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Abstract. This work presents the concept and realisation of the integration of
deliberative and reactive strategies for controlling mobile robot systems. General
motion control at the task-level in a partially known environment is divided into two
consecutive steps: subgoal planning and subgoal-guided plan execution. A modular
fuzzy control scheme is proposed, which allows independent development and flexi-
ble integration of different rule bases, each for fulfilling a certain subtask. An on-line
situation evaluator assigns each rule base a weight according to the importance of
the subtask. In this way, during motion between subgoals, the robot does not move
along a statically planned trajectory but under the control of a sensor-based scheme
guided by subgoals.

1 Introduction

This work aims at integrating sensing, path planning and control so that the
coupling effects of these three components can be taken into account in order
to enhance the performance of the whole system. Planning methods which are
totally separated from sensing and control normally assume that the robot
environment is completely known. Surveys of path planning methods are
given in [3]. Pure geometric path planning in known environments constitutes
a deliberative strategy. The approaches following this strategy normally have
to solve problems of space division/representation, search and complexity
analysis of planning algorithms. By contrast, the reactive strategy regards
path planning as a local feedback control problem. The task of local motion
control is to determine the motion parameters for driving all the actuators
by evaluating the up-to-date sensor information as well as how well a pre-
described path is followed.

If we compare the deliberative strategy with the reactive one, the following
conclusions can be drawn:

— The advantage of the deliberative strategy is mainly its global planning
ability for the whole environment, while the reactive strategy lends itself
to taking into account dynamic aspects of the environment and applying
sensor data directly to determine the robot path.



— However, methods of the deliberative strategy require that a complete
environment model be available. The main disadvantage of the reactive
strategy is the problem of the robot running into dead ends because it
has no road maps and thus behaves rather “short-sightedly”.

Integration of deliberative and reactive strategies will contribute to the
solution of robot motion control in a mixed environment with both known
and unknown objects, i.e. the robot’s environment is only partially known.
Off-line modelling can be realised by using CAD data and by applying sensor
fusion procedures so that static information can be acquired which repre-
sents fixed objects like walls, tables, etc. In the on-line perception phase,
data from a sensory system provide the controller with dynamic feedback
information for avoiding unknown moving objects like pedestrians and other
robots. Therefore, it becomes an interesting problem how to design a con-
trol scheme that can fully utilise on-line sensor feedback as well as a priori
knowledge.

Beyond the numerical approaches, i.e. potential field [1], “intelligent com-
puting methods” like neural networks and fuzzy logic are increasingly applied
in sensing, modelling and robot control. In real environments, exact sensor
data as well as obstacle models are hard to acquire. Usually a feasible, approx-
imate solution has high priority than an optimal, computation-intensive and
noise-sensitive solution. In sensor-based robotics, a domain where human-
beings do much better than robots, modelling and then imitating human
behaviours are especially meaningful. Fuzzy logic control provides an appro-
priate tool for these purposes. Recently, applications of the fuzzy control
range from purely reactive fuzzy controllers, e.g. [6,10], to the mixture of
“behaviours” like single-goal directness and reactive collision-avoidance, e.g.
[7,4]. Our work employs the fuzzy control approach and the modular design
methodology. A general architecture for integration of planning and execu-
tion [2] is based on a supervisor which is situation-driven. Our system fits into
this architecture. By using fuzzy meta-fules, similar concept is summarised
in [7] as context-dependent blending. In our work, we propose the method
of generating subgoals for collision-free motion, and then implementing the
subgoal approaching as an elementary rule base. An on-line situation evalua-
tor determines its priority as well as priorities of other elementary rule bases.
Integration of path planning and sensor-based control is realised by designing
elementary rule bases and correctly blending them.

This paper is organised as follows: section 2 describes plan subgoals and
the selection of sensor data, then introduces the basic idea of the modular
fuzzy control scheme. Planning issues for mobile robot systems are discussed
in section 3. Section 4 describes the design and implementation of the fuzzy
controller and its integration in a control algorithm for subgoal-guided mo-
tion. Section 5 draws some conclusions.



