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Abstract

The philosophy, architecture, and capabilities of the COntinuous Reachability Analyzer
(CORA) are presented. CORA is a toolbox that integrates various vector and matrix set rep-
resentations and operations on them as well as reachability algorithms of various dynamic
system classes. The software is designed such that set representations can be exchanged
without having to modify the code for reachability analysis. CORA has a modular design,
making it possible to use the capabilities of the various set representations for other purposes
besides reachability analysis. The toolbox is designed using the object oriented paradigm,
such that users can safely use methods without concerning themselves with detailed infor-
mation hidden inside the object. Since the toolbox is written in MATLAB, the installation
and use is platform independent.

1 Philosophy and Architecture

The COntinuous Reachability Analyzer (CORA is a MATLAB toolbox for prototype design
of algorithms for reachability analysis. The toolbox is designed for various kinds of systems with
purely continuous dynamics (linear systems, nonlinear systems, differential-algebraic systems,
parameter-varying systems, etc.) and hybrid dynamics combining the aforementioned continuous
dynamics with discrete dynamics. Let us denote the continuous part of the solution of a hybrid
system for a given initial discrete state by x(t;zo,u(-),p), where ¢t € R is the time, xg € R" is
the continuous initial state, u(t) € R™ is the system input at ¢, u(-) is the input trajectory, and
p € RP is a parameter vector. The continuous reachable set at time ¢ = r can be defined for a
set of initial states Xp, a set of input values U(t), and a set of parameter values P, as

RE(r) = {X(T;xom(-),p) € R"|zg € Xo,Vt : u(t) €U(t),p € 7?}.

CORA solely supports over-approximative computation of reachable sets since (a) exact reach-
able sets cannot be computed for most system classes [I] and (b) over-approximative computa-
tions qualify for formal verification. Thus, CORA computes over-approximations for particular
points in time R(t) 2 R*(t) and for time intervals: R([to,tf]) = Ute[to,tf] R(t).

CORA is built with the aim to construct one’s own reachable set computation in a short amount
of time. This is achieved by the following design choices:

e CORA is built for MATLAB, which is a script-based programming environment. Since the
code does not have to be compiled, one can stop the program at any time and directly see
the current values of variables. This makes it especially easy to understand the workings
of the code and to debug new code.

e CORA is an object-oriented toolbox that uses modularity, operator overloading, inheri-
tance, and information hiding. One can safely use existing classes and just adapt classes
one is interested in without redesigning the whole code. Operator overloading makes it
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possible to write formulas that look almost identical to the ones derived in scientific papers
and thus reduce programming errors. Most of the information for each class is hidden and
is not relevant to users of the toolbox. Most classes use identical methods so that set
representations and dynamic systems can be effortlessly replaced.

e CORA interfaces with the established toolboxes MPTE and INTLABE, which are also
written in MATLAB. Results of CORA can be easily transferred to those toolboxes and
vice versa. Please note that not all functionalities have yet been ported to version 3 of the
MPT so that MPT2 should be used. The next CORA release will work with MPT3.

Since this text focuses on the presentation of the capabilities of CORA, no other tools for
reachability analysis of continuous and hybrid systems are reviewed. A list of related tools is
presented in [2].

2 Installation

The software does not require any installation, except that the path for CORA has to be set in
MATLAB. Besides CORA, the following toolboxes have to be downloaded and included in the
MATLAB path:

e Multi-Parametric Toolbox QH (MPT toolbox), which is designed for parametric optimiza-
tion, computational geometry and model predictive control. CORA only uses the compu-
tational geometry capabilities for polytopes. The MPT toolbox is free software provided
by ETH Ziirich.

o INTLABH is a MATLAB toolbox for inteval and affine arithmatic. Interval arithmatic
is promarily used in CORA to obtain over-approximate bounds for the abstraction error
computation, e.g. from nonlinear to linear systems. The tool requires to run startintlab
for an initial installation. It is developed by the Hamburg University of Technology and
used to be a free tool. In the long run, we try to avoid the connection with INTLAB since
it is not free anymore. If you use an older, free version, you might experience problems
with the latest MATLAB versions. Strangely, we could fix some issues by rearranging the
order of the include path in MATLAB.

CORA also requires the symbolic math toolbox in MATLAB.

2.1 Architecture

The architecture of CORA can essentially be grouped into the following parts based on a sepa-
ration of concerns as presented in Fig. [[] using UMIL: Classes for set representations (Sec. B,
classes for matrix set representations (Sec. HI), classes for the analysis of continuous dynamics
(Sec. B), classes for the analysis of hybrid dynamics (Sec. [6]), and a class for the partitioning of
the state space (Sec. [).

The class diagram in Fig. [[l shows that hybrid systems (class hybridAutomaton) consists of sev-
eral instances of the location class. Each location object has a continuous dynamics (classes
inheriting from contDynamics), several transitions (class transition), and a set representation
(classes inheriting from contSet) to describe the invariant of the location. Each transition has
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Figure 1: Unified Modeling Language (UML) class diagram of CORA 2015.

a set representation to describe the guard set enabling a transition to the next discrete state.

More details on the semantics of those components can be found in Sec. [6l

Note that some classes subsume the functionality of other classes.
differential-algebraic systems (class nonlinDASys) are a generalization of nonlinear systems
(class nonlinearSys). The reason why less general systems are not removed is because for
those systems very efficient algorithms exist that are not applicable to more general systems.

3 Set Representations and Operations

The basis of any efficient reachability analysis is an appropriate set representation. On the one
hand, the set representation should be general enough to describe the reachable sets accurately,
on the other hand, it is crucial that the set representation makes it possible to run efficient and
scalable operations on them. CORA provides a palette of set representations as depicted in

Fig. Bl which also shows conversions supported between set representations.

Important op

erations for sets are:

For instance, nonlinear
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Figure 2: Set conversions supported. Solid arrows represent exact conversions, while dashed
arrows represent over-approximative conversions. The arrows are labeled by the corresponding
method to carry out the conversion.

e display: Displays the parameters of the set in the MATLAB workspace.
e plot: Plots a two-dimensional projection of a set in the current MATLAB figure.

e mtimes: Overloads the '*’ operator for the multiplication of various objects with a set.
For instance if M is a matrix of proper dimension and Z is a zonotope, M * Z returns the
linear map {Mz|z € Z}.

e plus: Overloads the '+’ operator for the addition of various objects with a set. For
instance if Z1 and Z2 are zonotopes of proper dimension, Z1 + Z2 returns the Minkowsi
sum {z +y|lz € Z1,y € Z2}.

e intervalhull: Returns an interval hull that encloses the set (see Sec. 3.0]).

3.1 Zonotopes

A zonotope is a geometric object in R™. Zonotopes are parameterized by a center ¢ € R™ and
generators ¢(9 € R™ and defined as

p
zZ = {C + Zﬁz‘g(i)
i=1

We write in short Z2 = (c,g(l), e ,g(p)). A zonotope can be interpreted as the Minkowski
addition of line segments () = -1, 1]g(i), and is visualized step-by-step in a two-dimensional
vector space in Fig. [3l Zonotopes are a compact way of representing sets in high dimensions.
More importantly, operations required for reachability analysis, such as linear maps M ® Z :=
{Mz|z € Z} (M € R?*"™) and Minkowski addition 2y ® Z5 := {21 + 22|21 € 21,29 € Z5} can

Bie[-11), ce R, g e R"}. (1)
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be computed efficiently and exactly, and others such as convex hull computation can be tightly
over-approximated [3].
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Figure 3: Step-by-step construction of a zonotope.

We support the following methods for zonotopes:

cartesianProduct — returns the Cartesian product of two zonotopes.
center — returns the center of the zonotope.
deleteZeros — deletes generators whose entries are all zero.

dim — returns the dimension of a zonotope in the sense that the rank of the generator
matrix is computed.

display — standard method, see Sec. Bl

enclose — generates a zonotope that encloses two zonotopes of equal dimension according
to [4, Equation 2.2 + subsequent extension].

enlarge — enlarges the generators of a zonotope by a vector of factors for each dimension.

exactPolytope — returns an exact polytope in halfspace representation according to [4,
Theorem 2.1].

inParallelotope — checks if a zonotope is a subset of a parallelotope, where the latter is
represented as a zonotope.

intervalhull — standard method, see Sec. Bl More details can be found in [4, Proposition
2.2].

mtimes — standard method, see Sec. Bl More details can be found in Sec. B.I.1l
plot — standard method, see Sec. Bl More details can be found in Sec. B.8l
plus — standard method, see Sec. Bl More details can be found in Sec.

polytope — returns an over-approximating polytope in halfspace representation according
to heuristics as proposed in [4 Sec. 2.5.6.].

project — returns a zonotope, which is the projection of the input argument onto the
specified dimensions.

quadraticMultiplication — given a zonotope Z and a discrete set of matrices Q) €
R™ " for i = 1...n, quadraticMultiplication computes {¢|p; = 27QWz, x € Z} as
described in [5, Lemma 1].

randPoint — generates a random point within a zonotope.

reduce — returns an over-approximating zonotope with fewer generators as detailed in Sec.
5, 1.0
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e split — splits a zonotope into two or more zonotopes that enclose the original zonotope.
More details can be found in Sec. B.1.4l

e underapproximate —returns the vertices of an under-approximation. The under-approximation
is computed by finding the vertices that are extreme in the direction of a set of vectors,
stored in the matrix S. If S is not specified, it is constructed by the vectors spanning an
over-approximative parallelotope.

e vertices — returns a vertices object including all vertices of the zonotope (Warning:
high computational complexity).

e volume — computes the volume of a zonotope according to [6, p.40].

e zonotope — constructor of the class.

