
Measurement based WCET Analysis for Multi-core
Architectures

Hardik Shah1, Andrew Coombes2, Andreas Raabe3, Kai Huang1,4 and Alois Knoll1
1Department of Informatics VI,Technical University Munich, 85748 Garching, Germany

{shah, huang, knoll}@in.tum.de
2Rapita Systems Ltd, UK

acoombes@rapitasystems.com
3fortiss GmbH, 80805 Munich, Germany

4School of Mobile Information Engineering, Sun Yat-Sen University

ABSTRACT
The interference on shared resources caused by concurrently
executing applications unpredictably prolongs their execu-
tion. Hence, determination of the Worst Case Execution
Time (Wcet) of applications executing on shared memory
multi-core processors is hard to estimate. This hinders
the adoption of Commercial Off The Shelf (Cots) multi-
core processors in hard real-time systems. The existing
techniques opt for tailored multi-core architectures to pro-
vide high computation power at predictable execution time.
However, this approach yields poor resource utilization and
high costs. In this paper, we present a technique to measure
the Wcet of applications on multi-core architectures using
existing measurement based timing analysis tools. Our
technique has a minor area impact (≈ 5%). However,
this impact is limited to the emulation devices only and
production chips remain unchanged. Thus, our technique
does not impact performance of the Cots chips by any
ways. The technique is demonstrated by measuring Wcet of
benchmark applications using the RapiTime timing analysis
tool. The tests are conducted on a quad-core NIOS II
processor on an Altera Fpga.

1. INTRODUCTION
Multi-core architectures can satisfy the computation

demand of advanced Hard Real-Time (Hrt) applications
under manageable energy consumption. There is a growing
interest of using Cots multi-core architectures in Hrt
applications due to their high computation power and
cost benefits. However, they are optimized for average
case performance and not for the worst case performance.
For example, to reduce the packaging costs, they employ
shared resources, e.g. shared memory. Depending on the
shared resource access pattern of concurrently executing
applications, shared resource accesses issued from different
cores may or may not collide. This uncertainty increases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
RTNS 2014 , October 8 - 10 2014, Versailles, France
Copyright 2014 ACM 978-1-4503-2727-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2659787.2659819.

execution time of applications unpredictably. Thus, the
Wcet estimation becomes hard to determine. The Wcet
estimate of an application on underlying hardware is a key
requirement before industrial integration of the combined
(hardware/software) Hrt system.

Traditionally, the above mentioned problem is addressed
by radically transforming multi-core architectures to make
them more timing predictable. The simplest of these
transformations is static time slicing to access shared
resources, e.g. Time Division Multiple Access (Tdma). This
approach yields poor shared resource utilization since the
unused time slices are wasted. Moreover, only a fraction
of digital chips produced today goes into the Hrt systems.
Due to this small market share, it may not be economically
feasible to produce highly customized chips suitable to hard
real-time systems only. The economic feasibility is yet to be
investigated.

In this paper, we present a technique to measure the
WCET of applications executing on multi-core architectures
using existing timing analysis tools for single core archi-
tectures. Our technique inserts a cache observation and a
time stamping module, e.g. Performance Counter [1], in a
Cots multi-core architecture. The insertion is only limited
to emulation devices (Sec. 4.4) of production chips. Hence,
mass produced Cots chips stay unchanged preserving their
economic benefits.

The interference on shared resources occurs deep in-
side the chip and only perceivable effect is unpredictable
execution time of applications executing on them. Our
time stamping module observes the activity on the shared
resource and saves it in a trace. The trace is later processed
offline to compensate for the worst case interference. The
pre-processed trace is analyzed by the existing measurement
based timing analysis tool, e.g. RapiTime, to determine the
Wcet on the underlying multi-core architecture.

The main contributions of the paper are as follows. i) We
present a technique to measure the WCET of applications on
multi-core architectures using existing tools for single-core
architectures. This is demonstrated by measuring Wcet
of applications on a quad-core processor using RapiTime
timing analyzer. ii) Our technique slightly modifies the
Cots component, however, this modification is limited
to emulation devices only. The production chips remain
absolutely unchanged. Since the production chips are not
modified, their performance is not impacted by any ways
(resource utilization, heat dissipation, operating frequency,

energy consumption etc.). iii) The presented technique is
tested on a quad-core NIOS II processor on an Altera FPGA.
The test applications are chosen from the Mälardalen Wcet
benchmark suit [10]. iv) In principle, the technique can be
incorporated into a tool qualification argument under, for
example, DO-178B/DO-330 [2, 3]. The main advantage of
our technique is that it does not need any modification in
existing Cots hardware or single-core Wcet analysis tools.
Only modification in an emulation device (test chip) of the
production chip is required.

The paper is organized as follows. Sec. 2 presents the
state-of-art related to the this paper. Sec. 3 provides
necessary background to understand the core technique
explained in Sec. 4. Sec. 5 tests the technique on a quad-
core NIOS II platform using real applications from the
Mälardalen Wcet benchmark suit. Sec. 6 discusses the
future extension and Sec. 8 concludes the paper.

2. RELATED WORK
In this section, we discuss the work related to measure-

ment based Wcet analysis and related to architectural
reforms for predictable execution time.

Since our technique is not related to the static Wcet
analysis techniques, we only describe it superficially. The
static approach uses abstract models of underlying hardware
and the application executing on them. Later, mathematical
formulation is created for Integer Linear Programming (Ilp)
with the optimization goal of maximizing the execution time.
The static analysis formally guarantees the upper bound on
the execution time. Additionally, it can analyze undesirable
timing effects, e.g. timing anomalies and domino effects [9,
30]. The drawback of the static approach is the significant
effort required to create abstract models of architectural
components.

