interconnected commodities and processes following the same USES rules and therefore

forms an own USES model. The usage of aggregated processes is transparent without any exceptions in

the syntactical rule set. Aggregated processes, against its non-aggregated counterparts, should be used

when the transformation of the inputs to the outputs is more complex and cannot or should not be

expressed in simple mathematical equations. Figure 6 shows the default representation of an aggregated

source, intermediate, and sink process.

...

...

Aggregated
Source
Process

(a)

...

...

...

...

Aggregated
Intermediate

Process

(b)

...

...

Aggregated
Sink

Process

(c)

Figure 6: Default representation of an aggregated (a) source, (b) intermediate, and (c) sink process.

2.2 Commodity

Commodities are produced and consumed by other processes. They are defined as material streams or sets that

are quantifiable. Commodities can be distinguished into energy goods or carriers that flow in the system,

emissions, or waste, but are not limited to them. Energy goods may be primary energy sources like coal or crude

oil or up to final energy vectors like gasoline or heat. Each commodity is of a specific type only allowing a

connection between two processes capable of providing or consuming this commodity type. The connection is

directed without having to introduce dedicated process interfaces. Figure 7 shows the default representation of a

commodity.

Source
Process

Sink
Process

Commodity

Figure 7: Default representation of a commodity.

When representing bi-directional commodity flows the concept of having directed connections, where inputs are

connected to the left and outputs are connected to the right of a process, quickly becomes cumbersome. By

introducing an alternative graphical representation without having to change the conceptual definition of USES,

commodities may also be drawn as bi-directional connections. The graphical representation shown in Figure 8a

and 8b are therefore conceptually equal. Without any information loss the arrows in bi-directional connections

can be omitted like in Figure 8c.

Intermediate
Process

Intermediate
Process

......
Intermediate

Process
Intermediate

Process
......

(a) (b)

Intermediate
Process

Intermediate
Process

......

(c)

Figure 8: Alternative representation of a bi-directional commodity.

Although a more intuitive way for drawing commodities can be found in Sankey diagrams this solution is not

suitable when creating USES diagrams in the first place. Being a representation of a real model a USES diagram

is independent from any data model and therefore from any concrete flow quantities that could be used for the

width of the lines. Nevertheless, this modified Sankey-USES representation, which is a combination of a real

model and quantitative data and no longer a pure real model, can be used in the second place after specifying the

flow quantities to give a more detailed graphical representation of the modeled energy system together with its

data. Likewise, using information of a Geographic Information System (GIS), a GIS-USES or a Sankey-GIS-

USES representation can be drawn in the second place utilizing stored geographical information for each

element. More information on Sankey diagrams and on GIS can be found in [An12, pp. 128] and [De09]

respectively.

Page 5

3 Syntax

A language or synonymously a notation is a possibly infinite set of expressions that is used to syntactically

represent information or to communicate, respectively [HaRu00]. The two parts of a language are the syntactic

notation (syntax) and their meaning (semantic). The syntax defines the structure of the language, its expressions

as well as their relationships among each other. The semantic of a language deals with the meaning of each of its

expressions. It assigns an unambiguous meaning to each syntactically allowed phrase. The remainder of this

section deals with the description of the syntax on an informal and a formal level, the latter one using graph

theory and the UML class diagram language.

3.1 Informal

The concepts of USES and their syntactical relationships among each other have to follow certain rules which

have partly already been delineated in the description of each of the concepts in Section 2. It is vital for any

formal syntax specification to have an overview of the whole rule set and not to omit any rule. Therefore, in the

remainder of this section the syntax of USES is textually defined in a structured way as precisely as natural

language permits. Relationships are denoted in the multiplicity-notation of the class diagram language of the

UML which is also later used in the meta model in Section 3.2.2.

As, for any later implementation, the mentioned concepts can have multiple different attributes attached to them

only attributes that are mandatory for the definition of the USES syntax are named. Among these attributes are

the id (unique number identifying every element), the shortName (name identifying every element in its

graphical representation), the scope (the id of the aggregated process or USES model the element is part of on

the hierarchical above lying layer), and the idCommodityType (unique number for every different type of

commodities). Any later extension regarding attributes can easily be done without conflicts at the appropriate

place in the syntax definition given below and in the meta model presented in Section 3.2.2.

1. USES Model

a. USES model consists of processes and commodities.

b. USES model is part of aggregated elementary, aggregated source, or aggregated

sink process.

c. Attached attributes: id (integer, primary key, read-only), shortName (string).