3.1.1 Method mtimes

Table [l lists the classes that can be multiplied with a zonotope. Please note that the order plays
a role and that the zonotope has to be on the right side of the >*°’ operator.

Table 1: Classes that can be multiplied with a zonotope.

class reference literature
MATLAB matrix - -

intval INTLAB class  [7]
intervalMatrix  Sec. [4, Theorem 3.3]
matZonotope Sec. [8, Sec. 4.4.1]

3.1.2 Method plus

Table [2] lists the classes that can be added to a zonotope. Other than for multiplication, the
zonotope can be on both sides of the >+’ operator.

Table 2: Classes that can be added to a zonotope.

class reference literature
MATLAB vector - -
zonotope Sec. 311 [4, Equation 2.1]

3.1.3 Method reduce

The zonotope reduction returns an over-approximating zonotope with less generators as de-
scribed in [4, Proposition 2.5]. Table Bl lists some of the implemented reduction techniques. The
standard reduction technique is >girard’.

3.1.4 Method split

The ultimate goal is to compute the reachable set of a single point in time or time interval
with a single set representation. However, reachability analysis often requires abstractions of
the original dynamics, which might become inaccurate for large reachable sets. In that event
it can be useful to split the reachable set and continue with two or more set representations
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Table 3: Reduction techniques for zonotopes.

reduction technique primary use literature
girard Reduction of high to medium order [3 Sec. 3.4]
MethA Reduction to parallelotope Method A in [4, Sec. 2.5.5]
MethB Reduction to parallelotope Method B in [4, Sec. 2.5.5]
MethC Reduction to parallelotope Method C in [4, Sec. 2.5.5]

for the same point in time or time interval. Zonotopes are not closed under intersection, and
thus not under splits. Several options as listed in Table @] can be selected to optimize the split
performance.

Table 4: Split techniques for zonotopes.

split technique comment literature
splitOneGen splits one generator NEEDS RENAMING! [4, Proposition 3.8]
directionSplit splits all generators in one direction —
directionSplitBundle exact split using zonotope bundles [9, Section V.A]

3.1.5 Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

Z1 = zonotope([1 1 1
72 zonotope ([
A= [0.51; 10

; 1 -1 1]); % create zonotope Z1
1 0;, 1 0 1]); % create zonotope 72

-1
.5]; % numerical matrix A

723 = 721 + 7Z2; % Minkowski addition
Z4 = AxZ3; % linear map

figure

plot (21, [1 2],'b"); % plot Z1 in blue

plot (Z22,[1 2],’g’); % plot Z2 in green

plot (23, [1 21,"'x"); % plot Z3 in red

plot (24, [1 2]1,"k"); % plot Z4 in black

P = exactPolytope(Z4) % convert to and display halfspace representation

IH = intervalhull (Z4) % convert to and display intervah hull

figure
plot (Z24); % plot 74
plot (IH, [1 2],’g"); % plot intervalhull in green

This produces the workspace output

Normalized, minimal representation polytope in R"2
H: [8x2 double]
K: [8x1 doublel
normal: 1
minrep: 1
xCheb: [2x1 double]
RCheb: 1.4142
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[ 0.70711 0.70711] [ 6.364]
[ 0.70711 -0.70711] [ 2.1213]
[ 0.89443 -0.44721] [ 3.3541]
[ 0.44721 -0.89443] [ 2.0125]
[-0.70711 -0.70711] x <= [ 2.1213]
[-0.70711 0.70711] [0.70711]
[-0.89443 0.44721] [0.67082]
[-0.44721 0.89443] [ 2.0125]
Intervals:

[-1.5,5.5]

[-2.5,4.5]

The plots generated in lines 9-12 are shown in Fig. [ and the ones generated in lines 18-19 are
shown in Fig.

4 4t
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Figure 4: Zonotopes generated in lines 9-12 Figure 5: Sets generated in lines 18-19 of
of the zonotope example in Sec. the zonotope example in Sec.

3.2 Zonotope Bundles

A disadvantage of zonotopes is that they are not closed under intersection, i.e., the intersection
of two zonotopes does not return a zonotope in general. In order to overcome this disadvantage,
zonotope bundles are introduced in [9]. Given a finite set of zonotopes Z;, a zonotope bundle is
Z" =(;_, Zi, i.e. the intersection of zonotopes Z;. Note that the intersection is not computed,
but the zonotopes Z; are stored in a list, which we write as 20 = {Z,..., Z,}".

We support the following methods for zonotope bundles:
e and — returns the intersection with a zonotope bundle or a zonotope.
e display — standard method, see Sec. Bl

e enclose — generates a zonotope bundle that encloses two zonotopes bundles of equal
dimension according to [9, Proposition 5].

e encloseTight — generates a zonotope bundle that encloses two zonotopes bundles in a
possibly tighter way than enclose as outlined in [9], Sec. VI.A].



© 00 N O Utk W N

SET REPRESENTATIONS AND OPERATIONS

enlarge — enlarges the generators of each zonotope in the bundle by a vector of factors
for each dimension.

exactPolytope — returns an exact polytope in halfspace representation. Each zonotope is
converted to halfspace representation according to [4, Theorem 2.1] and later all obtained
H polytopes are intersected.

intervalhull — standard method, see Sec. Bl More details can be found in [9], Proposition
6].

mtimes — standard method, see Sec. Bl More details can be found in [9 Proposition 1].
plot — standard method, see Sec. Bl More details can be found in Sec. B8l
plus — standard method, see Sec. Bl More details can be found in [9, Proposition 2].

polytope — returns an over-approximating polytope in halfspace representation. For each
zonotope the method polytope of the class zonotope in Sec. B.lis called.

project — returns a zonotope bundle, which is the projection of the input argument onto
the specified dimensions.

reduce — returns an over-approximating zonotope bundle with less generators. For each
zonotope the method reduce of the class zonotope in Sec. Blis called.

reduceCombined — reduces the order of a zonotope bundle by not reducing each zonotope
separately as in reduce, but in a combined fashion.

shrink — shrinks the size of individual zonotopes by explicitly computing the intersection
of individual zonotopes; however, in total, the size of the zonotope bundle will increase.
This step is important when individual zonotopes are large, but the zonotope bundles
represents a small set. In this setting, the over-approximations of some operations, such
as mtimes might become too over-approximative. Although shrink initially increases the
size of the zonotope bundle, subsequent operations are less over-approximative since the
individual zonotopes have been shrunk.

split — splits a zonotope bundle into two or more zonotopes bundles. Other than for
zonotopes, the split is exact. The method can split halfway in a particular direction or
given a separating hyperplane.

volume — computes the volume of a zonotope bundle by converting it to a polytope using
exactPolytope and using a volume computation for polytopes.

zonotopeBundle — constructor of the class.

3.2.1 Zonotope Bundle Example

The following MATLAB code demonstrates some of the introduced methods:

Z{1l} = zonotope([1l 1 1; 1 -1 1]); % create zonotope 7Z1l;
Z{2} = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2;

Zb = zonotopeBundle(Z); % instantiate zonotope bundle from 71, 72
vol = volume (Zb) % compute and display volume of zonotope bundle
figure
plot (Z21); % plot 2zl
plot (Z22); % plot 72

]

[

7
plot (Zb, [1 2]1,’gray’); % plot Zb in gray (filled)
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This produces the workspace output

vol =

1.0000

The plot generated in lines 7-9 is shown in Fig. [

_l 1 1 1 1 1 1 1 1 1 J
-2 -15 -1 -05 0 05 1 15 2 25 3
L1

Figure 6: Sets generated in lines 7-9 of the zonotope bundle example in Sec. B.2.11

3.3 Polynomial Zonotopes

Zonotopes are a very efficient representation for reachability analysis of linear systems [3] and of
nonlinear systems that can be well abstracted by linear differential inclusions [4]. However, more
advanced techniques, such as in [I0], abstract more accurately to nonlinear difference inclusions.
As a consequence, linear maps of reachable sets are replaced by nonlinear maps. Zonotopes are
not closed under nonlinear maps and are not particularly good at over-approximating them. For
this reason, polynomial zonotopes are introduced in [I0]. Polynomial zonotopes are a new non-
convex set representation and can be efficiently stored and manipulated. The new representation
shares many similarities with Taylor models [I1] (as briefly discussed later) and is a generalization
of zonotopes.

Given a starting point ¢ € R™, multi-indexed generators f(il7:%-m) ¢ R7 and single-indexed
generators g € R", a polynomial zonotope is defined as

p p P p P p
PZ =dc+ 5.f([1]d + 5.5 f([2]7j,k‘) + BiBr - Bm f([n],j,k,...,m)

n factors
q .
+> gt
=1

The scalars 3; are called dependent factors, since changing their values does not only affect the
multiplication with one generator, but with other generators too. On the other hand, the scalars
~; only affect the multiplication with one generator, so they are called independent factors. The
number of dependent factors is p, the number of independent factors is ¢, and the polynomial
order 7 is the maximum power of the scalar factors ;. The order of a polynomial zonotope is
defined as the number of generators ¢ divided by the dimension, which is p = % For a concise

Bisi € [—1,1]}- (2)

10
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notation and later derivations, we introduce the matrices

Bl = [y f([i]’p’p""’p)j] (all indices are the same value),

=:e(li,1) =:e(lil,p)

Pl = (L0012 p(@.10018) (@11 1p)
pULL22) p([l01028) (L e200)

fUELL-33) 1 (ot all indices are the same value),
G=lgV ... 4]
and £ = [Em E[”]], F = [F[Q] F[”]] (Fl1 is only defined for i > 2). Note that the

indices in F[! are ascending due to the nested summations in @). In short form, a polynomial
zonotope is written as PZ = (¢, E, F, G).