2 The concept for integration

Our idea of integrating the deliberative and reactive control strategies lies
mainly in generating a set of critical points as subgoals, then using them for
globally guiding the robot motion by still leaving some freedom for the plan
executor to react to uncertainties about the dynamics of the environment,
the precision of environmental data and areas about which nothing or little
is known.

2.1 Introduction of subgoals

For applications in a partially known, dynamic environment, the plan execu-
tor does not need a detailed geometric path like an interpolated spline curve
provided by a planner because some of the path positions may have to be
modified anyway due to the unknown static and dynamic obstacles. What is
most useful for the on-line motion control is a set of subgoals, e.g. where the
robot has to change its direction relatively sharply in order to arrive at the
next subgoal position. The main differences between a subgoal and a final
goal are as follows:

— Subgoals are much easier to reach than a final goal;

— The robot should usually move continuously through a subgoal point
while it should stop at a final point;

— A subgoal can be flexibly generated, communicated to the plan executor
and abandoned if necessary;

— Subgoals need not be traversed exactly, where as a final goal is assumed
to be fixed and should be reached exactly.

2.2 Sensor data

In order to develop a robust and flexible on-line robot controller, external and
internal sensor data should be applied directly in each control cycle instead
of being used for building and updating the world model. If sensor data is
coupled with motion control in a simple form, the robot can determine its
reaction in time. The word “situatedness” used by Brooks [9] develops a simi-
lar idea. Simon [8] summarised with the concept of “bounded rationality” the
principle that human-beings often use only incomplete or imprecise knowl-
edge for problem-solving.

Sensor data needed for direct integration into motion control possess the
following features:

— Relativity. These data are mainly derived from the external sensor mea-
surements and their derivatives or the differences between the sensor
values and the internal model. Such a variable is not related to the robot
or sensor alone, but to the interaction between the robot and its environ-
ment.



— Locality. Normally, only part of the environment, which is directly in-
volved in the current robot motion, is perceived by the sensor system.
Each sensor measurement represents one aspect of the object’s features.
No time-costly sensor fusion is performed (sensor data fusion is thus
transformed to task fusion).

— Task-orientation. Modelling and interpretation of the sensor data depend
on the control tasks. Only the control-relevant data are selected, pre-
processed and represented.

2.3 The modular fuzzy control scheme

Conventionally, a pre-planned trajectory is executed by a feedback position
controller, which utilises the sample of the trajectory as the desired value
and the internal position sensor as the true value. With such a controller the
data from the external sensors for acquiring en route information cannot be
integrated into the controller. To solve this problem, we propose the following
control structure for realising subgoal-guided, sensor-based robot motions,
Fig. 1.
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Fig. 1. Integration of subgoal planning and sensor-based plan execution.

Two main rule bases for driving actuators are subgoal approach (SA) and
local collision-avoidance (LCA). Rule base SA is responsible for the smooth
traversing of subgoal points. Rule base LCA should perform the subtask
of avoiding unanticipated local collisions based on external sensor data. In
section 4, the ideas and design procedures of rule bases SA and LCA will be
presented in more detail.



Parallel to the rule bases SA and LCA, further modules can be indepen-
dently designed in the form of rule bases, each for a specified subtask, and
they can be added to the knowledge base of the fuzzy controller. In multi-
robot applications, the commands of other robots, which arrive through a
communication channel, can be viewed as an individual subtask also repre-
sented by a rule base. An example scenario is shown in Fig. 2.

Fig. 2. In order to hand over an object to a manipulator, the mobile robot must
receive coordinating commands from other robots or the central supervision system.

If human-robot interaction is desirable, the linguistic interaction can be
also defined in rule form and integrated into the knowledge base. For example,
a human operator can use spoken instructions, a joystick or special keys of the
keyboard to take over the control of the robot. In this case, priority should
be assigned to each rule base.

To resolve potential conflicts between the output values, the coordination
of the different rule bases becomes very important. Generally, criteria of such
a coordinating action are

— robot-specific, i.e. a robot controller can decide by itself the priority of
each subtask and use it to modify the influence on the outputs of these
rule bases correspondingly;

— situation-dependent, i.e. the priorities of these subtasks are not static and
cannot be assigned in advance; they are dynamically determined by the
situation evaluation.