2. Processes

a. process is part of USES models.

b. Processes are specialized into elementary, source, and sink processes. The specialization is disjoint

and total, meaning process has a relationship with the multiplicity of to a specialized process.

i. Elementary, source, and sink processes can be specialized into aggregated elementary, source,

and sink processes. The specialization is disjoint and partial, meaning elementary, source, or

sink process has a relationship with the multiplicity of to a specialized elementary,

source, or sink process.

1. aggregated elementary, source, or sink process consists of USES models.

c. Attached attributes: id (integer, primary key, read-only), shortName (string), scope (integer),

idInputCommodityTypes (List<integer>), idOutputCommodityTypes (List<integer>)

3. Commodities

a. commodity is part of USES models.

b. commodity connects processes. Both processes have to have the same scope. The source/sink

process has to include the same idCommodityType as the commodity in its

idOutputCommodityTypes/idInputCommodityTypes attribute.

Page 6

c. Attached attributes: id (integer, primary key, read-only), shortName (string), scope (integer),

idCommodityType (integer).

i. The scope equals the scope of either connected processes.

3.2 Formal Syntax Definition

One of the advantages of USES is its clear and minimal syntax definition without unnecessary complex

structures, relationships, or exceptions. This makes an easy formal specification possible. The benefit of a

formal syntax specification of a modeling language has an effect when implementing any model using this

language in software. The topologic consistency of the created model can then easily be verified against its

specification which increases confidence in the system. In addition, a standardized method for modeling energy

systems can be established on a broad basis. Exact specifications also enhance the exchange of data between

different systems and increase data quality. The remainder of this section deals with the formal description of

the syntax of USES using graph theory and the UML class diagram language.

3.2.1 Graph Theory

A USES diagram is a finite, weighted, and directed graph consisting of a set of vertices and edges . The

graph may have self-egdes, multi-edges, and/or cycles but is not necessarily connected. Hierarchical

structures, represented by aggregated processes, are also possible and described in the end of this section. The

explanations given in Section 2 suggest that vertices may be processes while edges are commodities. Starting

with the general definition of in (1), the mentioned properties of will be consecutively described to form the

formal syntax specification.

 (1)

The graph is finite because the cardinality of both sets, vertices and edges , are finite. This is depicted in

(2).

 | | | | and | | | | (2)

In a USES diagram the set of vertices consists of processes as can be seen in (3).

 (3)

One vertex can have multiple edges connected as input and output, respectively. The number of edges connected

to a vertex is called degree [Ne10, pp.133]. In a directed graph the in-degree and the out-degree

of each vertex can be distinguished and calculated as shown in (4) and (5). Equation (4) defines the in-degree

based on the intensional definition of set theory as well as giving a mathematical definition based on the

adjacency matrix of while (5) is doing the same of the out-degree. The purpose of the adjacency matrix is to

represent the network mathematically instead of graphically [Ha95, pp.76 and Ne10, pp.110]. If the in-degree

(out-degree) is zero, the respective vertex represents a source (sink) process. In any other case the vertex is an

intermediate process.

 |
 |

 | or ∑

 (4)

 |
 |

 | or () ∑

 (5)

The graph is a vertex- and edge-weighted graph. According to (6) each edge (see below) is assigned a

number representing the value of its idCommodityType attribute . According to (7) each vertex is assigned

a number representing the value of its scope attribute and two lists of numbers, the idCommodityType

attributes for possible input (idInputCommodityTypes) and output commodities

Page 7

(idOutputCommodityTypes). The generation of one number uniquely representing the desired value(s) is done

according to Gödel numbering [Fr05].

 (6)

 (7)

The Gödel number that is assigned to each vertex and each edge representing its weight can be clearly decoded

using (8) and (9).

 (8)

 (9)

The set of edges , where each edge describes an ordered pair of vertices, contain the links between all vertices

in the graph as depicted in (10).

 (10)

An edge as defined in (11) can only exist between vertices having the same value for the scope attribute

 . In addition, the list of values of the idCommodityType attribute for possible output (input) commodities

 () of the source (sink) vertex () has to include the value of the idCommodityType attribute

of the edge .

 (11)

with

⋃

 ⋃

Any vertex might represent an aggregated vertex whose sub-graph is a complete USES model according to this

syntax specification. Figure 9 to 11 show an example of an energy system being partly aggregated and

disaggregated to demonstrate how hierarchical structures can be implemented in .