For a given polynomial order 4, the total number of generators in Ell and FI¥ is derived using
the number (p +§_1) of combinations of the scalar factors § with replacement (i.e. the same factor
can be used again). Adding the numbers for all polynomial orders and adding the number of
independent generators ¢, results in & = Y7 | (p+§_1) + ¢ generators, which is in O(p") with
respect to p. The non-convex shape of a polynomial zonotope with polynomial order 2 is shown

in Fig. [

3
polynomial zonotope 1 0
— n_ |~
9 £ — PZ=(0,E,F,G) E { 0 0.5}
1 1
2l —
o 1 E {0.5 0.3}
0 1
0.3
1 -1
0 2 4
Tl

Figure 7: Over-approximative plot of a polynomial zonotope as specified in the figure. Random
samples of possible values demonstrate the accuracy of the over-approximative plot.

So far, polynomial zonotopes are only implemented up to polynomial order n = 2 so that the
subsequent class is called quadZonotope due to the quadratic polynomial order. We support
the following methods for the quadZonotope class:

e cartesianProduct — returns the Cartesian product of a quadZonotope and a zonotope.
e center — returns the starting point c.
e display — standard method, see Sec. Bl

e enclose — generates an over-approximative quadZonotope that encloses two quadZonotopes
of equal dimension by first over-approximating them by zonotopes and subsequently ap-
plying enclose of the zonotope class.

e generators — returns the generators of a quadZonotope.

e intervalhull — standard method, see Sec. Bl The interval hull is obtained by over-

approximating the quadZonotope by a zonotope and subsequent application of its intervalhull

method. Other than for the zonotope class, the generated interval hull is not tight in the
sense that it touches the quadZonotope.

11
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e intervalhullAccurate — over-approximates a quadZonotope by a tighter interval hull as
when applying intervalhull. The procedure is based on splitting the quadZonotope in
parts that can be more faithfully over-approximated by interval hulls. The union of the
partially obtained interval hulls constitutes the result.

e mtimes — standard method, see Sec. Bl as stated in [9, Equation 14] for numeric matrix
multiplication. As described in Sec. B.IT] the multiplication of interval matrices is also
supported, whereas the implementation for matrix zonotopes is not yet implemented.

e plot — standard method, see Sec. Bl More details can be found in Sec. B8]

e plus — standard method, see Sec. Bl Addition is realized for quadZonotope objects with
MATLAB vectors, zonotope objects, and quadZonotope objects.

e pointSet — computes a user-defined number of random points within the quadZonotope.

e pointSetExtreme — computes a user-defined number of random points when only allowing
the values {—1,1} for B;,7; (see [@)).

e polytope — returns an over-approximating polytope in halfspace representation by first
over-approximating by a zonotope object and subsequently applying its polytope method.

e project — returns a quadZonotope, which is the projection of the input argument onto
the specified dimensions.

e quadraticMultiplication - given a quadZonotope Z and a discrete set of matrices Q1) €
R™ " for i = 1...n, quadraticMultiplication computes {p|¢; = 27 QWz, z € Z} as
described in [10, Corollary 1].

e quadZonotope — constructor of the class.
e randPoint — computes a random point within the quadZonotope.

e randPointExtreme — computes a random point when only allowing the values {—1,1} for
Bi, i (see @)).
e reduce — returns an over-approximating quadZonotope with less generators as detailed in

Sec. 3311

e splitLongestGen — splits the longest generator factor and returns two quadZonotope
objects whose union encloses the original quadZonotope object.

e splitOneGen — splits one generator factor and returns two quadZonotope objects whose
union encloses the original quadZonotope object.

e zonotope — computes an enclosing zonotope as presented in [0, Proposition 1].
3.3.1 Method reduce

The zonotope reduction returns an over-approximating zonotope with less generators. Table
lists the implemented reduction techniques.

3.3.2 Polynomial Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

c = [0;0]; % starting point
El = diag([-1,0.5]); % generators of factors with identical indices

12



3 SET REPRESENTATIONS AND OPERATIONS

Table 5: Reduction techniques for zonotopes.

reduction
technique comment literature
redistribute Changes dependent and independent generators [10, Proposition 2]
girard Only changes independent generators [B, Sec. 3.4]
as for a regular zonotope
E2 = [1 1; 0.5 0.3]; % generators of factors with identical indices
F = [-0.5; 1]; % generators of factors with different indices
G = [0.3; 0.3]; % independent generators

o

gZ = quadZonotope(c,E1,E2,F,G); % instantiate quadratic zonotope
Z

o

= zonotope (gZ) % over—approximate by a zonotope

© 00 N O Utk W

10 figure
11 plot(Z); % plot Z
12 plot(gz, [l 2

o

], darkgray’,7); % plot gZ

This produces the workspace output

id: 0O
dimension: 2
c:
1.0000
0.4000

g_i:
-1.0000 0 0.5000 0.5000 -0.5000 0.3000
0 0.5000 0.2500 0.1500 1.0000 0.3000

The plot generated in lines 11-12 is shown in Fig. &

-2 1 1 1 1 1 J
-2 -1 0 1 2 3 4

Figure 8: Sets generated in lines 11-12 of the polynomial zonotope example in Sec. B.3.2]

13



3 SET REPRESENTATIONS AND OPERATIONS

3.4 Probabilistic Zonotopes

Probabilistic zonotopes have been introduced in [12] for stochastic verification. A probabilistic
zonotope has the same structure as a zonotope, except that the values of some f; in () are
bounded by the interval [—1,1], while others are subject to a normal distribution El Given
pairwise independent Gaussian distributed random variables N (u,Y) with expected value pu
and covariance matrix Y, one can define a Gaussian zonotope with certain mean:

q
Z,=c+ Z:'/\/'(i)(o7 1) .g(i)’

i=1

where g(l), e g(q) € R” are the generators, which are underlined in order to distinguish them
from generators of regular zonotopes. Gaussian zonotopes are denoted by a subscripted g:
z = (C g(lq))

g 9

A Gaussian zonotope with uncertain mean 2 is defined as a Gaussian zonotope Z,, where the
center is uncertain and can have any value within a zonotope Z, which is denoted by

¥ =ZHB2, Z=/(c g(l---p)), Z,= (O’Q(l...q))‘

or in short by 2 = (c, g-p), g(l“'q)). If the probabilistic generators can be represented by
the covariance matrix ¥ (¢ > n) as shown in [I2] Proposition 1], one can also write 2 =
(c,g(l“'p),E). As % is neither a set nor a random vector, there does not exist a probability
density function describing 2. However, one can obtain an enclosing probabilistic hull which is
defined as fy(z) = sup { fz, (m){E[Zg] € Z}, where E|[] returns the expectation and fz, (z) is
the probability density function (PDF) of Z,. Combinations of sets with random vectors have
also been investigated, e.g. in [I3]. Analogously to a zonotope, it is shown in Fig. [ how the
enclosing probabilistic hull (EPH) of a Gaussian zonotope with two non-probabilistic and two
probabilistic generators is built step-by-step from left to right.

,[""\ v
BN
./:,M M
W “m‘\\\\
(] ' W

"‘”“w"‘t AABEGS

2 S

SS S

Figure 9: Construction of a probabilistic zonotope.

We support the following methods for probabilistic zonotopes:
e center — returns the center of the probabilistic zonotope.
e display — standard method, see Sec. Bl

e enclose — generates a probabilistic zonotope that encloses two probabilistic zonotopes 2,
A® Z (A e R™") of equal dimension according to [12, Section VI.A].

"Other distributions are conceivable, but not implemented.

14
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e enclosingProbability — computes values to plot the mesh of a two-dimensional projec-
tion of the enclosing probability hull.

e max — computes an over-approximation of the maximum on the m-sigma bound according
to [12, Equation 3.

e mean — returns the uncertain mean of a probabilistic zonotope.

e mSigma — converts a probabilistic zonotope to a common zonotope where for each generator,
a m-sigma interval is taken.

e mtimes — standard method, see Sec. Bl as stated in [I2] Equation 4] for numeric matrix
multiplication. The multiplication of interval matrices is also supported.

e plot — standard method, see Sec. Bl More details can be found in Sec. B.8]

e plus — standard method, see Sec. Bl Addition is realized for probZonotope objects
with MATLAB vectors, zonotope objects, and probZonotope objects as described in [12]
Equation 4].

e probReduce — reduces the number of single Gaussian distributions to the dimension of the
state space.

e probZonotope — constructor of the class.

e pyramid — encloses a probabilistic zonotope Z by a pyramid with step sizes defined by an
array of confidence bounds and determines the probability of intersection with a polytope

P as described in [12), Section VI.C].

e reduce — returns an over-approximating zonotope with fewer generators. The zonotope
of the uncertain mean Z is reduced as detailed in Sec. [3.1.3], while the order reduction of
the probabilitsic part is done by the method probReduce.

e sigma — returns the ¥ matrix of a probabilistic zonotope.