2.4 The experimental system

The modular fuzzy control scheme has been implemented on a real mobile
robot system Khepera. Khepera is of cylindrical shape with a diameter of
52mm. Additional modules can be mounted on the top of Khepera, e.g. a
gripper and a vision module. The environment is observed by eight IR sensors
(six on the front and two on the back). Khepera uses a Motorola MC68331



micro-controller, whose instruction set is compatible with the well known
MC68020. A RAM size of 128k is available for user programs.

The sensitivity of the IR sensors varies for different objects and is limited
to 5cm. The directly controlled variables are the velocities of the robot’s left
and right wheel, which are denoted by v; and v, respectively. In order to test
robot independent control programs, the robot’s forward speed (Speed) and
steering angle (Steer) are translated to v; and v,.

Since the proximity sensors as well as the controller outputs Speed and
Steer are imprecise, it does not make sense to develop complicated, exact
algorithms to use the sensor data for world modelling and to control the robot
motion with a high resolution. If the control of a mobile robot is compared
with the behaviour of a human, it is easily understood that fuzzy logic rules
emulating the human decision-making process with “IF-THEN” rules can be
applied in the design of such a robot controller.

2.5 Fuzzy logic for sensor-based motion control

The variables of the sensors as well as the control variables can be viewed
as linguistic variables, such as Sensor_Left, Sensor_Right, Speed, Steer. Each
linguistic variable can be covered with overlapping linguistic terms specified
by fuzzy sets, like NB (negative big), NM (negative middle), NS (negative
small), Z (zero), P (positive), PM (positive middle) and PB (positive big).
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(a) The forward speed. (b) The steering angle.

Fig. 3. Mapping sensor data to the control output.

In general, the perception-action relation is a multiple to multiple map-
ping function. To visualise such a relation with a three-dimensional graphic,
we use the following simplified example. Fig. 3 illustrates the procedure of
mapping sensor space to control space. This is an example for tracking the



contour of an object, in which the mappings of the input variables Sen-
sor_Left and Sensor_Right to the output variables Speed and Steer are shown.
The Speed output will be assigned a high value when both IR sensors supply
a low input (no obstacle in vicinity), and a low value otherwise (Fig. 3(a)).
Fig. 3(b) shows the dependency between the IR sensors and the steering an-
gle. Steer will be negative if the right IR sensor reading is high and positive
if the sensor reading is low, but only if the left IR sensor detects no obstacle
on the left side at the same time. In this way the robot follows the contour
of an object in clockwise direction. The linguistic terms of the input and
output variables can be specified with fuzzy sets using triangles, trapezoids,
B-spline basis functions®, or they can be just selected as a crisp value (fuzzy-
singleton). The linguistic terms of variables Speed and Steer in Fig. 4 are
defined by triangular fuzzy sets.
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(a) The forward speed.
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(b) The steering angle.

Fig. 4. Linguistic terms of the two output variables.

! We introduced an approach to model fuzzy sets with B-spline basis functions in
[11].



3 Subgoal planning issues

3.1 Planning with a Tangent-graph

If the robot has approximately circular or square shape, the subgoal planning
problem can be reduced to a 2-D case by representing the robot as a disc
with radius r. Since the dynamic characteristics of the environment make
the exact computation of subgoals unnecessary, only a rather conservative
approximation of the environment is employed.

Obstacles are assumed to be described as polygons. The obstacle data can
be acquired by the data of a building, interactive modelling by CAD system
or later by automatic modelling by laser scanner and vision system. These
obstacles are enlarged by a constant distance r, where r can be the sum of
the robot radius and a safety distance. The robot can be then shrunk to its
reference point. In this procedure, edges and sharp vertices of the polygons are
extended by r and the intersection points are computed as the new vertices
of the enlarged obstacles. After that, planning subgoals consists of finding a
sequence of straight lines which do not intersect with the enlarged obstacles
and which connect the start and goal points with the shortest distance. This
problem can be solved best by searching in a Tangent-graph (T-graph), a
simplified V-graph, [5]. The number of arcs in a T-graph is considerably
reduced by eliminating non-convex edges and non-tangential lines from the
corresponding V-graph. An example of a T-graph is shown in Fig. 5.
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Fig. 5. A T-Graph of enlarged obstacles.