The hybrid measurement based WCET analysis
approach [13] records traces of execution by inserting in-
strumentation points1 at the beginning of each basic block2.
Later, these traces are statically analyzed to construct the
worst case path considering Maximum Observed Execution
Time (Moet) of individual basic blocks. This approach
is commercially utilized in the RapiTime3 tool. The
advantage of this approach is that the architecture is treated
as a black box. Hence, Wcet of applications executing
on reasonably complex architectures can be measured.
However, in its existing form, this approach cannot be
used for multi-core architectures since the shared memory
access latency depends on the interference on the shared
resource. The interference could unpredictably increase the
Moet of each basic block. Thus, the worst case path and
the corresponding Wcet are invalidated. Our approach
complements this method by inserting statically analyzed
shared memory interference information for each shared
memory access which makes the hybrid approach multi-core
capable.

Measurement under uninterrupted interference,
as the name suggests, does measurements of execution
time under synthetically created uninterrupted interference.

1Instrumentation points simply save the performance
counter value in the trace to time stamp their execution.
2Basic block is defined as a linear code segment with single
entry and single exit points.
3http://www.rapitasystems.com/

Typically, this interference is created by executing a simple
code in an infinite loop on each co-existing core. The code
intentionally accesses memory such that each instruction
produces a cache miss. Thus, uninterrupted traffic towards
shared memory is created and it is assumed that this
uninterrupted traffic produces maximum interference. The
biggest advantage of this method is that it is absolutely
free of charge. Additionally, the synthetic code to create
the interference is trivial, change in architecture is not at
all required and hybrid Wcet analysis technique for single
core architectures can be used for multi-cores without any
modification. However, as shown in our previous work [26],
this technique neither guarantees the worst case interference
nor the worst case execution time except under the Priority
Division [22] arbiter.

To consider the maximum possible interference due
to the co-existing applications, Pellizzoni et al. [19] use
memory access traces to build arrival curves of concurrently
executing applications from each core. Using real-time
calculus, interference bound for any access is derived.
However, even a trivial bug fix in any concurrently executing
application invalidates the derived bound and enforces re-
analysis. Clearly, this approach restricts updates in all
concurrently executing applications and task migration.
Collision of memory accesses from concurrently executing
applications are investigated by Lv et al. [15]. Here, model
checking is used to determine maximum interference and
corresponding Wcet. Like [19], this approach also restricts
not only application under test, but also the concurrently
executing applications. In our approach, applications are
analyzed in isolation. Hence, no restrictions on the co-
existing applications are enforced.

In our previous works [23], [25], we analyzed applications
in isolation. Here, the memory access traces are achieved
from a cycle accurate simulation models and the worst
case interference is computed for advanced budget based
arbiters. These works have the following drawbacks, i)
A cycle accurate simulator model is required for memory
activity trace. ii) It could analyze only a single path
applications due to the lack of tool integration. In this
paper, we overcome these drawbacks.

The unpredictable interference on the shared resources
is the biggest challenge of timing analysis on multi-
core architectures. To avoid the interference on the
shared resources all together, tailored architectures, built
especially for predictable timing behavior, are proposed.
PRET, CoMPSoC and MERASA are the examples of such
architectures. Here, the predictable timing behavior is
achieved by time triggered access to the shared resource
- PRET [14], by intentionally delaying a shared resource
access to the worst case latency - CoMPSoC [11] or by
providing high priority to the accesses from the safety
critical task - MERASA [29]. parMERASA is an extension
of the MERASA project. It suggests a Tdma-like approach
to analyzing timing behavior of multi-core systems [28]. The
probabilistic execution time analysis provides an execution
time distribution of the application instead of providing
a single Wcet value. The approach was first presented
by Edgar et al. [8] and Bernat et al. [5] and recently
investigated by PROARTIS [7] project. PROXIMA project
extends the probabilistic approach to multi-cores. The
approach employs customized components such as random
cache [20] and customized bus design [12] etc. As explained

int main () {

InitPerfCounter();

iPoint(f1);

f1();

IF X

 iPoint(f2);

 f2();

ELSE

 iPoint(f3);

 f3();

END IF;

iPoint(f4);

f4();

IF Y

 iPoint(f5);

 f5();

ELSE

 iPoint(f6);

 f6();

END IF;

iPoint(f);

f();

StopPerfCounter();

return(0);

}

f1

f4

f3

f5

f

Start

End

W
C

E
T

 (a) Pseudo code (b) Control flow (c) Worst case path
 f1-f3-f4-f5-f

f1

f4

f3
f2

f6f5

f

Start

End

MOET of

BB “f1”

iPoint(X)

{

 pTraceBuf[idx].id = X;

 pTraceBuf[idx].time = GetTime(); idx++;

}

f2

f6

Figure 1: RapiTime basic work flow

in Sec. 1, due to the significantly small market share of hard
real-time systems, economic feasibility of producing these
customized architectures for safety critical systems is yet to
be investigated.

The closest related work is from Nowotsch et al [16].
They propose monitoring and suspension mechanisms.
The monitoring mechanism observes if a resource (shared
resource in this case) is used under certain enforced limit
during a unit time. If the limit is reached, the suspension
mechanism is triggered which suspends the execution until
the next unit time starts. The unit time (time frame)
and the limits of co-existing applications are known. This
information is used to determine the gradually decreasing
number of interfering accesses within a unit time which helps
in tightening the upper bound on Wcet. Compared to their
approach, our approach does not enforce any limits and time
frames. Additionally, our approach, being measurement
based, lets experiments directly on the emulation device
of the targeted chips and does not require abstract model
construction. We also provide experiment results using an
existing industrial tool and a mutli-core architecture built
on an Fpga.

