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Abstract. Based on the energy model for disparity-tuned neurons, we
calculate probability density functions of complex cell activity for
random-dot stimuli. We investigate the effects of normalization and give
analytical expressions for the disparity tuning curve and its variance. We
show that while normalized and non-normalized complex cells have sim-
ilar tuning curves, the variance is significantly lower for normalized com-
plex cells, which makes disparity estimation more reliable. The results of
the analytical calculations are compared to computer simulations.

1 Introduction to the Binocular Energy Model

An overview of the binocular energy model [1] and an extension consisting of an
additional normalization operation is shown in Fig. 1. The model is motivated
by neurophysiological recordings from disparity-tuned neurons in the visual cor-
tex of mammals. It is similar to the spatio-temporal energy model for motion
perception described in [2].

In the first stage, left and right images, Il(x, y) and Ir(x, y) respectively, are
convolved with pairs of orthogonal filters,

Sal =
∫∫

fal(ξ, η) Il(ξ, η) dξdη , Sar =
∫∫

far(ξ, η) Ir(ξ, η) dξdη , (1)

Sbl =
∫∫

fbl(ξ, η) Il(ξ, η) dξdη , Sbr =
∫∫

fbr(ξ, η) Ir(ξ, η) dξdη . (2)

The linear receptive fields defined by the functions fal, fbl, fal, fbl can be mod-
elled as Gabor functions, see e.g. [3],

G(x − x0|k, Σ̂, φ) = e−
1
2 (x−x0)�Σ̂−1(x−x0) cos(k�(x − x0) − φ) . (3)

x0 denotes the center position of a simple cell’s receptive field in the image or
retina, k determines the spatial frequency and the orientation. The monocular
receptive fields have a phase difference of 90◦, i.e. φbl = φal + 1

2π, φbr = φar + 1
2π.

Binocular simple cells combine the corresponding left and right filter responses
(see Fig. 1),

Sa = Sal + Sar , Sb = Sbl + Sbr , (4)
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Fig. 1. Overview of the binocular energy model. The “classical” model, Eqs. (1)–(5),
is depicted as gray panels. The white panels show the additional operations of the
normalization step, Eq. (6). See text for details.

and output the squared sum to the complex cell. Mathematically equivalent
but biologically more plausible, one can use four units instead, that have sign-
inverted receptive fields and a half-squaring non-linearity [4].

Finally, binocular complex cells integrate responses of (at least) two simple
cells,

C = S2
a + S2

b . (5)

Binocular Normalization

The “classical” energy model has been extended by adding monocular and binoc-
ular divisive normalization operations [5]. In this paper, we will examine the ef-
fect of binocular normalization as depicted in Fig. 1. We define a normalized
complex cell by

NC :=
C

(S2
al + S2

ar + S2
bl + S2

br) + ε
=

S2
a + S2

b

(S2
al + S2

ar + S2
bl + S2

br) + ε
. (6)

ε ≥ 0 is a small normalization constant. For high local image contrast (estimated
by S2

al + S2
ar + S2

bl + S2
br) the effect of ε is negligible. Eq. (6) is a simple variant

of the binocular normalization model proposed in [5] which enables us to show
analytically, that the variance of normalized complex cell activity is reduced,
and disparity detection is thus enhanced.

Similar models for “divisive normalization” or “gain control” have been used
to describe several properties of visual cortex neurons, like response saturation
and cross-orientation inhibition [6,7,8].

2 Probability Density Functions for Complex Cells

In this section, we will calculate probability density functions, tuning curves and
variances of disparity-tuned complex cells of the “classical” energy model (which
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we will call “non-normalized complex cells”), and of normalized complex cells
defined in Eq. (6). We will assume random dot stereo images as stimuli.