3.4.1 Probabilistic Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

Zz1=[10 ; 0 ]; % uncertain center
z2=[0.6 1.2 ; 0.6 -1.2]; % generators with normally distributed factors
pZ=probZonotope(Z1,7Z22,2); % probabilistic zonotope

M=[-1 -1;1 -11%0.2; % mapping matrix

[)

pZencl = enclose(pZ,M); % probabilistic enclosur of pZ and MxpZ

figure (' renderer’,’ zbuffer’)
hold on
plot (pZ,’dark’); % plot pZ

[)

plot (expm (M) xpZ,’ 1ight’); % plot expm (M) *pZ

Q

plot (pZencl, ' mesh’) % plot enclosure

campos ([-3,-51,1]); %set camera position
drawnow; % draw 3D view

The plot generated in lines 10-15 is shown in Fig.

15
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P
P
(T

Figure 10: Sets generated in lines 10-15 of the probabilistic zonotope example in Sec. 3411

3.5 MPT Polytopes

There exist two representations for polytopes: The halfspace representation (H-representation)
and the vertex representation (V-representation). The halfspace representation specifies a convex
polytope P by the intersection of ¢ halfspaces H®: P =HO NnHO N ... NnH@D. A halfspace is
one of the two parts obtained by bisecting the n-dimensional Euclidean space with a hyperplane
S, which is given by S := {z|c’x = d},c € R",d € R. The vector c is the normal vector of the
hyperplane and d the scalar product of any point on the hyperplane with the normal vector.
From this follows that the corresponding halfspace is H := {z|cz < d}. As the convex polytope
P is the nonempty intersection of ¢ halfspaces, ¢ inequalities have to be fulfilled simultaneously.

H-Representation of a Polytope A convex polytope P is the bounded intersection of ¢
halfspaces:

P = {m ERCx<d, CeR¥”"de Rq}.
When the intersection is unbounded, one obtains a polyhedron [14].

A polytope with vertex representation is defined as the convex hull of a finite set of points in
the n-dimensional Euclidean space. The points are also referred to as vertices and are denoted
by v(®) € R”. A convex hull of a finite set of r points is obtained from their linear combination:

Conv(v(l), e ,v(r)) = {iaiv(i){v(i) eR", a; €R, o; >0, iozi = 1}.
i=1 i=1

Given the convex hull operator Conv(), a convex and bounded polytope can be defined in vertex
representation as follows:

V-Representation of a Polytope For r vertices v() € R™, a convex polytope P is the set
P = conv(v(D, ... v(").

The halfspace and the vertex representation are illustrated in Fig. [Il Algorithms that convert
from H- to V-representation and vice versa are presented in [15].

The class mptPolytope is a wrapper class that interfaces with the MATLAB toolbox Multi-
Parametric Toolbox (MPT) for the following methods:

e and — computes the intersection of two mptPolytopes.

16
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(i) ——— H @

Conv(vl), ... v(") «— S = {z|clr = d}

HONHD  nH@

(a) V — representation (b) H — representation

Figure 11: Possible representations of a polytope.

display — standard method, see Sec. Bl

enclose — computes the convex hull of two mptPolytopes.

in — determines if a zonotope is enclosed by a mptPolytope.

interval — encloses a mptPolytope by intervals of INTLAB.

intervalhull — encloses a mptPolytope by an intervalhull.

iscontained — returns if a mptPolytope is contained in another mptPolytope.
is_empty — returns 1 if a mptPolytope is empty and O otherwise.

mldivide — computes the set difference of two mptPolytopes.

mptPolytope — constructor of the class.

mtimes — standard method, see Sec. ] for numeric and interval matrix multiplication.
plot — standard method, see Sec. Bl More details can be found in Sec. B8l

plus — standard method, see Sec. [B] for numeric vectors and mptPolytope objects.
vertices — returns a vertices object including all vertices of the polytope.

volume — computes the volume of a polytope.

3.5.1 MPT Polytope Example

The following MATLAB code demonstrates some of the introduced methods:

Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

Z2 = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2

Pl exactPolytope (Z1l); % convert zonotope Z1 to halfspace representation
P2 = exactPolytope(Z22); % convert zonotope Z2 to halfspace representation
P3 Pl + P2 % perform Minkowski addition and display result

P4 = P1 & P2; % compute intersection of Pl and P2

v vertices (P4) % obtain and display vertices of P4

figure

plot (P1l); % plot P1

plot (P2); % plot P2

plot (P3,[1 2]1,’g"); % plot P3

plot (P4, [1 2],’darkgray’); % plot P4

17



3 SET REPRESENTATIONS AND OPERATIONS

This produces the workspace output

Normalized, minimal representation polytope in R"2
H: [8x2 double]
K: [8x1 double]
normal: 1
minrep: 1
xCheb: [2x1 double]
RCheb: 2.8284

[ 0.70711 -0.70711] [1.4142]
[ 0 -1] [ 1]
[-0.70711 -0.70711] [1.4142]
[ -1 0] [ 3]
[-0.70711 0.70711] x <= [4.2426]
[ 0 1] [ 5]
[ 0.70711 0.70711] [4.2426]
[ 1 0] [ 3]
V:
0 -1.0000 0

0 1.0000 2.0000
The plot generated in lines 13-16 is shown in Fig.

€2
N
T

Figure 12: Sets generated in lines 13-16 of the MPT polytope example in Sec. B.5.T1

3.6 Interval Hulls

An interval hull Z is the closest axis-aligned box of a set. It can easily be represented as a
multidimensional interval: Z = [z,Z], z € R", T € R", Vi : z; < T;. We provide the following
methods for interval hulls:

e abs — returns the absolute value bound of an interval hull: |Z|; = sup{|z;||z € Z}.
e and — computes the intersection of two intervalhulls.

e center — returns the center of the intervalhull.

display — standard method, see Sec. [Bl

18
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e edgelength — determines the edge lengths of the interval hull.

e enclose — computes an interval hull that encloses two interval hulls.
e halfspace — generates halfspace representation of the intervalhull.

e in — determines if a zonotope is enclosed by the intervalhull.

e inf - returns the infimum of an intervalhull.

e interval — converts an intervalhull to INTLAB intervals.

e intervalhull — constructor of the class.

e is_empty — returns 1 if a intervalhull is empty and 0 otherwise.

e le — overloads <= operator: Is one interval hull equal or the subset of another interval
hull?

e 1t — overloads < operator: Is one interval hull equal or the subset of another interval hull?
e mptPolytope — converts an intervalhull object to a mptPolytope object.

e mtimes — standard method, see Sec. 3] for numeric matrix multiplication. The multiplica-
tion of interval matrices is also supported. Since interval hulls are not closed under linear
mappings, the result is an over-approximation.

e or — computes union of interval hulls. Since interval hulls are not closed under unification,
the result is an over-approximation.

e plot — standard method, see Sec. Bl More details can be found in Sec. B.8l

e plus — standard method, see Sec. [Bl for numeric vectors and intervalhull objects.
e polytope — converts an interval hull object to a polytope.

e radius — computes radius of an enclosing circle.

e rdivide — overloads the ./ operator; elementwise division of intervals by a vector.
e sup — returns the supremum of an intervalhull.

e vertices — returns a vertices object including all vertices.

e volume — computes the volume of an interval hull.

e zonotope — converts an intervalhull object to a zonotope object.

3.6.1 Interval Hull Example

The following MATLAB code demonstrates some of the introduced methods:

IH1 = intervalhull ([0 3; -1 1]); % create interval hull IHIL
IH2 = intervalhull([-1 1; -1.5 -0.5]); % create interval hull TIH2
Z1l = zonotope([1 1 1; 1 -1 1]); % create zonotope 71

1 = edgelength(IH1l) % obtain and display edge length of IHI1
is_intersecting = in(IH1, Z1) % determines and displays if 71 is enclosed by IHIL
IH3 = IH1 & IH2; % computes the intersection of IH1 and IH2

[

c = center (IH3) % returns and displays the center of IH3

figure
plot (IH1); % plot IHI
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12 plot (IH2); % plot IH2
13 plot(zl,[1 2]1,’g"); % plot Zl
14 plot (IH3,[1 2], 'darkgray’); % plot IH3

This produces the workspace output

1=

is_intersecting =

0.5000
-0.7500

The plot generated in lines 11-14 is shown in Fig.

Figure 13: Sets generated in lines 11-14 of the interval hull example in Sec. B.6.11

3.7 Vertices

The vertices class has two main purposes: It is the class that performs the plotting since all
other set representations are first converted to vertices to perform the plotting. Second, if one
defines a point cloud as a set of potential vertices, this class computes enclosures of all points.
The following methods are implemented:

e collect — collects cell arrays (MATLAB-specific container) of vertices.
e display — standard method, see Sec. [3

e intervalhull — encloses all vertices by an intervalhull.
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e mtimes — standard method, see Sec. B for numeric matrix multiplication.

e parallelotope — computes a parallelotope in generator representation based on a coor-
dinate transformation in which the transformed vertices are enclosed by an interval hull.

e plot — standard method, see Sec. Bl More details can be found in Sec. B.8l

e plus — standard method, see Sec. Bl Addition is only realized for vertices objects with
MATLAB vectors.

e vertices — constructor of the class.

e zonotope — computes a zonotope that encloses all vertices according to [16] Section 3].

3.7.1 Vertices Example

The following MATLAB code demonstrates some of the introduced methods:

Z1 = zonotope ([1
V1 vertices (zZ1
A= [0.51; 1 0.