Our approach minimally modifies the emulation devices of
Cots components such that shared resource interference in-
formation is available to the tool. This information is traced
and processed to consider the worst case interference. After
the pre-processing, the measurement based Wcet analysis
tool is invoked. Hence, the existing measurement based
Wcet analysis tool does not require any modifications.

Since our technique is measurement based, unlike static
analysis techniques, it cannot analyze timing anomalies and
domino effects.

3. BACKGROUND
This section provides the necessary background informa-

tion about the hybrid measurement based Wcet analysis on
single core architectures. The section also explains why such
measurement based approach is invalid in the case of multi-
core architectures. The invalidity is explained by an example
of a Round Robin (Rr) arbiter, however, the explanation is
valid for any dynamically scheduled arbiter.

3.1 Hybrid Measurement Based WCET anal-
ysis

The hybrid measurement based Wcet analysis combines
static code analysis and execution time measurements. This
section explains the basic work flow of the RapiTime tool
from Rapita systems Ltd.

The tool statically parses the source code to identify
function boundaries, conditional structures and control flow.
The Fig. 1 depicts the basic work flow. At first, the
pseudo code of Fig. 1(a) is statically analyzed and control
flow graph is created (Fig. 1(b)). In the next step, light
weight instrumentation points (iPoint()) are inserted at
the beginning of each basic block – Bb. The instrumented
code is then executed on the targeted platform multiple
times using different test vectors. During each execution,

W

B

m1

m2m3

m4

SlotSize

(SS)

Figure 2: Graphical View of the Round Robin Operation

the iPoint() registers the starting time of each Bb in
a trace memory. The time is acquired from a hardware
performance counter4 in terms of number of clock cycles.
Thus, depending on the test vector coverage, starting times
of each basic block are recorded in a trace.

The recorded trace (aka iPoint() trace) is analyzed by
the RapiTime and execution time of each Bb is derived. The
execution time of a Bb is derived by subtracting its starting
time from the starting time of the next Bb in the control flow
graph. Since a Bb may experience different execution time
depending on the input test vector, execution time profile
of each Bb is created. From the execution time profile,
RapiTime selects the maximum of the recorded execution
times, termed as Moet– Maximum Observed Execution
Time. The control flow graph of Fig. 1(b) is then populated
by the Moet of each Bb. In the figure, the higher execution
times are represented by bigger circles.

At last, Moet of Bb on all paths from Start to End are
considered to select the longest path which is termed as the
worst case path. The Wcet is the addition of Moet of all
basic blocks falling on the worst case path.

There are many advantages of this technique. i) Since
the targeted platform itself is used for measurements,
costs of building precise hardware model of the target is
avoided. ii) Due to the static structural analysis, test
coverage information can be obtained together with the
timing information. iii) Hotspots for optimizations, i.e. Bb
on the worst case path, are immediately identified. Despite
all the advantages, this technique is limited to single-core
architectures. As explained in the following subsection, the
technique cannot be used in multi-core architectures with a
dynamically scheduled shared resource arbiter.

3.2 Work Conserving Round Robin Arbitra-
tion

The Fig. 2 depicts the Round Robin (Rr) arbitration
graphically. The Rr arbiter is a dynamically scheduled
shared resource arbiter (a greedy version of the static
Tdma arbiter). Under the Rr scheme, the shared resource
contenders are assigned a fixed number of slots in a virtual
ring. The assigned number of slots depends on their
bandwidth requirements. Although, our analysis is valid
for any slot allotment, for simplicity, we consider one slot
per contender without loss of generality. The figure shows

4Trace capture devices like RTBx from Rapita systems Ltd
or logic analyzers can also be used for time stamping and
trace storage. The advantage of using a dedicated trace
capture device is the availability of large trace memory.

four contenders (master1, master2, master3 and master4)
in the ring. Here, we assume that these contenders are
processor cores executing independent applications and
the shared resource is a shared main memory. These
cores access the shared main memory when a cache miss
occurs. Throughout the paper, we use master and core
terms interchangeably. Similarly, we use memory and shared
memory interchangeably.

The arbiter continuously searches for a master which
wants to access the memory in a clock-wise direction. We
call this master an active master. As soon as an active
master is encountered, it is granted the memory for a
predefined maximum number of clock cycles (SlotSize -
SS). The SS is big enough to accommodate the burst issued
for one cache-line fill. After the granted master finishes its
burst access, the search process resumes from the next slot
in the ring. Thus, the memory is always occupied as long as
there is at least one active master (hence the name, “work
conserving”).

Now, let us assume that the application-under-test is
executing on m1 and the SS is same for all masters. For this
architecture, an access request from m1 experiences the worst
case completion latency (WL = 4 × SS) if it is issued when
the arbiter pointer is at W in Fig. 2 AND all other masters
utilize their slots. Similarly, an access request experiences
the best case completion latency (BL = 1×SS) if it is issued
when the arbiter pointer is at B in the figure. In general, the
completion latency could be any value in the range [BL,WL].

In this paper, by latency of an access, we mean completion
latency of an access (scheduling latency + time required to
complete the access).

From the above explanation, it is clear that the latency
of a cache miss depends on the arbiter pointer and the
activity of other masters at the time of its occurrence. Thus,
applications executing on these masters heavily influence
the execution time of each other. Here, the execution time
of a basic block deviates significantly and unpredictably
depending on the experienced interference on the shared
memory. Hence, the measured execution time of any
basic block may not be the Moet of that basic block.
Consequently, constructing the worst case path depending
on the measured execution time of basic blocks (Sec. 3.1) is
invalid.