(a)

Source
Process

Source
Process

Intermediate
Process

Intermediate
Process

Intermediate
Process

Sink
Process

Sink
Process

C1

C1

C2 C4

C3

C3

(a)

Source
Process

Source
Process

Sink
Process

Sink
Process

C1

C2

C4

C3Aggregated
Intermediate

Process

(a)

Source
Process

Source
Process

Sink
Process

Sink
Process

C1 C3

C2

Aggregated
Intermediate Process

Intermediate
Process

Intermediate
Process

Intermediate
Process

C4

C1

C1

C2 C4

C3

C3

(b)

A

B

C

D

E

F

G

(b)

A

B

D

F

G

(b)

A

B

C

D

E

F

G

Z

Y

X

V

C1

C2

C1

C1

C2

C3

C3

C4 C4

C3

Figure 9: Abstract energy system

in (a) USES (b) graph

representation, fully disaggregated.

Figure 10: Abstract energy system

in (a) USES (b) graph

representation, fully aggregated.

Figure 11: Abstract energy system

in (a) USES (b) graph

representation, aggregated and

disaggregated.

Page 8

The idea behind hierarchical structures is the insertion of additional vertices at those points in the graph where a

commodity is connected to an aggregated process. These vertices take the function of merging (output) or

splitting (input) a commodity and do not differ from other vertices in any manner. Each of the two lists

and has only one entry that is the idCommodityType of the commodity.

3.2.2 Meta model

A model is, generally speaking, the outcome of a process in which one or more persons construct a

representation of an original on the basis of his or their cognition for purposes of a subject using an object

language, e.g. a natural or formal language. A meta model defines the object types which may be used for the

creation of a model, their attributes, their semantic as well as the rules of their relationships among each other

using a meta language.

The concepts of USES and their syntactical relationships among each other have to follow certain rules which

have partly already been delineated in the description of each of the concepts in Section 2. In this section a meta

model of USES using the semi-formal diagrammatic UML class diagram language is created and presented. The

class diagram language, an excerpt of the UML, is applied because it is a widely-used and regarding its syntax

fully formally specified language.

The three main classes USES model, process, and commodity as well as their attributes, already described in

Section 3.1, and relationships among each other are shown in the upper half of Figure 12. The inheritance

structure of processes as well as the associations among the specialized sub-classes is shown in the bottom half

of the figure. Relationships are again denoted in the multiplicity-notation of the class diagram language of the

UML.

Attributes and relationships are only illustrated once on the most generalized level and not repeated on lower

specialized levels according to the general concept of inheritance [Se12]. Besides inheritance, compositions and

associations are also used among the depicted classes and illustrated in Figure 12. Any association is assumed to

be bi-directional. Classes whose names are written in italic are abstract classes according to the UML standard

[OMG]. They cannot be instantiated and, as already stated in Section 2, do not have any graphical

representation. They are abstract due to their inheritance scheme described in the previous section. They also

indicate that any specialization to inherited classes is disjoint and total while being not abstract a disjoint and

partial specialization is assumed.

USES model

+id : uint
+shortName : string

Process

+id : uint
+shortName : string
+scope : uint

Commodity

+id : uint
+shortName : string
+scope : uint

Intermediate
Process

Source
Process

Sink
Process

Aggregated
Intermediate

Process

Aggregated
Source
Process

Aggregated
Sink

Process

Legend:

+operation()

Class name

+attribute

{12345678912345}

Inheritance

type

Constraint

context: <<Object>>
<<stereotype>:
<<The constraint>>

0..1

1..1

0..1

1..1

0..1

1..1

Association

0..* 0..*

desc1 desc2

0..*

1..*

0..*

1..*

2..2 0..*

connProc connComm

context: Commodity
inv:
 (self.scope = self.connProc[0].scope
 OR self.scope = self.connProc[1].scope)
AND self.connProc[0].scope = self.connProc[1].scope
AND self.connProc[0].idOutputCommodityTypes->exists(self.idCommodityType)
AND self.connProc[1].idInputCommodityTypes->exists(self.idCommodityType)

0..1 1..1Composition

0..1 1..1

Figure 12: Meta model of USES in the class diagram language of the UML.

Page 9

Since some of the syntactical rules of USES cannot be depicted using explicit diagrammatic language constructs

of the UML class diagram language, constraints are required to annotate these additional rules at the respective

places in the meta model. Both, the informal natural language as well as the formal Object Constraint Language

(OCL) are allowed candidate languages for constraint specifications within class diagrams. Here, constraints are

expressed in OCL to avoid ambiguities in interpretation [OCL].

The class diagram language permits constraints in form of pre- and post-conditions as well as invariants. The

invariant stereotype is used to express that the constraints are true for the attached object during its complete

lifetime. The only constraint applicable for USES is related to the rule that 1 commodity connects 2 processes.