2.1 Receptive Field Functions of the Position-Shift Type

In the following, we will consider vertically oriented receptive field functions, i.e.
we set k = k ex and Σ̂ = diag(σ2

x, σ2
y) in Eq. (3),

G(x − x0|k, σ2
x, σ2

y, φ) = e
− (x−x0)2

2σ2
x

− (y−y0)2

2σ2
y cos(k(x − x0) − φ) . (7)

In this paper, we will use receptive fields of the position-shift type [5,9]: Re-
ceptive fields in the right image are shifted by D relative to the left receptive
fields. To simplify notation, we set φal = φar = 0 and use the fact that the
receptive field function (7) is separable. Eqs. (1),(2) are then transformed into
one-dimensional integrals (using σ := σx),

Sal =
∫

e−
ξ2

2σ2 cos(kξ)Il(ξ) dξ , Sar =
∫

e−
(ξ−D)2

2σ2 cos(k(ξ − D))Ir(ξ) dξ , (8)

Sbl =
∫

e−
ξ2

2σ2 sin(kξ)Il(ξ) dξ , Sbr =
∫

e−
(ξ−D)2

2σ2 sin(k(ξ − D))Ir(ξ) dξ , (9)

where we have defined the one-dimensional images

Il/r(ξ) :=
∫

e
− (y−y0)2

2σ2
y Il/r(ξ + x0, y)dy . (10)

The receptive fields of the phase-shift type can be obtained by replacing
exp(− (x−x0−D)2

2σ2 ) with exp(− (x−x0)2

2σ2 ) in Eqs. (8) and (9), i.e. the corresponding
receptive fields are located in the same positions, but have phase shifts.

2.2 Random Dot Stereo Stimuli

In the following, we do not restrict our derivations to a single stereo stimulus, but
rather assume that images are generated by a random process. In the simplest
case, each pixel is an identically and independently distributed random variable
with mean I0 and standard deviation σ2

I . In the continuous limit we will use

〈Ī(ξ)Ī(ξ′)〉 = I2
0 + σ2

Iδ(ξ − ξ′) . (11)

We will also assume that the output of the linear filters is zero for an input
with constant pixel values (or intensity) over the receptive fields. While this is

true for the odd receptive field function,
∫

e−
ξ2

2σ2 sin(kξ)dξ = 0, it does not hold

exactly for the even function,
∫

e−
ξ2

2σ2 cos(kξ)dξ =
√

2πσ exp(− 1
2k2σ2). This can

be accounted for by replacing cos(kξ) with (cos(kξ) − exp(− 1
2k2σ2)) in Eq. (8).

However, in order to simplify the analytical calculations, we do not use this, but
ignore constant offsets (which is equal to setting I0 = 0).
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We will analyze the case where left and right receptive fields “look” at image
parts that are shifted versions of each other, i.e. over the whole receptive field there
is a constant disparity d. We do not consider occlusions and variation in depth.
However, we take (sensor) noise into account described by identically and inde-
pendently distributed random variables. Thus, left and right input is modelled as

Il(x) = Ī(x) + νl(x) , Ir(x) = Ī(x − d) + νr(x) . (12)

Throughout this paper, we will assume 〈νu(x)〉 = 0 and 〈νu(x)νv(x′)〉 = σ2
n

×δ(x − x′)δu,v, u, v ∈ {l, r}.
Substituting (12) into (8) and (9), and defining d̃ := d − D, we obtain

Sal =
∫

e−
ξ2

2σ2 cos(kξ)Ī(ξ) dξ +
∫

e−
ξ2

2σ2 cos(kξ)νl(ξ) dξ , (13)

Sar =
∫

e−
(ξ+d̃)2

2σ2 cos(k(ξ + d̃)Ī(ξ)dξ +
∫

e−
(ξ−D)2

2σ2 cos(k(ξ − D))νr(ξ) dξ , (14)

Sbl =
∫

e−
ξ2

2σ2 sin(kξ)Ī(ξ) dξ +
∫

e−
ξ2

2σ2 sin(kξ)νl(ξ) dξ , (15)

Sbr =
∫

e−
(ξ+d̃)2

2σ2 sin(k(ξ + d̃))Ī(ξ) dξ +
∫

e−
(ξ−D)2

2σ2 sin(k(ξ − D))νr(ξ) dξ . (16)

2.3 Probability Density Function for the Linear Stage

Since theelementsof thevectorS := (Sal, Sar, Sbl, Sbr)� are sumsof independently
and identically distributed randomvariables, the joint probability density function
can be approximated by a Gaussian according to the central limit theorem, i.e.