The A* algorithm is used to search for a global route in the T-graph
because it can find the shortest path if such a path exists. The nodes of the
shortest path from a start position S to a goal position G are a sequence of
vertices of the enlarged obstacles. They are viewed as the subgoals for guiding
the global direction of the robot motion and can be represented as a sequence
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3.2 Planning time

Theoretically, the overall computation complexity of the pre-calculation for
constructing a T-graph is on the order of O(n?logn), where n is the number
of vertices of the polygons. In the case of the Khepera robot using highly
optimised fixed point arithmetic instead floating point, we achieve nearly half
the speed of a Sparc 5 workstation. The following table shows the time for the
calculation of V-graph, T-graph and subgoals of three example environments:

|Polygons / Edges| 4 /33[3/13[1/4]
init T-graph 116 ms| 21 ms|18 ms
construct V-graph|16241 ms|591 ms|22 ms

construct T-graph| 289 ms| 44 ms| 5 ms
Subgoal plan 538 ms|284 ms|30 ms

4 Design of a fuzzy controller for plan-execution

This section discusses the design of three typical rule bases by using heuristics
for classes of situations. The tasks of these rule bases are:

1. Approach subgoals supplied by the planner;
2. Avoid local collisions by evaluating sensor data;
3. Evaluate situations to coordinate the tasks 1 and 2.

The Mamdani-type controller is employed in the design since it allows us
to convert heuristics directly into control algorithms.

next subgoal

path segments

Fig. 6. Combination of planning and internal sensory information as inputs.

4.1 Approaching subgoals

The planning level assigns geometric subgoals for collision-free paths. The
geometric distance between a subgoal and the current state, which is esti-
mated by evaluating internal position sensors in the wheels, are be taken as
the information for control. We use two variables d and a that are applied to
decide on the control action to keep a pre-planned path (Fig. 6):



— Variable d: The shortest distance between the robot and the path segment
connecting the previous subgoal and the next one (in the following called
path for short). This linguistic variable d is represented with the following
linguistic terms, each of which is defined by the fuzzy sets shown in
Fig. 7(a):

NB: far off the path to the left;

NM: not too far off the path to the left;
N: slightly off the path to the left;

7Z: almost on the path;

P: slightly off the path to the right;

PM: not too far off the path to the right;
PB: far off the path to the right.

— Variable a: The angular divergence between orientation of the path and
the robot. The following linguistic terms are used (Fig. 7(b)):

NB: driving in the opposite direction, slightly to the left;

NM: direction is totally off the path to the left;

N: direction is slightly off the path to the left;

Z: almost on the path segment;

P: direction is slightly off the path to the right;

PM: direction is totally off the path to the right;

PB: driving in the opposite direction, slightly to the right.

SA generates the following output variables:

— Speed: The speed of the robot.
— Steer: The steering angle, based on the current direction of movement.

By classifying “situations” of the robot’s current position to the path
segment to be tracked, rules for path tracking to the next subgoal can be
developed. In appendix A, 49 rules for “subgoal approaching” are listed. It
is the task of the main control program to verify the current robot position
and to switch to the next path segment.

A typical fuzzy rule of this module looks like this:

IF (d1S N) AND (a IS Z) THEN (Speed IS HIGH) AND (Steer IS P)

Y

which is the fuzzy logic representation of the following heuristic rule: “If the
robot is located slightly to the left of the path but its orientation is almost
on the path, then it must steer slightly to the right at a high speed.”

Fig. 8 shows an example of the trajectory, realised by the fuzzy controller,
to track a sequence of pre-planned path segments. The processing of the 49
rules for Khepera takes only 3 ms.
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Fig. 7. Linguistic terms of two inputs for “subgoal approach”.

4.2 Local collision avoidance

Typically, for local collision avoidance we need to determine the value of five
proximity sensors, e.g. infrared or ultrasonic sensors (left, half-left, front, half-
right and right) if we approximately view the control as a Markov decision
process, i.e. the control action is merely determined by the current sensor
value and not by the historical sensor readings. The LCA rule base tries to
avoid collisions with unknown or dynamic obstacles. By observing the current
values of the five proximity sensors, LCA calculates the speed and steering
angle, which is needed to avoid obstacles. The input variables are?:SL85 SL85,
SL45, SLRO, SR/5, SR85, the current value of the proximity sensors. The
four linguistic terms are based on triangular membership functions, which
have different distances from each other because of the non-linearity of these
Sensors.