4. WORST CASE INTERFERENCE AUG-
MENTED TRACING

This section explains how the hybrid measurement based
Wcet analysis (Sec. 3.1) can be used for multi-core
architectures. Our technique inserts a tiny module to multi-
core architectures which enables the hybrid measurement
based Wcet analysis for multi-core architectures. The
module is used only during analysis and can be turned off
during application deployment. Hence, emulation chips are
the perfect target for our technology.

The first part introduces the basic technique and the
second part presents an optimized version.

4.1 The Basic Technique
The Fig. 3 depicts a multi-core architecture with N

number of cores and a cache observer module. The module
incorporates a performance counter, which is a standard
component, a cache observation unit and a bus master

Shared Bus

Performance
Counter

+
Cache

Observer

CPU1

I$ D$

Shared
Memory

CPU3

I$ D$

CPU2

I$ D$

CPUN

I$ D$

iPoint + cache
miss trace

CPU4

I$ D$

Figure 3: Cache Observer

interface.
The instrumented code of Sec. 3.1 is executed on this

architecture (CPU1 in this case) and the iPoint() trace
is captured in the memory. The module observes the
caches during instrumented code execution and as soon as a
cache miss occurs, it records time of its occurrence and the
experienced latency in a trace. Note that the experienced
latency can be any value in the range [BL,WL]5 depending
on the activities of other masters and location of arbiter
pointer (Sec. 3.2). Now, the memory contains two traces,
an iPoint() trace and a cache miss trace. Due to the time
stamping, this traces can be easily combined to form a single
trace. The combined trace is depicted in Fig. 4(a). The
figure depicts execution trace of a single basic block.

The combined trace is processed on the host machine
before RapiTime analyzes it. At first, all the experienced
latencies of the combined trace are removed. This results
in a computation trace [26] of Fig. 4(b). The trace is
called a computation trace since it incorporates timing of
pure computation and cache hits. The main memory access
latencies (due to cache misses) are absent in the computation
trace. Note that latency of each cache miss delays the
occurrence of subsequent cache miss and starting of the next
basic block by the same amount. Therefore, when latency
associated to the first cache miss is removed, placeholders of
all subsequent cache misses and the starting time of the next
basic block are shifted towards left in time. The process is
repeated for all cache misses. Clearly, the place holder of
the first cache miss remains at the same place.

In the next step, the theoretical worst case latency (WL)
is appended to each cache miss place holder. This shifts
each subsequent cache miss placeholders and the starting
time of the next basic block to the right. The process is
repeated for all cache misses. The resulting trace is depicted

5In this set-up experienced latency for some cache misses
could be more than the theoretical maximum. The WL

is calculated based on the maximum number of co-existing
masters. During the instrumented code execution, there is
one additional co-existing master – cache observer. However,
the cache observer is turned off during real application
deployment. Hence, the theoretical worst case latency, WL,
should not include interference from the cache observer.

L1 L3L2

t

Starting time
of BB

Starting time
of the next BB

t

Starting time
of BB

Cache
miss

Experienced
Latency

t

Starting time
of BB

WL WL WL

Worst case
starting time

of the next BBWorst case
Latency

(a)
Combined

recorded trace

(b)
Computation

trace

(c)
Worst case

Interference
aware MOET
computation

MOET

Starting time
of the next BB

WL – L1 WL – L1

Figure 4: Trace Manipulation

in the Fig. 4(c). Thus, execution time of each basic block
is artificially inflated to consider the theoretical worst case
latency for each cache miss occurring inside the respected
basic block.

The Fig. 5 represents the post processing of the combined
trace on the control flow graph level. Had we considered
only the combined trace, the control flow graph would have
been as depicted in Fig. 5(a). Instead, the control flow graph
is populated using the artificially inflated Moet of the basic
blocks, as depicted in Fig. 5(b). Here, an Moet incorporates
worst case interference. The RapiTime analyzes the control
flow graph of Fig. 5(b) to construct the worst case path
and the Wcet. The estimated Wcet is now compensated
for the worst case latency for each cache miss. Notice that
the worst case path considering the worst case latency is f1-
f2-f4-f5-f instead of f1-f3-f4-f5-f as depicted in Fig. 1(c) for
single-core architectures.

Advantages: There are many advantages of this tech-
nique i) Unlike [14] and [11], it does not alter the
performance of the chip. ii) Algorithms for the worst case
analysis under advanced arbitration techniques, e.g. Priority
Based Budget Scheduler (PBS) [27] and Credit Controlled
Static Priority (CCSP) [4] can be used. iii) Minimal
modifications to the existing architecture is required. iv)
Although the area overhead of the technique is negligible,
the implementation is limited to emulation devices only.
This avoids any alteration to the production chips. v)
The existing tools, e.g. RapiTime, does not need any
modifications.

Disadvantages: There are two drawbacks of the above
mentioned technique. i) For some applications, large number
of cache misses may overflow the trace memory. ii) An
additional master interface of the cache observer increases
capacitive loading on the shared bus which may result in
slower operating frequencies.

To circumvent these drawbacks, the next subsection
presents an optimized version of the cache observer. In the
optimized version the master interface to the shared bus is
removed. Hence, it does not generate any cache miss trace.
Moreover, it has ultra low area footprint.

f1

f4

f3
f2

f6f5

f

Start

End

Single

Cache miss

f1

f4

f3f2

f6f5

f

Start

End

Artificially

Inflated

BB MOET

f1

f4

f2

f5

f

Start

End

(a)
Control Flow
Graph with

combined trace

(b)
Control Flow Graph

with artificially
inflated BB MOET

(c)
Worst case path,

f1-f2-f4-f5-f,
considering WL for
each cache miss.

W
C

E
T

f3

f6

Worst case

cache miss

latency

Figure 5: Construction of the worst case path considering
worst case latency for each cache miss

Cache
miss?