PS(S|d̃ ) ≈ 1√
(2π)4 det Σ̂(d̃ )

exp(− 1
2 (S − 〈S〉)�Σ̂(d̃ )−1(S − 〈S〉) . (17)

As discussed in Sect. 2.2, we assume 〈S〉=0. The covariance matrix is given by

Σ̂(d̃ ) = 〈(S − 〈S〉)(S − 〈S〉)�〉 = 〈SS�〉 =

⎛
⎜⎜⎝

a c 0 e
c a −e 0
0 −e b d
e 0 d b

⎞
⎟⎟⎠ , (18)

a := 〈S2
al〉 = 〈S2

ar〉 =
∫∫

〈Ī(x)Ī(x′)〉fa(x)fa(x′)dxdx′ + σ2
n

∫
fa(x)2dx ,(19)

b := 〈S2
bl〉 = 〈S2

br〉 =
∫∫

〈Ī(x)Ī(x′)〉fb(x)fb(x′)dxdx′ + σ2
n

∫
fb(x)2dx , (20)

c := 〈SalSar〉 =
∫∫

〈Ī(x)Ī(x′)〉fa(x)fa(x′ + d̃ )dxdx′ , (21)

d := 〈SblSbr〉 =
∫∫

〈Ī(x)Ī(x′)〉fb(x)fb(x′ + d̃ )dxdx′ , (22)

e := 〈SalSbr〉 = −〈SarSbl〉 =
∫∫

〈Ī(x)Ī(x′)〉fa(x)fb(x′ + d̃ )dxdx′ , (23)

〈SalSbl〉 = 〈SarSbr〉 = 0 . (24)
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By means of the orthogonal 4 × 4 matrix

Ô :=
(

Ô2 0
0 Ô2

)
= Ô−1 = Ô� , Ô2 :=

1√
2

(
1 −1

−1 1

)
, (25)

we can calculate the probability density function of u := (ua, va, ub, vb)� =
ÔS = 1√

2
(Sal + Sar, Sal − Sar, Sbl + Sbr, Sbl − Sbr)�,

Pu(u| d̃) =
1√

(2π)4 det Λ̂(d̃ )
exp(− 1

2u�Λ̂(d̃ )−1 u) , (26)

with Λ̂(d̃) = ÔΣ̂(d̃ ) Ô� =

⎛
⎜⎜⎝

a + c 0 0 −e
0 a − c e 0
0 e b + d 0

−e 0 0 b − d

⎞
⎟⎟⎠ . (27)

2.4 Non-normalized Complex Cells

According to the energy model, a disparity-tuned complex cell combines the
output of two simple cells with orthogonal receptive field functions, i.e.

C = S2
a + S2

b = 2(u2
a + u2

b) . (28)

Using
Puaub

(ua, ub| d̃ ) =
∫∫

Pu(u| d̃ )dvadvb =
exp

(
− u2

a

2(a+c) − u2
b

2(b+d)

)
√

4π2(a + c)(b + d)
, (29)

the corresponding probability density function is (for a + c > b + d)

PC(C|d̃ ) =
∫ π

−π

Puaub
(
√

C/2 cosφ,
√

C/2 cosφ| d̃ )| det
(∂(ua, ub)

∂(C, φ)

)
|dφ (30)

=
exp

(
− C(a+c+b+d)

8(a+c)(b+d)

)
I0

(C((a+c)−(b+d))
8(a+c)(b+d)

)
4
√

(a + c)(b + d)
. (31)

I0 is a modified Bessel function of the first kind.
The mean of complex cell activity (“tuning curve”) and its variance are given by

〈C(d̃ )〉 =
∫ ∞

0
C PC(C|d̃ ) dC = 2(a + b + c + d) , (32)

Var[C(d̃ )] = 〈C2〉 − 〈C〉2 = 8(a + c)2 + 8(b + d)2 . (33)

Eqs. (19)–(23) can be further evaluated for random dot-stimuli,

a = 1
2

√
πσ(σ2

I + σ2
n)

(
1 + exp(−k2σ2)

)
, (34)

b = 1
2

√
πσ(σ2

I + σ2
n)

(
1 − exp(−k2σ2)

)
, (35)

c = 1
2

√
πσσ2

I exp
(

− d̃2

4σ2

) (
cos(kd̃ ) + exp(−k2σ2)

)
, (36)

d = 1
2

√
πσσ2

I exp
(

− d̃2

4σ2

) (
cos(kd̃ ) − exp(−k2σ2)

)
, (37)

e = 1
2

√
πσσ2

I exp
(

− d̃2

4σ2

)
sin(kd̃ ) . (38)
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Fig. 2. Tuning curves 〈C(d̃ )〉 of non-normalized complex cells with kσ = 2 for random-
dot stimuli, see Eq. (39). Depth of modulation is κ = 1 and κ = 1

2 (thin curve). As can
be seen from Eq. (40), these curves also show the corresponding standard deviations�

Var[C(d̃ )] ≈ 〈C(d̃ )〉.