1 1;, 1 -1 1]); % create zonotope Z1
% compute vertices of Z1

)i
5]; % numerical matrix A

v2{1} AxV1; % linear map of vertices

vV2{2} = Vv2{1l} + [1; 0]; % translation of vertices

V3 = collect (V2{1},V2); % collect vertices of cell array V2

Zencl = zonotope (V3); % obtain parallelotope containing all vertices

figure

hold on

plot (V2{1},"k+"); % plot V2{1}
plot (V2{2},’ko"); % plot V2{2}
plot (Zencl); % plot Zencl

The plot generated in lines 11-14 is shown in Fig. [[4l

2

Figure 14: Sets generated in lines 11-14 of the interval hull example in Sec. B.7.1
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3.8 Plotting of Sets

Plotting of reachable sets is performed by first projecting the set onto two dimensions. Those
dimensions can be two states for plots in state space, or a state and a time interval for plots
involving a time axis. A selection of plot types is presented in Fig. for two zonotopes. One
can also use the standard MATLAB LineSpec settings for the border of reachable sets.

3 3 3
2 2 2
1 1 1
0 0 0
-1 -1 -1
-2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 -1 0 1 2 3
(a) plot(2) (b) plot(z,[1,2],’r:?) (c)

plot(Z,[1,2],’filledFrame’)

3 3 3
2 2 2
1 1 1
0 0 0
L0 1 2 3 LT 0 1 2 3 L 0 1 2 s

(d) plot(z,[1,2], lightgray’) (e) plot(Z,[1,2],’darkgray’) (f)
plot(Z,[1,2], blackEdgeThick’)

Figure 15: Selection of different plot styles.

4 Matrix Set Representations and Operations

Besides vector sets as introduced in the previous section, it is often useful to represent sets of
possible matrices. This occurs for instance, when a linear system has uncertain parameters as
described later in Sec. CORA supports the following matrix set representations:

e Matrix polytope (Sec. [£T])
e Matrix zonotope (Sec. [12); specialization of a matrix polytope.
e Interval matrix (Sec. [A.3]); specialization of a matrix zonotope.

For each matrix set representation, the conversion to all other matrix set computations is im-
plemented. Of course, conversions to specializations are realized in an over-approximative way,
while the other direction is computed exactly. Note that we use the term matriz polytope instead
of polytope matriz. The reason is that the analogous term wector polytope makes sense, while
polytope vector can be misinterpreted as a vertex of a polytope. We do not use the term matriz
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interval since the term interval matriz is already established. Important operations for matrix
sets are

4.1

display: Displays the parameters of the set in the MATLAB workspace.

mtimes: Overloads the 'x’” operator for the multiplication of various objects with a matrix
set. For instance if M _set is a matrix set of proper dimension and Z is a zonotope,
M_set % Z returns the linear map {Mz|M € M _set,x € Z}.

plus: Overloads the '+’ operator for the addition of various objects with a matrix set. For
instance if M 1_set and M2_set are interval matrices of proper dimension, M1_set + M2_set
returns the Minkowski sum {M1+ M2|M1 € M1_set, M2 € M2_set}.

expm: Returns the set of matrix exponentials for a matrix set.
intervalMatrix: Computes an enclosing interval matrix.

vertices: returns the vertices of a matrix set.

Matrix Polytopes

A matrix polytope is analogously defined as a V-polytope (see Sec. B.3):

Ap) = { iaiv(i)
i=1

VO e R0 € R 20,3 a4y = 1. (3)
7

The matrices V® are also called vertices of the matrix polytope. When substituting the matrix
vertices by vector vertices v(Y € R™, one obtains a V-polytope (see Sec. B.H]).

We support the following methods for polytope matrices:

display — standard method, see Sec. [

expmInd — operator for the exponential matrix of a matrix polytope, evaluated indepen-
dently.

expmIndMixed — operator for the exponential matrix of a matrix polytope, evaluated in-
dependently. Higher order terms are computed via interval arithmetic.

intervalMatrix — standard method, see Sec. [l
matPolytope — constructor of the class.

matZonotope — computes an enclosing matrix zonotope of a matrix polytope analogously
to zonotope of the vertices class.

TN

mpower — overloaded operator for the power of matrix polytopes.

mtimes — standard method, see Sec. M for numeric matrix multiplication or multiplication
with another matrix polytope.

plot — plots 2-dimensional projection of a matrix polytope.
powers — computes the powers of a matrix zonotope up to a certain order.

plus — standard method, see Sec. @ Addition is realized for two matrix polytopes or a
matrix polytope with a matrix.

polytope — converts a matrix polytope to a polytope.
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e simplePlus — computes the Minkowski addition of two matrix polytopes without reducing
the vertices by a convex hull computation.

e vertices — standard method, see Sec. [l

Since the matrix polytope class is written using the new structure for object oriented program-
ming in MATLARB, it has the following public properties:

e dim — dimension.
e verts — number of vertices.

e vertex — cell array of vertices V(#) according to ().

4.1.1 Matrix Polytope Example

The following MATLAB code demonstrates some of the introduced methods:

P1{1l} = [1 2; 3 4]; % 1lst vertex of matrix polytope Pl

P1{2} = [2 2; 3 3]; % 2nd vertex of matrix polytope P1

matPl = matPolytope(Pl); % instantiate matrix polytope P1

P2{1} = [-1 2; 2 -1]; % 1lst vertex of matrix polytope P2

P2{2} = [-1 1; 1 -1]; % 2nd vertex of matrix polytope P2
)

matP2 = matPolytope(P2); % instantiate matrix polytope P2

matP3 = matPl + matP2 % perform Minkowski addition and display result
matP4 = matPl » matP2 % compute multiplication of and display result
intP = intervalMatrix (matPl) % compute interval matrix and display result

This produces the workspace output

dimension:
2

nr of vertices:

4
vertices:

0 4
5 3
0 3
4 3
1 4
5 2
1 3
4 2

24



4 MATRIX SET REPRESENTATIONS AND OPERATIONS

dimension:
2

nr of vertices:

4
vertices:
3 0
5 2
1 -1
1 -1
2 2
3 3
0 0
0 0
dimension:
2
left limit:
1 2
3 3

right limit:
2 2
3 4

4.2 Matrix Zonotopes

A matrix zonotope is defined analogously to zonotopes (see Sec. BJ):

A = {60 + 3 piGO|p; € [-1,1,69 e R | (4)
i=1
and is written in short form as .A[Z} = (G(O), G, ... ,G("‘)), where the first matrix is referred

to as the matriz center and the other matrices as matrix generators. The order of a matrix
zonotope is defined as p = k/n. When exchanging the matrix generators by vector generators
g € R™, one obtains a zonotope (see e.g. [3]).

We support the following methods for zonotope matrices:
e concatenate — concatenates the center and all generators of two matrix zonotopes.

e display — standard method, see Sec. [l
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dependentTerms — considers dependency in the computation of Taylor terms for the matrix
zonotope exponential according to [8, Proposition 4.3].

dominantVertices — computes the dominant vertices of a matrix zonotope according to
a heuristics.

expmInd — operator for the exponential matrix of a matrix zonotope, evaluated indepen-
dently.

expmIndMixed — operator for the exponential matrix of a matrix zonotope, evaluated
independently. Higher order terms are computed via interval arithmetic.

expmMixed — operator for the exponential matrix of a matrix zonotope, evaluated depen-
dently. Higher order terms are computed via interval arithmetic as discussed in [§], Section
4.4.4].

expmOneParam — operator for the exponential matrix of a matrix zonotope when only one
parameter is uncertain as described in [I7, Theorem 1].

expmVertex — computes the exponential matrix for a selected number of dominant vertices
obtained by the dominantVertices method.

infNorm — returns the maximum of the infinity norm of a matrix zonotope.

infNormRed — returns a faster over-approximation of the maximum of the infinity norm of
a matrix zonotope by reducing its representation size in an over-approximative way.

intervalMatrix — standard method, see Sec. [l
matPolytope — converts a matrix zonotope into a matrix polytope representation.
matZonotope — constructor of the class.

WA\

mpower — overloaded operator for the power of matrix zonotopes.

mtimes — standard method, see Sec. Ml for numeric matrix multiplication or a multiplication
with another matrix zonotope according to [8, Equation 4.10].

plot — plots 2-dimensional projection of a matrix zonotope.
plus — standard method (see Sec. [)) for a matrix zonotope or a numerical matrix.
powers — computes the powers of a matrix zonotope up to a certain order.

reduce — reduces the order of a matrix zonotope. This is done by converting the matrix
zonotope to a zonotope, reducing the zonotope, and converting the result back to a matrix
zonotope.

uniformSampling — creates samples uniformly within a matrix zonotope.
vertices — standard method, see Sec. @l

volume — computes the volume of a matrix zonotope by computing the volume of the
corresponding zonotope.

zonotope — converts a matrix zonotope into a zonotope.

Since the matrix zonotope class is written using the new structure for object oriented program-
ming in MATLARB, it has the following public properties:

dim — dimension.

gens — number of generators.
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e center — GV according to [@).

e generator — cell array of matrices G according to ().