Count++NOCount = 0

Count + WL

YES

New cache
miss?

NO

YES

start

Terminate?
NO

end

YES

All cache
misses

served?

NO

YES

Figure 6: Modified performance counter logic

4.2 The Optimized Technique
The optimized version of the cache observer contains only

a modified performance counter and the cache observation
logic. The algorithm of the performance counter is depicted
in Fig. 6. The performance counter, if enabled, continuously
observes the cache. On every clock tick, if a cache miss
does not occur and none of the cache miss is pending to be
served, it increments the count by one. This is a standard
performance counter operation. However, if a cache miss
occurs, the count is immediately incremented by WL and
paused until the cache miss is served. During the paused
state, if another cache miss occurs, the count is again
incremented by WL. As soon as all pending cache misses
are served completely, the count resumes the standard
performance counter operation.

The intuition behind the idea can be explained by an
example. Let us assume at count value t, a cache miss
occurs. This cache miss takes L number of clock cycles,
including interference and data transfer, to be served.
Hence, the experienced latency is L. In absolute time, the
value of the count after the cache miss is served should be

t + L. However, we add WL to the count as soon as a
cache miss occurs and pause until the cache miss is served
completely. Thus, after the cache miss is served, the value
of the count is t+WL. Note that the difference between the
artificially extended time and the absolute time is WL − L.

The time is shifted by WL −L during the post processing
step in the non-optimized version of Sec. 4.1. In the
optimized version, the time is already shifted, therefore, the
cache miss trace generation is not required. Here, when
an instrumented code is executed on the architecture, the
GetTime() method of an iPoint() returns the artificially
forwarded time. Note that the count value is already
compensated for the worst case interference. Hence, the
Moet calculated based on it by RapiTime is also worst case
interference compensated.

There is certainly a cost of the simple architecture in
terms of accuracy. The optimized version can only add
constant value, WL, to the count for a single cache miss.
As explained in Sec. 3.2, the consideration of the constant
worst case latency for every cache miss is perfectly suitable
for the round robin arbiter. However, for advanced arbiters,
e.g. CCSP [23] and PBS [25] the worst case latency for any
cache miss depends on the time of its occurrence. Assuming
a constant worst case latency under these arbiters will
significantly increase the Wcet of application.

4.3 Over estimation
It is clear that, like hybrid Wcet measurement technique,

our technique is also intrusive. Here, the measured Wcet
contains execution time impact of instrumentation points.
An intuitive way to compensate for instrumentation is
to analyze the number of clock cycles (Nip) required per
instrumentation point. The instrumentation overhead, Nip,
is then subtracted from every basic block in the post-
processed trace data. However, this compensation is not
enough due to the following reasons. i) The instrumentation
code changes state of instruction cache. Hence, more
number of cache misses occur compared to that of the non-
instrumented code. ii) Cache misses originating due to the
write-back of instrumentation data are treated indifferently
by our technique. Hence, also for these cache misses, the
worst case latencies are considered. However, these cache
misses do not occur in the deployed application due to the
absence of instrumentation. iii) The always taken branches
of instrumentation code may impact the decision making of
history based branch predictors. All the above mentioned
factors contribute in yielding a pessimistic Wcet.

Note that the assumption of the worst case latency, WL,
for every cache miss is a conservative assumption. As
presented in [26], certain applications are highly vulnerable
to worst case latencies due to their shared resource access
pattern. If the analysis presented in [26] is not available
then assuming WL for every shared resource access is the
only safe assumption.

In order to determine the pessimism originating due to
the instrumentation6, we determine the worst case path

6The instrumentation code occupies space in caches. Hence,
the effective cache size available to the application is
reduced. This increases number of cache misses during
instrumented code execution, and consecutively its Wcet,
compared to that of the non-instrumented code execution.
Therefore, measurement of execution time on instrumented
code does not yield optimistic results.

Architecture Logic Elements
Without the Cache observer 13555
With the Cache observer 14272

Table 1: Synthesis results

using an instrumented code of application. Once the worst
case path is determined, we remove the instrumentation7.
We then re-execute the non-instrumented worst case path
on the target platform and measure start to end execution
time using our optimized time stamping module. Thus, the
measured execution time is not an absolute execution time,
but worst case interference compensated execution time.
The measured execution time does not have any impact
of instrumentation, however, it is worst case interference
compensated. We denote this execution time as WCETni

(ni stands for non-instrumented).
Irrespective of single core or multi-core, it could happen

that after removal of instrumentation points, some other
path is the worst case path. Hence, intensive end-to-
end measurements must be performed on non-instrumented
code.

4.4 Emulation devices
For the completeness of the paper, we briefly explain the

design flow of the emulation devices. Semiconductor vendors
(e.g. Freescale, Infinion etc) typically make few chips
(test chips or emulation devices) with enhanced debugging
facilities. These chips are sold to the product/application
developers (Robert Bosch, Continental etc). The application
developers test their code vigorously on the emulation
devices and use their enhanced debugging facilities to
be confident about the correctness (functional and non-
functional) of their application code. Thus, the emulation
devices go only in the test products (test vehicles in this
case). After being confident about their applications,
production chips in large quantity is ordered from semi-
conductor vendors. These production chips go in the real
product (production cars in this case).

5. TEST CASES
This section provides information about tests that were

carried out to support our technique. The first subsection
describes the test architecture and the second subsection
discusses the results.