If we assume that exp(−k2σ2) � 1, we can use the approximation b+d ≈ a+c.
A typical value for the visual cortex is ks ≈ 2, see [10], and thus exp(−k2σ2) ≈
exp(−4) ≈ 0.018.

For the tuning curve of the non-normalized complex cell, we finally have

〈C(d̃ )〉 ≈ 4(a + c) = 〈C(∞)〉
(
κ exp

(
− d̃2

4σ2

)
cos(kd̃ ) + 1

)
, (39)

where we have defined 〈C(∞)〉 := 2
√

πσ(σ2
I + σ2

n) (asymptotic amplitude of
complex cell activity for d̃ → ∞) and κ := σ2

I

σ2
I+σ2

n
(“depth of modulation”). For

κ = 1, Eq. (39) matches the results in [11,12,13]. In addition, we find that the
variance of the non-normalized complex cell, Eq. (33), is proportional to the
square of the expected response,

Var[C(d̃ )] ≈ 16(a + c)2 = 〈C(d̃ )〉2 . (40)

The probability density function can be approximated for a + c ≈ b + d by

PC(C|d̃ ) ≈ 1
4(a + c)

exp
(

− C

4(a + c)

)
=

1
〈C(d̃ )〉

exp
(

− C

〈C(d̃ )〉

)
. (41)

Fig. 2 shows tuning curves for κ = 1 (no noise, σ2
n = 0) and κ = 1

2 (high
noise, σ2

n = σ2
I ). The corresponding probability density functions, calculated

from Eq. (31), are shown in Fig. 3. The maxima at C = 0, d̃/σ ≈ 1.5 correspond
to the minima of the tuning curves in Fig. 2.

Except for very high C-values, it is difficult to recognize d̃ ≈ 0 from the
response of the complex cell. This is due to the fact that the complex cell activity
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also depends on stimulus contrast. As is shown in the next section, this can be
significantly reduced by means of divisive contrast normalization.

2.5 Normalized Complex Cells

In this section we analyze the properties of contrast normalized complex cells.
According to Eq. (6) and (4) the normalized complex cell is computed as

NC =
(Sal + Sar)2 + (Sbl + Sbr)2

(S2
al + S2

ar + S2
bl + S2

br) + ε
=

2(u2
a + u2

b)
(u2

a + v2
a + u2

b + v2
b ) + ε

. (42)

NC ∈ [0, 2] since v2
a + v2

b ≥ 0.
Using the approximation b ± d ≈ a ± c that is valid for exp(−k2σ2) � 1, we

have

Λ̂(d̃ )−1 ≈ 1
a2 − c2 − e2

⎛
⎜⎜⎝

a − c 0 0 e
0 a + c −e 0
0 −e a − c 0
e 0 0 a + c

⎞
⎟⎟⎠ . (43)

Substituting (ua, ub) =
√

w(cos φ, sin φ) and (va, vb) =
√

z(cosψ, sin ψ) the nor-
malized complex cell is given by

NC =
2w

w + z + ε
, (44)

and the corresponding probability function can be calculated according to

PNC (NC | d̃) =
∫ ∞

0

∫ ∞

0
Pwz(w, z) δ

(
NC − 2w

w + z + ε

)
dwdz , (45)

with Pwz(w, z| d̃) =
∫ π

−π

∫ π

−π

1
4
Pu(w, φ, z, ψ)dψdφ (46)