— VL: no obstacle in sight;
— LOW: an obstacle is far away;
— HIGH: an obstacle is close;

2 They are referring to the IR sensors arranged at different angles, e.g. “sensor on
the left at angle 85°”.
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Fig. 8. Trajectory of the controller using the rule base “subgoal approach”.

— VH: almost in touch with an obstacle.

The fuzzy rules can be extracted by modelling human experience when
coping with the following situations: “dead end”, “obstacle from right”, “ob-
stacle from left”, “obstacle ahead”, “obstacle from half-left/right”, “no ob-
stacle nearby”.

4.3 Situation evaluation

The rule base “situation evaluation” of the Khepera robot uses the “near-

sighted” proximity sensors as input and generates two output variables: the
priority K and the re-planning selector Replan. The rule base calculates the
priority of each module for all possible situations.

— K: the priority for the LCA rule base, normalised in [0,1]. Each specific
situation is assigned its priority (Fig. 9 (a)):
e VL: no obstacle avoidance, subgoal approach only;
e LOW: put little emphasis on obstacle avoidance, mainly try to ap-
proach subgoal;
e HIGH: mainly obstacle avoidance, slightly try to approach subgoal;
e VH: obstacle avoidance has priority, subgoal approach is irrelevant.
— Replan: decide if a “no-way-out” situation, which requires the path plan-
ning procedure to be invoked once again, is reached. That will be in-
dicated by a high value in Replan (normalised in [0,1]) (Fig. 9 (b)). A
typical case is that the next subgoal is occupied by an obstacle. In this
situation, the robot can only be freed by inhibiting the next subgoal and
planning a new subgoal sequence.
e LOW: no re-planning required;
e HIGH: re-planning required.
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Fig. 9. Linguistic terms for two state variables.

The fused rule bases for local collision avoidance and situation evaluation
are listed in appendix B.
A typical fuzzy rule of this module looks like this:

IF (SL85 IS HIGH) AND (SL45 1S VL) AND (SLROIS VL) AND (SR45 1S
VL) AND (SR85 IS VL) THEN (Speed IS LOW) AND (Steer IS PM) AND
(K IS HIGH) AND (Replan IS LOW)

The interpretation of the above rule is:

“If the leftmost proximity sensor detects an obstacle which is near, and
the other sensors detect no obstacle at all, then steer halfway to the right at
low speed. Mainly perform obstacle avoidance. No re-planning required.”

4.4 Coordinating LCA and SA

Rule bases can be blended analogously to the blending of single control rules.
A meta-rule can be described as:



“IF situation_evaluation IS for_RuleBase; THEN apply RuleBase;”

The coordination of the rule bases LCA and SA is based on the priority
K, see also [4]. The value of K is determined by heuristic rules (see Appendix
B), which are tuned slightly in the experiment to guarantee collision-free
motions as well as correct subgoal approaching. By denoting the Speed and
Steer parameters of both rule bases as Speeds 4, Steers 4 for subgoal approach
and Speedr,c 4 and Steerr,c 4 for local collision avoidance, the effective Speed
and Steer becomes:

Speed = Speedr,ca - K + Speedsa - (1 — K),

Steer = Steerr,ca - K + Steerga - (1 — K).

In general, the situation evaluation considers the sensor information and
provides each rule base with an individual weight. This modular concept can
be extended by adding further control modules which are implemented by
fuzzy rules. Each new subtask receives its rule base which will be added in
the knowledge base of the robot controller. For n rule bases to coordinate,
n priorities, e.g. Ky, K,,..., K, should be set. By classifying different sit-
uations, the dynamic decision for these parameters can be formulated with
fuzzy rules and then integrated in the situation evaluation. The linear rela-
tionship between the priority variable K; (i = 1,...,n) and the m defuzzified
control variables of the n rule bases, y; ; (j = 1,...,m) can be expressed as
follows:

Y;:yl,z"K1+y27i'K2+---+yn,i'Kn wzthzzl,m

where Y; represents the direct value of the ¢-th control variable. In nor-
mal cases, all modular rule bases possess the same control variables. Situa-
tion evaluation will provide values for special control variables for which no
weighting is necessary.