5.1 Test Architecture
We implemented a quad-core processor using Altera NIOS

II F cores on Altera Cyclone III FPGA. Each core is
equipped with 512 Bytes of instruction and data caches in
the first experiment. In the second experiment, the cache
size is increased to 4K Bytes. The cache-line size is 32
Bytes. An on-chip SRAM serves as a shared main memory
and trace storage. In this paper, we used only L1 caches
and a shared main memory. Measurement of Wcet in the
presence of shared L2 cache is explained in the Sec. 6. The
test architecture is depicted in Fig. 7. We avoided use of

7The instrumentation is required to determine the Moet of
basic blocks, test coverage and thereby, the worst case path.
After obtaining the worst case path, the instrumentation is
not required anymore.

Shared Bus

Optimized
Cache

Observer

CPU1

I$ D$

Shared
Memory

CPU4

I$ D$

CPU2

I$ D$

iPoint
trace

CPU3

I$ D$

Figure 7: Test Architecture

wait states during burst transfers and arbiter lock signals as
suggested in [24] to produce a valid Wcet bound.

Here, core1 executes test applications while other cores
execute dummy load to stress the shared main memory.
Test applications are chosen from the Mälardalen Wcet
benchmark suit [10]. We typically chose the multi-path
applications from the suit since the single path applications
are already tested in our another work [22]. For testing
purpose, we used the optimized version (Sec. 4.2) of our
cache observer. The operating frequency is 125 MHz.

The area impact of our technique is presented in Table
1. The overhead of our technique is ≈5%. This overhead
has a minuscule cost impact due to the following reasons.
i) This increase is only limited to emulation devices. The
production chips remain unchanged. ii) The increase is
compared to our basic test architecture. Cots multi-core
architectures contain hardware accelerators, DMAs, I/O
controllers etc. in addition to the components shown in
Fig. 7 which makes the Cots architecture much larger than
our test architecture. However, our technique retains its size.
Thus, increase in area compared to a Cots architecture is
much less than 5%.

5.2 Results
Table 2 and Table 3 present results of the tests. In the

tables, the results are divided into two parts: Instrumented
execution and Non-instrumented execution. At first, an
instrumented application is executed on the test architecture
and its iPoint trace is collected. Remember that this
iPoint trace is already compensated for the worst case
interference (Sec. 4). The trace is then analyzed by the
RapiTime timing analyzer. As explained in Sec. 3.1,
RapiTime detects the worst case path and also calculates
Wcet. The calculated Wcet is shown in the tables under
instrumented execution column. The worst case path is re-
executed on the architecture, this time – non-instrumented,
and its start to end (worst case interference compensated)
time is measured. This measured time is considered as the
actual Wcet of application since the deployed applications
are non-instrumented.

Instrumented Execution Non-instrumented Execution
Bench- WCET MOET WCETs WCET WCETni WCETnis WCETni WCET
mark WCETs WCETnis WCETni

Binary search 2857 2662 1729 1.65 775 415 1.86 3.68
BBSort 133570 111935 72896 1.83 20941 20362 1.02 6.37
cnt 54930 35182 28435 1.93 8900 7772 1.14 6.17
insertsort 20741 17310 10081 2.05 4096 3590 1.14 5.06
ludcmp 515703 423071 241266 2.13 456778 220309 2.07 1.12
ndes 1468191 1161950 697753 2.10 623355 295531 2.10 2.35
ns 194401 163983 119977 1.62 83165 36555 2.27 2.33
nsichneu 183104 152792 86492 2.11 64738 25996 2.49 2.82
qsort-exam 101364 82574 46289 2.18 74008 31887 2.32 1.36
select 153437 131381 60855 2.52 47025 21867 2.15 3.26
ST 59384913 45377728 26377862 2.25 51651564 23957615 2.15 1.14

Table 2: Test Results: Execution Times in Clock Cycles, 512 Bytes I$ and D$.

Instrumented Execution Non-instrumented Execution
Bench- WCET MOET WCETs WCET WCETni WCETnis WCETni WCET
mark WCETs WCETnis WCETni

Binary search 2382 2093 1553 1.53 705 395 1.78 3.37
BBSort 71618 68254 60293 1.18 20704 20294 1.02 3.45
cnt 27405 25935 22701 1.20 7975 7612 1.04 3.43
insertsort 7789 7686 6923 1.12 4026 3570 1.12 1.93
ludcmp 205085 184567 159866 1.28 182309 146528 1.24 1.12
ndes 748654 655750 523350 1.43 357602 209319 1.70 2.09
ns 130930 122743 106831 1.22 37794 35266 1.07 3.46
nsichneu 126971 105534 73221 1.73 54383 23563 2.30 2.33
qsort-exam 33582 31957 29058 1.15 19189 17162 1.11 1.75
select 30938 29447 26769 1.15 15042 13383 1.12 2.05
ST 25334087 19541872 17578497 1.44 19209880 15164451 1.26 1.31

Table 3: Test Results: Execution Times in Clock Cycles, 4 KBytes I$ and D$.

Moet is the maximum observed execution time during
several iteration of execution in the presence of varying
dummy loads on co-existing cores. WCETs stands for the
Wcet of an application on a single-core (no-interference)
architecture. Similarly, WCETni and WCETnis stand for
non-instrumented quad-core and non-instrumented single-
core Wcet, respectively. The factors WCET/WCETs

and WCETni/WCETnis provide respective increase in the
Wcet of an application when the application is ported from
a single-core architecture to a quad-core architecture.

The increase in the Wcet is due to the interference on the
shared resources (here, memory). Those applications which
do less number of shared resource accesses per unit time,
experience less increase in the Wcet. This is demonstrated
by the results of Table 3. Here, the cache size is increased to
4 KBytes. In Table 2, the average of WCETni/WCETnis

is 1.89 while in Table 3, the average of WCETni/WCETnis

is 1.35. When the cache size increases, less number of cache
misses occur during application execution. Hence, the worst
case penalty WL for accessing the shared resource must be
considered for less number of times. This decreases the
WCETni/WCETnis factor.