In this connection both processes have to have the same scope. Both, the source and the sink process of this

connection have to include the same idCommodityType as the commodity in its idOutputCommodityTypes /

idInputCommodityTypes attribute. Here, the UML implicit concept of surrogate keys to uniquely identify every

object is used. This surrogate key is explicitly saved in the attribute called id.

4 Application

USES may not only be used for modeling small energy systems following the traditional centralized-producer-

distributed-consumer architecture. Instead it is of most interest when smart grids with intermittent and

decentralized energy sources and a multidisciplinary SoS approach are being investigated. In Figure 13 an

example of a smart grid is shown separating the whole energy system in multiple logical and physical micro-

grids. It can be seen that multiple physical micro-grids (PMG1 to PMG5) are connected with each other over

physical and virtual energy connections featuring virtual power stations (VPS1 to VPS9). Two micro-grids

(PMG4 and PMG5) are shown in more detail forming a hierarchy within the schematic illustration.

Figure 13: Schematic cut-out of a micro-grid of a distributed energy supply architecture. Source: Based on

[GeBr12].

Page 10

The real model of the smart grid illustrated in Figure 13 taking advantage of the graphical USES representation

is shown in Figure 14. Represented are the five physical micro-grids (PMG1 to PMG5) as aggregated

intermediate processes where each one could contain an own smart grid on a lower hierarchical level. To give a

better overview the USES feature of hierarchical modeling was used for PMG4 and PMG5. Their internal

topology will be explained in the following paragraph. PMG1 to PMG5 are connected with each other and with

virtual power stations (VPS1 to VPS9) over commodities (physical and virtual energy connections). In favor of

clarity the alternative bi-directional representation of commodities is being used.

PMG1

PMG2 PMG3

PMG4

VPS1

VPS2

VPS3 VPS4 VPS5

VPS6

VPS7

VPS8 VPS9 PMG5

...

...

...

...

...

Figure 14: Model of a micro-grid taking advantage of the USES representation.

Since the physical micro-grids PMG4 and PMG5 are illustrated in more detail in Figure 13 and only the

aggregated counterparts were used in Figure 14 they are also fully modeled in USES in Figure 15 and 16. In

here all of the power plants (PP1 to PP8 for PMG4 and PP1 to PP4 for PMG5), virtual power stations (VPS1 to

VPS2 for PMG4 and VPS1 for PMG5), transformers (T1 to T17 for PMG4 and T1 to T7 for PMG5), and

consumers (C1 to C13 for PMG4 and C1 to C5 for PMG5) are modeled and connected via physical energy

connections. The connections are indeed uniquely labeled but for reasons of overview enhancement not

displayed in either figure.

VPS1

C4

C5

PP1

PP2

PP3

PP4

T16

...

PP6

(VPS2)

T1

...

(PMG1)

T2 T3

T4

...

(PMG2)

T5 T6

C11

T7 T8 T9

C6 C7

C9

C8

C10

T10 T11 T12

C3 C2 C1

T14

PP7

VSP2

PP8

T13 T15

PP5

T17

C12

...

(PMG3)

C13

...

(VPS7)

...

...

Figure 15: Sub-model of a micro-grid (PMG4) taking advantage of the USES representation.

T1

...

(VPS9)

C1 C2

T3 T2

T4

C3

C4

VSC1

PP1

PP3

T5 T6 T7

C5

PP2 PP4

...

Figure 16: Sub-model of a micro-grid (PMG5) taking advantage of the USES representation.

Page 11

5 Conclusions and Outlook

Since simulating complex energy systems require high computational cost efficient simulation models are

needed. These models have to be based on languages whose syntax is free of shortcomings. Not only to let the

user create consistent models of their energy system but also to allow software implementations to verify the

topologic consistency of the model correctly. With the Universal Scheme for modeling Energy Systems (USES)

a new language for modeling energy systems void any hitherto existing shortcomings was proposed in this

paper. It provides a unitary modeling scheme and is a valuable methodology to create models of real and

artificial energy systems. Because being minimal and clearly designed a conceptually complete, consistent, and

precise formal syntax specification of USES is possible. In this paper the possibility was taken to show the

straightforwardness of defining the syntax of USES informally and formally using graph theory and the UML

class diagram language.

The graph-theoretic approach considers USES as a network of vertices and edges. This is advantageous because

all concepts and algorithms that apply for a graph like e.g. adding, removing, grouping, or routing can also be

applied on USES. The formal specification based on graph theory can therefore be used to implement functional

behavior within USES although the functional model was not explicitly explained here. By creating a meta

model the data model on which USES is based on is formally expressed. Taking advantage of the model-driven

design approach, described in [La11], which is gaining popularity in software engineering, the verification of

the models themselves against its specification is essential. This increases both, confidence in and quality of the

model and its target application. In [CCR08 and KuGo12] a verification approach for UML class diagrams using

OCL constraints is presented that can be applied on USES. Because the UML class diagram language was used

the meta model can also be easily translated into code [PSB11]. By combining both approaches a high-quality

information system for energy system models based on USES can be developed.