≈ 1
8πA

∫ π

−π

e−
(a−c)w+(a+c)z−2e

√
wz sin φ

2A dφ , (47)

with A := a2−c2−e2. The delta-function in Eq. (45) ensures that the integration
is restricted to the domain where NC − 2w

w+z+ε = 0, Eq. (44).
Using δ(f(x)) =

∑
i |f ′(xi)|−1δ(x−xi), where {xi} are the roots of f , we find

δ
(
NC − 2w

w + z + ε

)
=

2(z + ε)
(2 − NC )2

δ
(
w − NC

2 − NC
(z + ε)

)
, (48)

and the integration over w in Eq. (45) yields, with n := NC
2−NC ,

PNC (NC | d̃ ) ≈ 2
(2 − NC )2

∫ ∞

0
(z + ε)Pwz

(
n(z + ε), z

)
dz

=
e−

(a−c)nε
2A

4π(2 − NC )2A

∫ π

−π

∫ ∞

0
(z + ε)e

2e
√

n(z+ε)z sin φ−((a−c)n+a+c)z

2A dzdφ . (49)

We could not find a way to integrate (49) analytically for ε > 0. However,
with the approximation

√
n(z + ε)z ≈

√
nz, integration over z and φ yields
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Fig. 3. PC(C| d̃ ) for kσ = 2. Because of symmetry, only the range d̃/σ ≥ 0 is shown.
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Fig. 4. Probability density functions of normalized complex cells, Eq. (53) for different
noise levels, κ = 1 ⇐⇒ σ2

n = 0 and κ = 1
2 ⇐⇒ σ2

n = σ2
I

PNC (NC | d̃ ) ≈ e−
(a−c)NCε
2(2−NC )A

2g[NC ]
1
2

( (a + (1 − NC )c)A
g[NC ]

+
ε

2 − NC

)
, (50)

with g[NC ] := (a + (1 − NC )c)2 − e2NC (2 − NC ) . (51)

Eq. (50) is exact for ε = 0, and with κ := σ2
I

σ2
I+σ2

n
we find

PNC (NC | d̃; ε = 0) =
(a2 − c2 − e2)(a + (1 − NC )c)

2
(
(a + (1 − NC )c)2 − e2NC (2 − NC )

) 3
2

(52)

=

(
1 − κ2e−

d̃2

2σ2
)(

1 + κ(1 − NC )e−
d̃2

4σ2 cos(kd̃)
)

2
((

1 + κ(1 − NC )e−
d̃2
4σ2 cos(kd̃)

)2 − κ2NC (2 − NC )e−
d̃2
2σ2 sin2(kd̃)

) 3
2

. (53)

Fig. 4 shows the probability density function described by Eq. (53), again for
kσ = 2. Compared to the non-normalized complex cell (see Fig. 3), there is – at
least for low noise levels (σ2

n � σ2
I ⇐⇒ κ ≈ 1) – a much stronger link between

small disparities and high activity (NC ≈ 2). Thus, if one observes high activity
then there is d̃ ≈ 0 with high probability.

Eq. (53) has simple expressions for the following two cases,

d̃ 
 σ : PNC (NC | d̃ 
 σ; ε = 0) ≈ 1
2

, (54)
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d̃ = 0 : PNC (NC | d̃ = 0; ε = 0) =
1 − κ2

2[1 + κ(1 − NC )]2
. (55)

In the limit of zero noise, i.e. σ2
n → 0, we find

lim
κ→1

PNC (NC | d̃ = 0; ε = 0) = δ(2 − NC ) , (56)

since
∫ 2
0 PNC (NC | d̃ = 0; ε = 0) dNC = 1, and limκ→1 PNC (NC | d̃ = 0; ε = 0) = 0

for 0 ≤ NC < 2.

Tuning Curve and Variance. The tuning curve is given by

〈NC (d̃ )〉 =
∫ 2

0
NC PNC (NC | d̃; ε = 0) dNC = 1 + cos(kd̃)κe−

d̃2

4 σ2 h[κe−
d̃2

4 σ2 ] , (57)

with h[u] :=
1
u2 −

( 1
u3 − 1

u

)
artanh(u) . (58)

Using artanh(u) =
∑∞

k=0
1

2k+1u2k+1, one can show that (for |u| ≤ 1)

h[u] = 1 −
∞∑

k=1

1
2k + 1

(
u2(k−1) − u2k

)
=

∞∑
k=0

( 1
2k + 1

− 1
2k + 3

)
u2k . (59)