The last column in the tables presents the increase
in Wcet due to the instrumentation. The increase is
application and cache size dependent. If a test application
has many branches (many basic blocks), then high number of

instrumentation points impacts the cache state and increases
the Wcet. However, this increase is moderated if bigger
caches are used. The number of instrumentation points does
not change with the change in the underlying cache size.
Hence, the impact of instrumentation is diluted in bigger
caches. The evidence can be seen in the tables. In table
2, average value of WCET/WCETni is 3.24 while in the
table 3, the average value is 2.39. Remember that the results
in table 3 are for a bigger cache.

6. FUTURE EXTENSION
Cots processors often use shared L2 cache. If a cache

miss in L1 cache occurs, at first, the shared L2 cache is
accessed. If the required data is unavailable in the L2 cache
(L2 cache miss) then the main memory (mostly an SDRAM)
is accessed. Typically, the penalty associated with the L2
cache miss is large since the data has to be fetched from
a slow off-chip memory. If the L2 cache is used without
any protection and partition, one core can evict the useful
data of another core from the shared L2 cache. Hence, these
cores, in the worst case, experience an L2 cache miss for
every L1 cache miss. This tremendously increases the Wcet
of applications executing on architectures with unprotected
shared L2 caches.

We propose a shared architecture as depicted in the
Fig. 8. One of the cores, core1 in the figure, programs

Shared Bus

Optimized
Cache

Observer

CPU1

I$ D$

Main Memory
(SDRAM)

CPUn

I$ D$

CPU2

I$ D$
. . .

MPU1MPUn MPU2

Shared L2 Cache

Partition
1

Shared
partition

Figure 8: Proposed Architecture with a Shared L2 Cache

all Memory Protection Units (MPU). Here, the shared L2
cache is partitioned. The partitioning should be achieved
by address space separation (logical partitioning) rather
than having hardware partitions. This enables changes
in partition size dedicated to each core according to the
memory requirements of deployed applications. An MPU
forwards only those requests which fall into the allocated
address space. Thus, every core has a reserved space in
the shared L2 cache and one core cannot evict data of
another core. Our approach extends the MERASA [18]
partitioned L2 cache by adding a shared partition and the
cache observation module.

One of the partitions is termed as a shared partition
where each core has an access right. The shared partition
is required if applications need to exchange data (e.g. Sym-
metric Multi-processing). The data in the shared partition
is unpredictable since each core can modify it. Hence, an
access to the shared partition of the L2 cache should be
considered as an L2 cache miss during the Wcet analysis.

Our cache observer must observe, apart from L1 caches,
the partition dedicated to the core1. As soon as an L2
cache miss originates from the partition dedicated to the
core1, the worst case latency to access the off-chip memory
is added to the performance counter. Similarly, the worst
case penalty for accessing the off-chip memory is added to
the performance counter as soon as an access to the shared
partition of the L2 cache is detected.

It is obvious that the insertion of MPUs must retain
in production chips making it an expensive modification.
There are following two alternatives to avoid the expensive
modification, however, both have their drawbacks. i) A
similar logical partitioning can be achieved using Memory
Management Unit (MMU) of each core. However, in this
approach, it must be assumed that each core configures

its own MMU correctly at boot-up. This may increase
the certification costs since the boot-up code of each core
must be certified at the highest level. ii) Avoid partitioning
altogether (entire L2 cache is shared) and assume during
the analysis that each L1 cache miss results in an L2 cache
miss. Subsequently, for every L1 cache miss, the worst case
latency of L1 miss and L2 miss must be considered for the
Wcet analysis. This results in an overly pessimistic Wcet
since the L2 cache miss latency is far greater than the L1
cache miss latency and during real execution, only a fraction
of L1 cache misses results in L2 cache misses.

7. DISCUSSION
Porting applications from a single core architecture

to a multi-core architecture increases its Wcet. This
observation has also been made in literature [17], [21] and
more recently, in [6]. The increase in the Wcet is often
argued against the use of multi-cores in safety critical
systems. We are rather optimistic because of the following
reasons.

Free Lunch: For years, general purpose applications
were running systematically faster with each new version of
the processor due to the higher operating frequency of the
new processors. This “free lunch” is over for general purpose
computing. However, the free lunch is still available for
Hrt systems. Current safety critical applications execute on
relatively simple cores operating at ≈ 100 MHz. The current
multi-core Cots processors operate at ≈ 800 MHz. The
higher operating frequencies compensate for the increase in
Wcet in terms of clock cycles and keep it under enforced
limits in terms of milliseconds. However, more research is
required to be confident about it.

Mixed critical systems: Note that the Wcet of
applications increase when ported to multi-core architecture,
not the average case execution time (Acet). This can be
exploited well by mixed critical systems. A Soft Real-time
Task (Srt) of a mixed critical system should be provided
resources considering the Acet of co-existing Hrt, instead
of considering Wcet. Since, most of the time the Hrt
will complete its execution faster than its Wcet, the freed
resources can be used by the Srt. Only, when the Hrt
experiences the worst case circumstances, the Srt may miss
a deadline which is harmless.

8. CONCLUSION
This paper has presented a novel technique to measure

the Wcet of applications on multi-core architectures. The
technique empowers existing single-core Wcet measurement
tools to measure Wcet on multi-core architectures without
any modifications. This has been demonstrated by measur-
ing the Wcet of Mälardalen benchmark applications using
RapiTime timing analyzer. The experimental quad-core
processor is implemented on Altera Cyclone III FPGA using
NIOS II cores. The technique inserts a cache observation
and time stamping module in Cots multi-core processor.
However, this modification of an existing Cots processor is
limited to the emulation devices only. Thus, mass produced
Cots devices stay unchanged preserving their economical
and performance benefits. The technique stands out from
existing work since it does not need any modification in
either commercialized tools or commercialized architectures.
The test applications are analyzed in isolation and the worst

possible interference on the shared resource is assumed from
co-existing applications.