4.2.1 Matrix Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

Zcenter = [1 2; 3 4]; % center of matrix zonotope Z1

Zdelta{l} = [1 0; 1 1]; % generators of matrix zonotope 71
matZl = matZonotope (Zcenter, Zdelta); % instantiate matrix zonotope Z1

Zcenter = [-1 2; 2 -1]; % center of matrix zonotope Z2

Zdelta{l} = [0 0.5; 0.5 0]; % generators of matrix zonotope Z2
matZ2 = matZonotope (Zcenter, Zdelta); % instantiate matrix zonotope Z2

matz3 matZzl + matZ2
matZz4 = matZl * matz2

perform Minkowski addition and display result

o
o
o
o

compute multiplication of and display result

intZ = intervalMatrix(matZl) % compute interval matrix and display result

This produces the workspace output

dimension:
2

nr of generators:
2

center:
0 4
5 3

generators:

dimension:
1

nr of generators:

3
center:

3 0

5 2
generators:
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1.0000 0.5000
2.0000 1.5000

0 0.5000
0.5000 0.5000

dimension:
2

left limit:
0 2
2 3

right limit:
2 2
4 5

4.3 Interval Matrices

An interval matrix is a special case of a matrix zonotope and specifies the interval of possible
values for each matrix element:

Ay =14A,4], Vij:a;<ay AAcR™™

The matrix A is referred to as the lower bound and A as the upper bound of Apip-
We support the following methods for interval matrices:

e abs — returns the absolute value bound of an interval matrix.

e display — standard method, see Sec. [

e dependentTerms — considers dependency in the computation of Taylor terms for the in-
terval matrix exponential according to [§, Proposition 4.4].

e dominantVertices — computes the dominant vertices of an interval matrix zonotope ac-
cording to a heuristics.

e expm — operator for the exponential matrix of an interval matrix, evaluated dependently.

e expmAbsoluteBound — returns the over-approximation of the absolute bound of the sym-
metric solution of the computation of the exponential matrix.

e expmInd — operator for the exponential matrix of an interval matrix, evaluated indepen-
dently.

e expmIndMixed — dummy function for interval matrices.

e expmMixed — dummy function for interval matrices.
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expmNormInf — returns the over-approximation of the norm of the difference between
the interval matrix exponential and the exponential from the center matrix according
to [8, Theorem 4.2].

expmVertex — computes the exponential matrix for a selected number of dominant vertices
obtained by the dominantVertices method.

exponentialRemainder — returns the remainder of the exponential matrix according to [
Proposition 4.1].

infNorm — returns the maximum of the infinity norm of an interval matrix.
intervalhull — converts an interval matrix to an interval hull.
intervalMatrix — constructor of the class.

matPolytope — converts an interval matrix to a matrix polytope.
matZonotope — converts an interval matrix to a matrix zonotope.

VAN

mpower — overloaded operator for the power of interval matrices.

mtimes — standard method, see Sec. @ for numeric matrix multiplication or a multiplication
with another interval matrix according to [8, Equation 4.11].

plot — plots 2-dimensional projection of an interval matrix.

plus — standard method, see Sec. @l Addition is realized for two interval matrices or an
interval matrix with a matrix.

powers — computes the powers of an interval matrix up to a certain order.

randomIntervalMatrix — generates a random interval matrix with a specified center and
a specified delta matrix or scalar. The number of elements of that matrix which are
uncertain has to be specified, too.

uniformSampling — creates samples uniformly within an interval matrix.
vertices — standard method, see Sec. Ml

volume — computes the volume of an interval matrix by computing the volume of the
corresponding interval hull.

4.3.1 Interval Matrix Example

The following MATLAB code demonstrates some of the introduced methods:

Mcenter = [1 2; 3 4]; % center of interval matrix M1

Mdelta = [1 0; 1 1]; % delta of interval matrix M1

intMl = intervalMatrix (Mcenter, Mdelta); % instantiate interval matrix M1
Mcenter = [-1 2; 2 -1]; % center of interval matrix M2

Mdelta = [0 0.5; 0.5 0]; % delta of interval matrix M2

intM2 = intervalMatrix (Mcenter, Mdelta); % instantiate interval matrix M2

intM3 = intMl + intM2
intM4

mat?z

perform Minkowski addition and display result

[
°
[

°

intMl % intM2 compute multiplication of and display result

[

= matZonotope (intMl) % compute matrix zonotope and display result
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This produces the workspace output

dimension:
2

left limit:
-1.0000 3.5000
3.5000 2.0000

right limit:
1.0000 4.5000
6.5000 4.0000

dimension:
2

left limit:
1.0000 -3.0000
-0.5000 -3.0000

right limit:
5.0000 3.0000
10.5000 7.0000

dimension:
2

nr of generators:

3
center:

1 2

3 4
generators:

1 0

0 0

0 0

1 0

0

0 1
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5 Continuous Dynamics

This section introduces various classes to compute reachable sets of continuous dynamics. One
can directly compute reachable sets for each class, or include those classes into a hybrid automa-
ton for the reachability analysis of hybrid systems. Note that besides reachability analysis, the
simulation of particular trajectories is also supported. CORA supports the following continuous
dynamics:

e Linear systems (Sec. [.1)
e Linear systems with uncertain fixed parameters (Sec. [(.2))

e Linear systems with uncertain varying parameters (Sec. [0.3])

Linear probabilistic systems (Sec. [5.4])
e Nonlinear systems (Sec. [B5.5])
e Nonlinear systems with uncertain fixed parameters (Sec. [£.0])
e Nonlinear differential-algebraic systems (Sec. [B.7])
For each class the same methods are implemented:
e display: Displays the parameters of the continuous dynamics in the MATLAB workspace.
e initReach: Initializes the reachable set computation.
e reach: Computes the reachable set for the next time interval.

e simulate: Produces a single trajectory that numerically solves the system for a particular
initial state and a particular input trajectory.

There exist some further auxiliary methods for each class, but those are not relevant unless one
aims to change details of the provided algorithms. In contrast to the set representations, all
continuous systems have the same methods, therefor the methods are not listed for the individual
classes. We mainly focus on the method initReach, which is computed differently for each class.

5.1 Linear Systems

The most basic system dynamics considered in this software package are linear systems of the

form
&(t) = Az(t) + Bu(t), =(0) € Xo CR", wu(t)eU CR" (5)

For the computation of reachable sets, we use the equivalent system
i(t) = Az(t) +a(t), =(0) € Xo CR™, a(t)eU=BeoUCR", (6)

where C ® D = {C' D|C € C,D € D} is the set-based multiplication (one argument can be a
singleton).

5.1.1 Method initReach

The method initReach computes the required steps to obtain the reachable set for the first
point in time r and the first time interval [0, r] as follows. Given is the linear system in (@). For
further computations, we introduce the center of the set of inputs u. and the deviation from the
center of U, Un :=U @ (—u.). According to [, Section 3.2], the reachable set for the first time
interval 79 = [0, 7] is computed as shown in Fig.
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1. Starting from X, compute the set of all solutions R‘}il for the affine dynamics @(t) =
Az (t) + u. at time r.

2. Obtain the convex hull of Xp and R‘}il to approximate the reachable set for the first time
interval 7.

3. Compute R%(rp) by enlarging the convex hull, firstly to bound all affine solutions within
70 and secondly to account for the set of uncertain inputs Ua.

Rd(To) —>

convex hull of
Xo, R,

Xo
enlargement

@ @ ®

Figure 16: Steps for the computation of an over-approximation of the reachable set for a linear
System.

The following private functions take care of the required computations:

e exponential — computes an over-approximation of the matrix exponential e’ based on
the Lagrangian remainder as proposed in [I8], Proposition 2]. A more conservative approach
previously used [4, Equation 3.2,3.3].

e tie (time interval error) — computes the error made by generating the convex hull of
reachable sets of points in time for the reachable set of the corresponding time interval as
described in [I8], Section 4]. A more conservative approach previously used [4, Proposition
3.1], which can only be used in combination with [4, Equation 3.2,3.3].

e inputSolution — computes the reachable set due to the input according to the superposi-
tion principle of linear systems. The computation is performed as suggested in [4, Theorem
3.1]. As noted in [I8, Theorem 2], it is required that the input set is convex. The error
term in [I8] Theorem 2| is slightly better, but is computationally more expensive so that
the algorithm form [4, Theorem 3.1] is used.

5.2 Linear Systems with Uncertain Fixed Parameters

This class extends linear systems by uncertain parameters that are fixed over time:

i(t) = A(p)z(t) +a(t), z(0)€Xo CR", peP, ult)cU={B@p)oUUCR",pec P},
(7)

The set of state and input matrices is denoted by

A={A(p)lp e P}, B={B(p)lp P} (8)

An alternative is to define each parameter as a state variable Z; with the trivial dynamics z; = 0.
The result is a nonlinear system that can be handled as described in Sec. The problem of
which approach to use for any particular case is still open.

Since the linParamSys class is written using the new structure for object oriented programming
in MATLARB, it has the following public properties:

32
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e A —set of system matrices A, see (§]). The set of matrices can be represented by any matrix
set introduced in Sec. [l

e B — set of input matrices B, see (§). The set of matrices can be represented by any matrix
set introduced in Sec. [l

e stepSize — constant step size t;_1 —t for time intervals of the reachable set computation.

e taylorTerms — number of Taylor terms for computing the matrix exponential, see [4,
Theorem 3.2].

e mappingMatrixSet — set of exponential matrices, see Sec. [l
e E — remainder of matrix exponential computation.

e F — uncertain matrix to bound the error for time interval solutions, see e.g. [4, Proposition
3.1].

e inputF — uncertain matrix to bound the error for time interval solutions of inputs, see
e.g. [4, Proposition 3.4].

e inputCorr — additional uncertainty of the input solution if origin is not contained in input
set, see [4, Equation 3.9].

e Rinput — reachable set of the input solution, see Sec. .11
e Rtrans — reachable set of the input u., see Sec. Bl
e RV — reachable set of the input Ua, see Sec. .11

e sampleMatrix — possible matrix A such that A € A.