Since h[0] = 2
3 ≤ h[u] ≤ h[1] = 1, we obtain

2
3 | cos(kd̃)|κe−

d̃2

4 σ2 ≤ |〈NC (d̃)〉 − 1| ≤ | cos(kd̃)|κe−
d̃2

4 σ2 , (60)

and for |δ| � 2σ the tuning curve can be approximated by

〈NC (d̃)〉 ≈ 1 + cos(kd̃)κe−
d̃2

4 σ2 . (61)

Since 〈C(d̃)〉/〈C(∞)〉 = cos(kd̃)κe−
d̃2

4 σ2 , we find that normalized and non-norma-
lized complex cell have similar tuning curves – as can be seen in Fig. 5. The

approximation 〈NC (d̃)〉 ≈ 1 + 2
3κ cos(kd̃)e−

d̃2

4 σ2 + 1
3κ3 cos(kd̃)e−

3d̃2

4 σ2 has been
obtained using the first three terms in Eq. (59), i.e. h[u] ≈ 2

3 + 1
3u2.

Using

〈NC (d̃)2〉 :=
∫ 2

0
NC 2 PNC (NC | d̃; ε = 0) dNC , (62)

the variance in the response of the non-normalized complex cell is

Var[NC (d̃)] = 〈NC (d̃)2〉 − 〈NC (d̃)〉2 = (1 − κ2e−
d̃2

2 σ2 )H [κ2e−
d̃2

4 σ2 , kd̃)] , (63)

with H [u, v] := (cos2v − sin2v)
1
u2 + sin2v

1
u3 artanh(u) . (64)

One can show that 1
3 (1 − κ2e−

d̃2

2 σ2 ) < Var[NC (d̃)] < 1
3 .
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Fig. 5. Tuning curve 〈NC (d̃)〉 of the normalized complex cell (continuous curve),

Eq. (57), and the approximations 1+κ cos(kd̃)e− d̃2

4 σ2 = 〈C(d̃)〉/〈C(∞)〉 (dash-dotted),

and 1+ 2
3κ cos(kd̃)e− d̃2

4 σ2 + 1
3κ3 cos(kd̃)e− 3d̃2

4 σ2 (dashed), for kσ = 2. The noise levels are
σ2

n = 0 (κ = 1, bold curves) and σ2
n = σ2

I (κ = 1
2 , thin curves). The dash-dotted curves

are identical to the curves in Fig 2. Also shown is the standard deviation (Var[NC (d̃)])
1
2 .

By means of Taylor expansion of artanh(u), we have found a good approxi-

mation, Var[NC (d̃)] ≈ (1 − κ2e−
d̃2

2 σ2 )
(

1
3 + κ2e−

d̃2

2 σ2 [15 sin2(kd̃) + 7
45 cos2(kd̃)]

)
.

Fig. 5 also shows the standard deviation (Var[NC (d̃)])1/2 for zero noise (κ = 1)
and strong noise (σ2

n = σ2
I , κ = 1

2 ). The low variance for small d̃ (and low noise)
enhances the detectability of stimulus disparities D that are close to the neuron’s
preferred disparity d (compare with Fig. 2 and Var[C(d̃)] ≈ 〈C(d̃)〉2).

3 Comparing Analytical Results with Simulations

As a control of the analytically derived results we performed computer simula-
tions with discrete images and applied circular Gabor filters of bandwidth two,
more specifically we set σx = σy = 5/2pixel and k = 2/3 pixel−1. The (separa-
ble) 2D Gabor filters are approximated by two pairs of row and column filters.
The size of these filters is 13 × 1 and 1 × 13 (corresponding to a 13 × 13 filter
mask in 2D), and their elements are integer values. As “stimuli” we used random
dot images consisting of black and white pixels. Disparities were simulated by
shifting the right image with respect to the left image. For each disparity, mean
and standard deviation of complex cells were computed. As can be seen in Fig. 6,
the analytically derived equations fit the data quite well.

4 Discussion, Limitations of the Model

We have shown analytically that simple contrast normalization can greatly en-
hance disparity detection for binocular neurons of the energy type. While the
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Fig. 6. Simulated disparity tuning curves (circles) and standard deviation (crosses) for
non-normalized complex cell (left) and normalized complex cell (right). The continuous
curves show the analytical results, Eqs. (39),(40) and (57),(63) respectively.