4.5 Implementation

The flow chart of the robot control program is shown in Fig. 10. Experiments
have demonstrated the nice modular features of this concept, Fig. 11. The
rule base SA alone works well for realising its subgoal approaching subtask
in a completely known environment. As expected, the test in a completely
unknown environment with the rule base LCA shows that collisions with
obstacles can be avoided, but the robot can possibly move into a dead-end
or a cycle. In a partially known environment, SA and LCA are coordinated
by the rule base situation evaluation and realise the global subgoal-guided
collision-free motion. In this way, during motion between subgoals, the robot
does not move along a statically planned trajectory but under the control of a
subgoal-guided, sensor-based controller. On-line sensor data can be evaluated
to detect local collisions and the motion control is adapted to the dynamic
environment.
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Fig. 10. Flow chart for integrating “subgoal planning” and “local collision avoid-
ance”.

Fig. 12 shows the subgoal approach in a completely known environment.
The robot follows a pre-planned subgoal segments and keeps adequate dis-
tance at the two vertices (here two subgoals) with the help of the local control.

Fig. 13 shows the same environment as in Fig. 12 with an unknown ob-
stacle, which blocks the robot’s movement to the first subgoal. The robot
drives around the side where most free space is available and at the same
time moves to the second subgoal because, after avoiding the obstacle, the
first subgoal has already been passed by.

In Fig. 14 the robot is on its direct path to the goal from bottom to top. In
Fig. 14(a), a dynamic obstacle is crossing the robot’s path. The trajectories 1,
2, 3 and 4 correspond the test cases, in which an unanticipated obstacle moves
with 10%, 25%, 50% and 90% of the robot’s maximum speed. Trajectory 4



Fig.11. A test environment.

Fig. 12. Subgoal approaching in a known environment.

becomes straight again since the obstacle has already crossed the path before
the robot arrives. Curves 1, 2, 3, 4, 5 in Fig. 14(b) correspond to the robot
trajectory when the moving object moves head on to the robot or with a
deviation of 20, 40, 60, and 80 degrees.

5 Conclusions

The fuzzy control scheme is used for executing subgoal-guided motions. Fuzzy
rule bases, e.g. for local collision-avoidance, can work together with the rule
base for passing through subgoals, each of which with only a limited number
of control rules. The main advantages of using fuzzy control for mobile robots
can be summarised as follows:

Modularity. Fuzzy control is intrinsically modular: a rule base is generated
by elaborating each single rule, which has a linguistic interpretation and
its own control function. The order of these rules is does not make a
difference, both during controller design and rule evaluation. If we regard
a rule base performing a certain subtask as a separate module, it is easy



Fig. 13. Subgoal approaching with an unknown obstacle.
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Fig. 14. Collision-avoidance with a dynamic obstacle.

to understand that different rule bases can be developed independently
and then evaluated together for realising a high-level task.

Efficiency. The modular design enables a significant reduction of develop-

ment time, which is achieved by simple design of a single rule base, rapid
prototyping and efficient debugging. Further fuzzy rule bases, such as for
dealing with the commands from other robots or a human user, can be
separately developed by using either heuristics or training. Thanks to
the simple computation and the possibility of parallel processing of fuzzy
rules, fuzzy controllers can run in real-time with moderate computing
power requirements.

Transparency. Since the sensor-based robot control strategy takes advan-

tages of the heuristics of human experience, the control procedure is still
transparent, which is an important property of the intelligent control phi-
losophy. The transparent mapping from input space to action contributes
to solving: a) the skill transfer from human experts to robots; b) the anal-
ysis and validation of the controller development; c¢) supervision of the
learning process.

Low-cost. The fuzzy control concept utilises the sensor data qualitatively

rather than quantitatively. Imprecise data like infra-read sensor readings
and low-resolution gray-level camera images can be applied efficiently.



Based on simple, intuitive control rules, tracking of a pre-planned path
is not very exact. However, precise path tracking in a partially known
environment is not necessary at all.