5.2.1 Method initReach

The method initReach computes the reachable set for the first point in time r and the first
time interval [0, r]| similarly as for linear systems with fixed parameters. The main difference is
that we have to take into account an uncertain state matrix A and an uncertain input matrix
B. The initial state solution becomes

Ri = G'ATXO = {BAT$0|A e A xg € Xo}. (9)
Similarly, the reachable set due to the input solution changes as described in [4, Section 3.3].
The following private functions take care of the required computations:

e mappingMatrix — computes the set of matrices which map the states for the next point in
time according to [8, Section 3.1].

e tie (time interval error) — computes the error made by generating the convex hull of
reachable sets of points in time for the reachable set of the corresponding time interval as
described in [8, Section 3.2].

e inputSolution — computes the reachable set due to the input according to the superposi-

tion principle of linear systems. The computation is performed as suggested in [8, Theorem
1].
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5.3 Linear Systems with Uncertain Varying Parameters

This class extends linear systems with uncertain, but fixed parameters to linear systems with
time-varying parameters:

i(t) = A@)z(t) +a(t), =z(0) e Xo CR™, A(t)e A, a(t)el.

The set of state matrices can be represented by any matrix set introduced in Sec. H The
provided methods of the class are identical to the ones in Sec. [£.2], except that the computation
is based on [I8].

Since the 1inVarSys class is written using the new structure for object oriented programming
in MATLAB, it has the following public properties:

e A —set of system matrices A, see (). The set of matrices can be represented by any matrix
set introduced in Sec. @l

e B — set of input matrices B, see (8). The set of matrices can be represented by any matrix
set introduced in Sec. Ml

e stepSize — constant step size tg_1 —tj for time intervals of the reachable set computation.

e taylorTerms — number of Taylor terms for computing the matrix exponential, see [4,
Theorem 3.2].

e mappingMatrixSet — set of exponential matrices, see Sec. [l
e power — tha
e E — remainder of matrix exponential computation.

e F — uncertain matrix to bound the error for time interval solutions, see e.g. [4, Proposition
3.1].

e inputF — uncertain matrix to bound the error for time interval solutions of inputs, see
e.g. [4, Proposition 3.4].

e inputCorr — additional uncertainty of the input solution if origin is not contained in input
set, see [4, Equation 3.9].

e Rinput — reachable set of the input solution, see Sec. .11
e Rtrans — reachable set of the input wu., see Sec. Bl

e sampleMatrix — possible matrix A such that A € A.

5.4 Linear Probabilistic Systems

In contrast to all other systems, we consider stochastic properties in the class 1inProbSys. The
system under consideration is defined by the following linear stochastic differential equation
(SDE) which is also known as the multivariate Ornstein-Uhlenbeck process [19]:

&= Ax(t) + u(t) + C&(1), (10)
z(0) e R", u(t) ed CR", £ € R™

where A and C are matrices of proper dimension and A has full rank. There are two kinds of
inputs: the first input w is Lipschitz continuous and can take any value in & C R™ for which
no probability distribution is known. The second input & € R™ is white Gaussian noise. The
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combination of both inputs can be seen as a white Gaussian noise input, where the mean value
is unknown within the set U.

In contrast to the other system classes, we compute enclosing probabilistic hulls, i.e. a hull over
all possible probability distributions when some parameters are uncertain and do not have a
probability distribution. In the probabilistic setting (C' # 0), the probability density function
(PDF) at time ¢ = r of the random process X(¢) defined by (I0) for a specific trajectory
u(t) € U is denoted by fx(z,7). The enclosing probabilistic hull (EPH) of all possible probability
density functions fx(z,r) is denoted by fx(z,r) and defined as: fx(z,r) = sup{fx(z,)|X(t)
is a solution of () V¢ € [0,7], u(t) € U, fx(x,0) = fo}. The enclosing probabilistic hull for a
time interval is defined as fx(z, [0,7]) = sup{ fx (=, t)[t € [0,7]}.

5.4.1 Method initReach

The method initReach computes the probabilistic reachable set for a first point in time r and
the first time interval [0,r] similarly to Sec. [0l The main difference is that we compute
enclosing probabilistic hulls as defined above. The following private functions take care of the
required computations:

e pexpm — computes the over-approximation of the exponential of a system matrix similarly
as for linear systems in Sec. 5.1

e tie (time interval error — computes the tie similarly as for linear systems in Sec. (.1

e inputSolution — computes the reachable set due to the input according to the superposi-
tion principle of linear systems. The computation is performed as suggested in [12] Secttion

VLB].

5.5 Nonlinear Systems

So far, reachable sets of linear continuous systems have been presented. Although a fairly large
group of dynamic systems can be described by linear continuous systems, the extension to non-
linear continuous systems is an important step for the analysis of more complex systems. The
analysis of nonlinear systems is much more complicated since many valuable properties are no
longer valid. One of them is the superposition principle, which allows the homogeneous and
the inhomogeneous solution to be obtained separately. Another is that reachable sets of linear
systems can be computed by a linear map. This makes it possible to exploit that geometric
representations such as ellipsoids, zonotopes, and polytopes are closed under linear transforma-
tions, i.e. they are again mapped to ellipsoids, zonotopes and polytopes, respectively. In CORA,
reachability analysis of nonlinear systems is based on abstraction. We present abstraction by
linear systems as presented in [4, Section 3.4] and by polynomial systems as presented in [10].
Since the abstraction causes additional errors, the abstraction errors are determined in an over-
approximative way and added as an additional uncertain input so that an over-approximative
computation is ensured.

General nonlinear continuous systems with uncertain parameters and Lipschitz continuity are
considered. In analogy to the previous linear systems, the initial state 2:(0) can take values from
a set Xp C R™ and the input u takes values from a set &/ C R". The evolution of the state = is
defined by the following differential equation:

&(t) = f(z(t),u(t)), z(0) € Xo CR", wu(t)eld CR™,

35
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where u(t) and f(x(t),u(t)) are assumed to be globally Lipschitz continuous so that the Taylor
expansion for the state and the input can always be computed, a condition required for the
abstraction.

Initial set: R(0) = Xp, time step: k =1
|
2

No —
@ (@ Enlarge £

(@ Compute R(7g) of (t) € fabsract(zx(t), u(t)) @ L
v
(@ Cancellation of redundant reachable sets

|
Next initial set: R(tx11), time step: k:=k + 1

(@ Compute system abstraction (linear/polynomial) )
v

(@ Obtain required abstraction errors £ heuristically )
v

(@ Compute Reect(ry) of (1) € f¥rect (a(t), u(t) & L )
v

( Compute £ based on Rstract(r;) )

Figure 17: Computation of reachable sets — overview.

A brief visualization of the overall concept for computing the reachable set is shown in Fig.
7 As in the previous approaches, the reachable set is computed iteratively for time intervals
t € v = [kr, (k + 1)r] where kK € N*. The procedure for computing the reachable sets of the
consecutive time intervals is as follows:

@ The nonlinear system &(t) = f(x(t),u(t)) is either abstracted to a linear system as shown

@ ® ©® ©

in (@) or after introducing z = [z, u”]"

12 12O
iy = fabstract(x, u) =w; + ﬁ Z Cz‘ij(t) + 5 Z Z Diijj(t)Zk(t)
] !

j=1k=1

* % Z Z Z Eijrizi(t)ze(t)z(t) + ...

j=1k=1I1=1

a polynomial system of the form

(11)

The set of abstraction errors £ ensures that f(z,u) € %57 (z, u) @ L, which allows the
reachable set to be computed in an over-approximative way.

Next, the set of required abstraction errors £ is obtained heuristically.
The reachable set Rt (1) of @(t) € fabstract(g(t),u(t)) @ L is computed.
The set of abstraction errors £ is computed based on the reachable set Rsact (7).

When £ ¢ L, the abstraction error is not admissible, requiring the assumption £ to be
enlarged. If several enlargements are not successful, one has to split the reachable set and
continue with one more partial reachable set from then on.

If £ C L, the abstraction error is accepted and the reachable set is obtained by using the
tighter abstraction error: @(t) € febstract(z(t),u(t)) ® L.
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@ It remains to increase the time step (k := k+ 1) and cancel redundant reachable sets that
are already covered by previously computed reachable sets. This decreases the number of
reachable sets that have to be considered in the next time interval.

5.5.1 Method initReach

The method initReach computes the reachable set for a first point in time r and the first
time interval [0, r]. In contrast to linear systems, it is required to call initReach for each time
interval 75 since the system is abstracted for each time interval 75, by a different abstraction

fabstract(x u)
The following private functions take care of the required computations:

e linReach — computes the reachable set of the abstraction fsac(x(¢),u(t)) @ £ and
returns if the initial set has to be split in order to control the abstraction error. The
name of the function has historical reasons and will change. The distinction between the
reachable set computation by polynomial abstractions and linear abstractions is made by
the computation of the reachable set due to the abstraction error:

— errorSolutionQuad — for polynomial abstraction.
— errorSolution — for linear abstraction.
e linearize — linearizes the nonlinear system.

e linError mixed noInt — computes the linearization error without use of interval arith-
matic according to [5] Theorem 1].

e linError_thirdOrder — computes linearization errors according to [I0, Section 4.1].

e linError — easiest, but also most conservative computation of the linearization error
according to [20, Proposition 1].

5.6 Nonlinear Systems with Uncertain Fixed Parameters

The class nonlinParamSys extends the class nonlinearSys by considering uncertain parameters

(t) = f(z(t),u(t),p), z(0) e Xo CR", wu(t)eU CR™, peP CRP.

The functionality provided is identical to nonlinearSys, except that the abstraction to polyno-
mial systems is not yet implemented.