“classical” model predicts that the standard deviation is proportional to the
mean firing rate for random-dot stimuli, divisive normalization significantly re-
duces the standard deviation, in particular close to the preferred disparity. The
simple expression for contrast normalization given by Eq. (6) has been chosen
in order to make analytical calculations more convenient. For the same reason,
i.e. to keep the model simple, monocular normalization which is known to play
a major role in gain control [14], was not included. In addition, although we
have taken sensor noise (with constant variance) into account, our model does
not include intrinsic response variability of the disparity tuned neuron. This has
to be considered when comparing the calculated variances to measured data.
Response variances to dynamic random dot stimuli have been reported to be
approximately proportional to the mean firing rate [15,16].

References

1. Ohzawa, I., DeAngelis, G., Freeman, R.: Stereoscopic depth discrimination in the
visual cortex: Neurons ideally suited as disparity detectors. Science 249, 1037–1041
(1990)

2. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion.
J. Opt. Soc. Am. A 2, 284–299 (1985)

3. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for processing binocular
information. I. Simple cells. J. Neurophysiol. 82, 891–908 (1999)

4. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for processing binocular
information. II. Complex cells. J. Neurophysiol. 82, 909–924 (1999)

5. Fleet, D., Heeger, D., Wagner, H.: Modeling binocular neurons in primary visual
cortex. In: Jenkin, M., Harris, L. (eds.) Computational and Biological Mechanisms
of Visual Coding, pp. 103–130. Cambridge University Press, Cambridge (1996)

6. Heeger, D.: Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9,
181–197 (1992)

7. Carandini, M., Heeger, D., Movshon, J.A.: Linearity and normalization in simple
cells of the macaque primary visual cortex. The Journal of Neuroscience 17, 8621–
8644 (1997)



An Analytical Model of Divisive Normalization 787

8. Wainwright, M., Schwartz, O., Simoncelli, E.: Natural image statistics and divisive
normalization: Modeling nonlinearity and adaptation in cortical neurons. In: Rao,
R., Olshausen, B., Lewicki, M. (eds.) Probabilistic Models of the Brain: Perception
and Neural Function, MIT Press, Cambridge (2002)

9. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for encoding binocular
disparity: Receptive field position versus phase. J. Neurophysiol. 82, 874–890 (1999)

10. DeValois, R., DeValois, K.: Spatial Vision. Oxford University Press, Oxford (1988)
11. Zhu, Y., Qian, N.: Binocular receptive field models, disparity tuning, and charac-

teristic disparity. Neural Computation 8, 1611–1641 (1996)
12. Tsai, J., Victor, J.: Reading a population code: a multi-scale neural model for

representing binocular disparity. Vision Research 43, 445–466 (2003)
13. Tanabe, S., Doi, T., Umeda, K., Fujita, I.: Disparity-tuning characteristics of neu-

ronal responses to dynamic random-dot stereograms in macaque visual area V4. J.
Neurophysiol. 94, 2683–2699 (2005)

14. Truchard, A., Ohzawa, I., Freeman, R.: Contrast gain control in the visual cortex:
Monocular versus binocular mechanisms. The Journal of Neuroscience 20, 3017–
3032 (2000)

15. Read, J., Cumming, B.: Testing quantitative models of binocular disparity selec-
tivity in primary visual cortex. J. Neurophysiol. 90, 2795–2817 (2003)

16. Prince, S., Pointon, A., Cumming, B., Parker, A.: Quantitative analysis of the re-
sponses of v1 neurons to horizontal disparity in dynamic random-dot stereograms.
J. Neurophysiol. 87, 191–208 (2002)


	An Analytical Model of Divisive Normalization in Disparity-Tuned Complex Cells
	Introduction to the Binocular Energy Model
	Probability Density Functions for Complex Cells
	Receptive Field Functions of the Position-Shift Type
	Random Dot Stereo Stimuli
	Probability Density Function for the Linear Stage
	Non-normalized Complex Cells
	Normalized Complex Cells

	Comparing Analytical Results with Simulations
	Discussion, Limitations of the Model



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