Adaptability. By selecting a special type of fuzzy controller, e.g. the B-
spline type and designing appropriate learning algorithms, the robot con-
troller can be self-optimised or even totally trained automatically.

The limitations of the applied approach are:

— The real-time subgoal planning is only possible for a robot whose shape
is approximately circular or square like. If obstacles in the robot’s envi-
ronment are not sparsely distributed and rotation of the robot is needed
to cross some tight passages, the two-dimensional T-graph will no longer
be adequate for subgoal planning. In such cases, the three-dimensional
configuration space will be needed. Unfortunately, fast computation of
subgoals realised in this work cannot be guaranteed in general with the
current on-board computers.

— To correctly develop fuzzy rules, all possible situations should be taken
into account. On-line tuning of membership functions needs a lot of “trial-
and-error” procedures. Automatic evolution of fuzzy control rules and
on-line self-tuning of membership functions based on B-splines can con-
tribute to solving the problem (which is our current work [13,14]).

— The number of proximity sensors applied in our experiment is small. If
multiple sensors and/or vision systems are used, the “curse of dimension-
ality” will occur since the number of complete rules in a fuzzy controller
grows exponentially with the number of controller inputs. Automatic in-
put and feature selection becomes a necessity. Another focus of our cur-
rent work is to combine techniques of dimension reduction like “principal
component analysis”, “output-related features”, to make the use of fuzzy
control approach for complex sensor patterns possible and easier, [12].
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A Appendix A - Rule Base SA (Subgoal Approach)

Rules for tracing the path and approach the next subgoal, with

a = angle between the orientation of the robot and the planned path seg-
ment, and

d = shortest distance between path and robot.

Tnput_ | Output
d__a |Steer speed
Completely off the path on the left side

NB NB| PB LOW
NB NM| PB LOW
NB N |PM LOW
NB Z |PM HIGH
NB P | P HIGH
NB PM| Z VH
NB PB| N HIGH
Far away on the Ieft side
NM NB| PB LOW
NM NM| PB LOW
NM N |PM LOW
NM 7 | PM HIGH
NM P | P HIGH
NM PM| Z HIGH
NM PB| N HIGH
Slightly left of the path

N NB| PB oW
N NM| PB LOW
N N |[PM HIGH
N z| P HIGH
N P| z VH
N PM| N HIGH
N PB|NB LOW
Almost on the path

Z NB| PB LOW
Z NM|PM LOW
z N| P HIGH
z 7| z VH
Z P | N HIGH
7Z PM|NM LOW
7Z PB|NB LOW
Slightly right of the path

P NB| PB oW
P NM| P HIGH
P N| z VH
P zZ| N HIGH
P P |NM HIGH
P PM| NB LOW
P PB|NB LOW
Far away on the right side
PM NB| P HIGH
PM NM| Z HIGH
PM N | N HIGH
PM Z |NM HIGH
PM P [NM LOW
PM PM| NB LOW
PM PB| NB LOW
Completely off the path on the right side
PB NB| P HIGH
PB NM| 7 VH
PB N | N HIGH
PB 7 |NM HIGH
PB P |NM LOW
PB PM| NB LOW
PB PB| NB LOW




B Appendix B - Rule Base LCA (Local Collision
Avoidance) and SE (Situation Evaluation)

Input [LCA output] SE output
SL85_SL45 SLRO SR45 SR8b| Sp.  St. | K Repl.
Dead end situation. Requires re-planning.
VH VH E VH VH | VL Z VH HIGH
HIGH VH VH VH VH | VL Z VH HIGH
VH HIGH VH VH VH | VL z VH HIGH
VH VH VH HIGH VH | VL z VH HIGH
VH VH VH VH HIGH| VL z VH HIGH
HIGH HIGH VH VH VH | VL z VH HIGH
VH HIGH HIGH VH VH | VL z VH HIGH
VH VH HIGH HIGH VH | VL Z VH HIGH
VH VH VH HIGH HIGH| VL Z VH HIGH

Collision avoidance in free space - Obstacle from right
VL VL VL VL LOW |HIGH N LOW LOW
VL VL VL., LOW LOW|LOW NM |LOW LOW
VL VL., LOW LOW LOW|LOW NB |HIGH LOW
VL. LOW LOW LOW LOW|LOW NB |HIGH LOW
VL VL VL VL. HIGH|LOW NM |HIGH LOW
VL VL VL. LOW HIGH| VL NB (HIGH LOW