Because of its advantages USES is an ideal candidate becoming the standard for modeling energy systems and

exchanging these models along with their respective data. This could pave the way for a software system

implementing USES with which the topologic consistency of the created models can be verified correctly. Such

a system is currently being developed. It is an information management and data storage system for multiple

energy system simulation and optimization models and therefore it provides the quantitative data out of which

the data models to each real model is formed. Both, topologic and additional quantitative data of energy system

models are being stored in its database which scheme relates to the power and the features USES as a modeling

language and the information system offers. The former discussed ways of drawing USES diagrams enriched

with additional information to become a Sankey-, GIS-, or a Sankey-GIS-USES diagram will also be

implemented.

List of References

1 An12 [An12] Andy, K.: Data Visualization. A successful design process. Packt Publishing, 2012.

2 BHZ04 [BHZ04] Bahn, O.; Haurie, A.; Zachary, D.S.: Mathematical Modeling and Simulation Methods in

Energy Systems. In: Mathematical Models, from Encyclopedia of Life Support Systems

(EOLSS). Oxford, UK. 2004.

3 BSS98 [BSS98] Blesl, M.; Schweiker, A.; Schlenzig, C.: Erweiterung der Analysemöglichkeiten von NetWork

– Der Netzwerkeditor. In: Technical Report, Vol. 51, Institute for Energy Economics and the

Rational Use of Energy at University Stuttgart, Germany, 1998.

4 CCR08 [CCR08] Cabot, J.; Clarisó, R.; Riera, D.: Verification of UML/OCL Class Diagrams using Constraint

Programming. In: Proceedings of IEEE International Conference on Software Testing

Verification and Validation Workshop (ICSTW), pp. 73-80, 2008.

5 De09 [De09] DeMers, M.: Fundamentals of Geographical Information Systems. Wiley, 2009.

Page 12

6 Fr05 [Fr05] Franzén, T.: Godel's Theorem. An Incomplete Guide to Its use and Abuse. Peters, 2005.

7 GeBr12 [GeBr12] Geisberger, E.; Broy, M.: agendaCPS. Integrierte Forschungsagenda Cyber-Physical Systems.

Acatech Study, 2012.

8 Ha95 [Ha95] Harary, F.: Graph Theory. Perseus, Cambridge, MA, USA, 1995.

9 HaRu00 [HaRu00] Harel, D.; Rumpe, B.: Modeling Languages - Syntax, Semantics and All That Stuff. Part I -

The Basic Stuff. In: Technical Report, Jerusalem, Israel, 2000

10 Hi07 [Hi07] Hipel, K.; Jamshidi, M.; Tien, J.; White III, C.: The Future of Systems, Man, and Cybernetics.

Application Domains and Research Methods. In: IEEE Transactions on Systems, Man, and

Cybernetics – Part C. Applications and Reviews, Vol. 37, No. 5, 2007.

11 KuGo12 [KuGo12] Kuhlmann, M.; Gogolla, M.: From UML and OCL to Relational Logic and Back. In:

Proceedings of the 15th International Conference of Model Driven Engineering Languages

and Systems (MODELS), pp. 415-431, 2012.

12 La11 [La11] Lahman, H.: Model-Based Development - Applications. Pearson, 2011.

13 Ne10 [Ne10] Newman, M.; Networks - An Introduction. Oxford University Press. Oxford, NY, USA. 2010.

14 OCL [OCL] OMG Object Constraint Language, Version 2.3.1. Last access on 19.08.2013.

http://www.omg.org/spec/OCL/

15 OMG [OMG] OMG Unified Modeling Language, Version 2.5 FTF Beta 1. Last access on 19.08.2013.

http://www.omg.org/spec/UML/2.5/Beta1/PDF/

16 PSB11 [PSB11] Parada, A.; Siegert, E.; Brisolara, L.: Generating Java code from UML Class and Sequence

Diagrams. In: Proceedings of the 2011 Brazilian Symposium on Computing System

Engineering (SBESC), pp. 99-101, 2011.

17 Se12 [Se12] Sebesta, R.: Concepts of Programming Languages. Addison-Wesley, 2012.

18 YaIs02 [YaIs02] Yasuda, K.; Ishii, T.: Decentralized Autonomous Control of Super Distributed Energy

Systems. In: Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics, Vol. 6, 2002.