The technique presented in this paper is scalable for
shared L2 cache architecture. Although the technique is
demonstrated using a Round robin arbiter and a shared
SRAM, it can be used for any real-time arbiter and any
shared memory in multi-core processors.

9. ACKNOWLEDGMENTS
This work was funded by German BMBF projects ECU

(13N11936) and Car2X (13N11933). The work is also
partially supported by the EC FP7 project parMERASA
under Grant Agreement No. 287519.

10. REFERENCES
[1] Profiling nios ii systems.

[2] Rtca sc-167, software considerations in airborne
systems and equipment certification, december 1992.

[3] Rtca sc-167, software tool qualification considerations,
may 2012.

[4] B. Akesson, K. Goossens, and M. Ringhofer. Predator:
a predictable SDRAM memory controller.
CODES+ISSS ’07, NY, USA.

[5] G. Bernat, A. Colin, and S. Petters. Wcet analysis of
probabilistic hard real-time systems. In Real-Time
Systems Symposium, 2002. RTSS 2002. 23rd IEEE,
pages 279–288, 2002.

[6] J. Bin et al. Studying co-running avionic real-time
applications on multi-core cots architectures. In ERTS
’14.

[7] F. Cazorla et al. Proartis: Probabilistically analyzable
real-time systems. ACM Trans. Embed. Comput. Syst.,
2013.

[8] S. Edgar and A. Burns. Statistical analysis of wcet for
scheduling. In Real-Time Systems Symposium, 2001.
(RTSS 2001). Proceedings. 22nd IEEE, pages 215–224,
2001.

[9] G. Gebhard. Timing Anomalies Reloaded. In WCET
2010, Dagstuhl, Germany.

[10] J. Gustafsson et al. The Mälardalen WCET
benchmarks – past, present and future.

[11] A. Hansson et al. Compsoc: A template for
composable and predictable multi-processor system on
chips. ACM Trans. Des. Autom. Electron. Syst., 2009.

[12] J. Jalle, L. Kosmidis, J. Abella, E. Quiñones, and
F. J. Cazorla. Bus designs for time-probabilistic
multicore processors. In Proceedings of the Conference
on Design, Automation & Test in Europe, DATE ’14,
pages 50:1–50:6, 3001 Leuven, Belgium, Belgium,
2014. European Design and Automation Association.

[13] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner.
Using measurements as a complement to static
worst-case execution time analysis. In Intelligent
Systems at the Service of Mankind, volume 2. UBooks
Verlag, Dec. 2005.

[14] B. Lickly et al. Predictable programming on a
precision timed architecture. CASES ’08.

[15] M. Lv et al. Combining abstract interpretation with
model checking for timing analysis of multicore
software. In Proc. RTSS, 2010.

[16] J. Nowotsch, M. Paulitsch, A. Henrichsen,
W. Pongratz, and A. Schacht. Monitoring and wcet
analysis in cots multi-core-soc-based mixed-criticality
systems. In DATE ’14.

[17] J. Nowotsch et al. Leveraging multi-core computing
architectures in avionics. In EDCC ’12.

[18] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat,
and M. Valero. Hardware support for wcet analysis of
hard real-time multicore systems. SIGARCH Comput.
Archit. News, 37:57–68, June 2009.

[19] R. Pellizzoni et al. Worst case delay analysis for
memory interference in multicore systems. In Proc.
DATE, 2010.

[20] E. Quinones, E. Berger, G. Bernat, and F. Cazorla.
Using randomized caches in probabilistic real-time
systems. In Real-Time Systems. ECRTS ’09.

[21] P. Radojković et al. On the evaluation of the impact
of shared resources in multithreaded cots processors in
time-critical environments. TACO, 2012.

[22] H. Shah, K. Huang, and A. Knoll. The priority
division arbiter for low wcet and high resource
utilization in multi-core architectures. In RTNS 2014,
Versailles, France.

[23] H. Shah, A. Knoll, and B. Akesson. Bounding sdram
interference: detailed analysis vs. latency-rate
analysis. In Date ’13, Grenoble, France.

[24] H. Shah, A. Raabe, and A. Knoll. Challenges of wcet
analysis in cots multi-core due to different levels of
abstraction. Workshop on High-performance and
Real-time Embedded Systems (HiRES 2013), 2013.

[25] H. Shah et al. Bounding WCET of Applications Using
SDRAM with Priority Based Budget Scheduling in
MPSoCs. In Proc. DATE, 2012.

[26] H. Shah et al. Timing Anomalies in Multi-core
Architectures due to the Interference on the Shared
Resources. 2014.

[27] M. Steine et al. A priority-based budget scheduler
with conservative dataflow model. In Proc. DSD, 2009.

[28] T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge,
R. Jahr, J. Mische, J. Fernandes, P. Zaykov, Z. Petrov,
B. Boddeker, et al. parmerasa–multi-core execution of
parallelised hard real-time applications supporting
analysability. In Digital System Design (DSD), 2013
Euromicro Conference on, pages 363–370. IEEE, 2013.

[29] T. Ungerer and et al. Merasa: Multicore execution of
hard real-time applications supporting analyzability.
IEEE Micro, 30:66–75, September 2010.

[30] R. Wilhelm et al. Memory hierarchies, pipelines, and
buses for future architectures in time-critical
embedded systems. 28(7), 2009.