VL VL LOW LOW HIGH| VL NB VH LOW
VL VL VL HIGH HIGH| VL NB VH LOW
VL VL HIGH HIGH HIGH| VL NB VH LOW
VL VL VL VL VH VL NB VH LOW
VL VL VL LOW VH VL NB VH LOW
VL VL VL. HIGH VH VL NB VH LOW
VL VL. LOW HIGH VH VL NB VH LOW
VL. LOW HIGH HIGH VH VL NB VH LOW
VL VL VL VH VH VL NB VH LOW
VL VL. LOW VH VH VL NB VH LOW
VL VL VH VH VH VL NB VH LOW
VL LOW VH VH VH VL NB VH LOW
LOW HIGH VH VH VH VL NB VH LOW

Collision avoidance in free space - Obstacle from left

LOW VL VL VL VL |HIGH P LOW LOW
LOW LOW VL VL VL |LOW PM |LOW LOW
LOW LOW LOW VL VL |LOW PB |HIGH LOW
LOW LOW LOW LOW VL |LOW PB |HIGH LOW
HIGH VL VL VL VL |LOW PM |HIGH LOW
HIGH LOW VL VL VL VL PB |HIGH LOW

HIGH LOW LOW VL VL VL PB VH LOW
HIGH HIGH VL VL VL VL PB VH LOW
HIGH HIGH HIGH VL VL VL PB VH LOW
VH VL VL VL VL VL PB VH LOW
VH LOW VL VL VL VL PB VH LOW
VH HIGH VL VL VL VL PB VH LOW
VH HIGH LOW VL VL VL PB VH LOW
VH HIGH HIGH LOW VL VL PB VH LOW
VH VH VL VL VL VL PB VH LOW
VH VH LOW VL VL VL PB VH LOW
VH VH VH VL VL VL PB VH LOW
VH VH VH LOW VL VL PB VH LOW
VH VH VH HIGH LOW| VL PB VH LOW

Avoiding direct collision with obstacle ahead
VL VL. LOW VL VL |LOW Z HIGH LOW

VL VL HIGH VL VL | VL Z VH LOW
VL VL VH VL VL | VL PB | VH LOW
VL LOW HIGH LOW VL |LOW 2z VH LOW
VI HIGH HIGH HIGH VL | VL Z VH LOW
VL HIGH VH HIGH VL | VL PB | VH LOW
VL VH VH VH VL | VL PB | VH LOW

Avoiding direct collision with obstacle from half-left /right
VI, LOW HIGH VI, VL |LOW PM | VH LOW
VL LOW VH VL VL | VL PB | VH LOW
VL LOW LOW VL VL |LOW PM |HIGH LOW
VL HIGH VH VL VL | VL PB | VH LOW
VL VH HIGH VL VL | VL PB | VH LOW
VL VH VH VL VL | VL PB | VH LOW

LOW HIGH HIGH LOW VL | VL PB | VH LOW

HIGH VH HIGH VL VL | VL PB | VH LOW

HIGH VH VH LOW VL | VL PB | VH LOW

HIGH VH VH HIGH VL | VL PB | VH LOW

HIGH VH VH HIGH LOW| VL PB | VH LOW
VL VL HIGH LOW VL |LOW NM | VH LOW
VL VL VH LOW VL | VL NB | VH LOW
VL VL LOW LOW VL |LOW NM |HIGH LOW
VL VL VH HIGH VL | VL NB | VH LOW
VL VL HIGH VH VL | VL NB | VH LOW
VL VL VH VH VL | VL NB | VH LOW
VL. LOW HIGH HIGH LOW| VL. NB | VH LOW
VL VL HIGH VH HIGH| VL. NB | VH LOW
VL LOW VH VH HIGH| VL. NB | VH LOW
VL HIGH VH VH HIGH| VL. NB | VH LOW

LOW HIGH VH VH HIGH| VL NB | VH LOW

No obstacle in vicinity
VL VL VL VL VL [ VH 7z [ VL TL.OW