5.7 Nonlinear Differential-Algebraic Systems

The class non1inDASys considers time-invariant, semi-explicit, index-1 DAEs without parametric
uncertainties since they are not yet implemented. The extension to parametric uncertainties can
be done using the methods applied in Sec. Using the vectors of differential variables z,
algebraic variables y, and inputs u, the semi-explicit DAE can generally be written as

= fa(t), y(t), u(t))
(z(t), (1), u(t)), (12)
[27(0),y" (0)]" € R(0), u(t) €U,
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where R(0) over-approximates the set of consistent initial states and U is the set of possible
inputs. The initial state is consistent when g(x(0),y(0),u(0)) = 0, while for DAEs with an
index greater than 1, further hidden algebraic constraints have to be considered [21I, Chapter

9.1]. For an implicit DAE, the index-1 property holds if and only if V¢ : det(w) #0,
i.e. the Jacobian of the algebraic equations is non-singular [22] p. 34]. Loosely speaking, the
index specifies the distance to an ODE (which has index 0) by the number of required time
differentiations of the general form 0 = F(Z,%,u,t) along a solution #(t), in order to express 2
as a continuous function of Z and ¢ [21 Chapter 9.1].

To apply the methods presented in the previous section to compute reachable sets for DAEs, an
abstraction of the original nonlinear DAESs to linear differential inclusions is performed for each
consecutive time interval 7. A different abstraction is used for each time interval to minimize
the over-approximation error. Based on a linearization of the functions f(x(t),y(t),u(t)) and
g(z(t),y(t),u(t)), one can abstract the dynamics of the original nonlinear DAE by a linear
system plus additive uncertainty as detailed in [5, Section IV]. This linear system only contains
dynamic state variables z and uncertain inputs u. The algebraic state y is obtained afterwards
by the linearized constraint function g(z(t),y(t),u(t)) as described in [5, Proposition 2].

Since the non1inDASys class is written using the new structure for object oriented programming
in MATLAB, it has the following public properties:

e dim — number of dimensions.

e nr0fConstraints — number of constraints.

e nr0fInputs — number of inputs.

e dynFile — handle to the m-file containing the dynamic function f(z(t),y(t),u(t)).
e conFile — handle to the m-file containing the constraint function g(z(t),y(t), u(t)).

e jacobian — handle to the m-file containing the Jacobians of the dynamic function and the
constraint function.

e hessian — handle to the m-file containing the Hessians of the dynamic function and the
constraint function.

e hessianAbs — tha

e thirdOrderTensor — handle to the m-file containing the third order tensors of the dynamic
function and the constraint function.

e linError — handle to the m-file containing the Lagrangian remainder.

e other — other information.

5.8 Continuous Dynamics by Example

show some examples here.

6 Hybrid Dynamics

In CORA, hybrid systems are modeled by hybrid automata. Besides a continuous state z,
there also exists a discrete state v for hybrid systems. The continuous initial state may take
values within continuous sets while only a single initial discrete state is assumed without loss of
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generalityﬁ. The switching of the continuous dynamics is triggered by guard sets. Jumps in the
continuous state are considered after the discrete state has changed. One of the most intuitive
examples where jumps in the continuous state can occur is the bouncing ball example (see Sec.
[@)), where the velocity of the ball changes instantaneously when hitting the ground.

The formal definition of the hybrid automaton is similarly defined as in [I6]. The main difference
is the consideration of uncertain parameters and the restrictions on jumps and guard sets. A
hybrid automaton HA = (V,v%, X, X°.U, P, inv, T, g, h, f), as it is considered in CORA, consists
of:

e the finite set of locations V = {vy,...,v¢} with an initial location v% € V.

e the continuous state space X C R” and the set of initial continuous states X° such that
X0 C inv(v0).

e the continuous input space U C R™.
e the parameter space P C RP.
e the mappinég inv: V — 2%, which assigns an invariant inv(v) C X to each location v.

e the set of discrete transitions T C V x V. A transition from v; € V to v; € V is denoted by
(vi, vj5).

e the guard function g : T — 2%, which associates a guard set g((v;,v;)) for each transition
from v; to vj, where g((v;,v;)) N inv(v;) # 0.

e the jump function h : Tx X — X, which returns the next continuous state when a transition
is taken.

e the flow function £ : V x X x U x P — R™_ which defines a continuous vector field for
the time derivative of z: & = £ (v, z,u,p).

The invariants inv(v) and the guard sets g((v;, v;)) are modeled by polytopes. The jump function
is restricted to a linear map

a’ = K(vi,vj) T+ l(vi,vj)7 (13)
where 2/ denotes the state after the transition is taken and K, v;) € Rm*7, lw;w;) € R™ are
specific for a transition (v;,v;). The input sets U, are modeled by zonotopes and are also
dependent on the location v. Note that in order to use the results from reachability analysis
of nonlinear systems, the input u(t) is assumed to be locally Lipschitz continuous. The set of
parameters P, can also be chosen differently for each location v.

The evolution of the hybrid automaton is described informally as follows. Starting from an
initial location v(0) = v” and an initial state #(0) € X°, the continuous state evolves according
to the flow function that is assigned to each location v. If the continuous state is within a
guard set, the corresponding transition can be taken and has to be taken if the state would
otherwise leave the invariant inv(v). When the transition from the previous location v; to the
next location v; is taken, the system state is updated according to the jump function and the
continuous evolution within the next invariant.

Because the reachability of discrete states is simply a question of determining if the continuous
reachable set hits certain guard sets, the focus of CORA is on the continuous reachable sets.
Clearly, as for the continuous systems, the reachable set of the hybrid system has to be over-
approximated in order to verify the safety of the system. An illustration of a reachable set of a
hybrid automaton is given in Fig.

8In the case of several initial discrete states, the reachability analysis can be performed for each discrete state
separately.
92% is the power set of X.
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unsafe set reachable set guard sets

invariant

etc.

initial set

guard sets
2
T location v1 location v2

Figure 18: Illustration of the reachable set of a hybrid automaton.

6.1 Hybrid Automaton
A hybrid automaton is implemented as a collection of locations. We mainly support the
following methods for hybrid automata:

e hybridAutomaton — constructor of the class.

e plot — plots the reachable set of the hybrid automaton.

e reach — computes the reachable set of the hybrid automaton.

e simulate — computes a hybrid trajectory of the hybrid automaton.

6.2 Location

Each location consists of:
e invariant — specified by a set representation of Sec.
e transitions — cell array of objects of the class transition.
e contDynamics — specified by a continuous dynamics of Sec. [
e name — saved as a string describing the location.
e id — unique number of the location.
We mainly support the following methods for locations:
e display — displays the parameters of the location in the MATLAB workspace.

e enclosePolytopes — encloses a set of polytopes using different over-approximating zono-
topes.

e guardIntersect — intersects the reachable sets with potential guard sets and returns
enclosing zonotopes for each guard set.

e location — constructor of the class.
e potInt — determines which reachable sets potentially intersect with guard sets of a location.
e reach — computes the reachable set for the location.

e simulate — produces a single trajectory that numerically solves the system within the
location starting from a point rather than from a set.

40



7 STATE SPACE PARTITIONING

6.3

Transition

Each transition consists of

guard — specified by a set representation of Sec.

reset — struct containing the information for a linear reset.
target — id of the target location when the transition occurs.
inputLabel — input event to communicate over events.

outputLabel — output event to communicate over events.

We mainly support the following methods for transitions:

display — displays the parameters of the transition in the MATLAB workspace.

reset — computes the reset map after a transition occurs (also called 'jump function’).

7 State Space Partitioning

It is sometimes useful to partition the state space into cells, for instance, when abstracting
a continuous stochastic system by a discrete stochastic system. CORA supports axis-aligned
partitioning using the class partition.

We mainly support the following methods for partitions:

allSegmentIntervalHulls — generates all interval hulls of the partitioned space.

cellCandidates — finds possible cells that might intersect with a continuous set over-
approximated by its bounding box (interval hull); more cell indices are returned than
actually intersect.

cellCenter — return center of specified cell.
cellIndices — returns cell indices given a set of cell coordinates.

celllntersection2 — returns the volumes of a polytope P intersected with touched cells
C;.

cellSegment — returns cell coordinates given a set of cell indices.

display — displays the parameters of the partition in the MATLAB workspace.
findSegment — find segment index for given state space coordinates.
findSegments — return segment indices intersecting with a given interval hull.
nr0fStates — returns the number of discrete states of the partition.
partition — constructor of the class.

segmentIntervals — returns intervals of segment.

segmentPolytope — returns polytope of segment.

segmentZonotope — returns zonotope of segment.
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8 Options for Reachability Analysis

Most parameters for the computation of reachable sets are controlled by a struct called options.
These are the most important fields:

tStart — start time of the analysis.

tFinal — final time of the analysis.

x0 — initial state.

RO — initial set of states.

u — constant input for simulations.

uTrans — u.: transition of the uncertain input set Z;{A.

uTransVec — varying u. for each time step: transition of the uncertain input set Un.
U — uncertain input set Un.

originContained — flag whether the origin is contained in the set of uncertain inputs u
(1: yes, 0: no).

isHybrid — flag whether the considered system is hybrid (1: yes, 0: no).
timeStep — step size tpy1 — tk.

taylorTerms — considered Taylor terms for the exponential matrix.
zonotopeOrder — maximum order of zonotopes.

intermediateOrder — order up to which no interval methods are used in matrix set com-
putations.

advancedLinErrorComp — flag to enable advanced linearization error computation (1: on,

0: off).

tensorOrder — maximum order up to which tensors are considered in the abstraction of
the system.

errorOrder — maximum zonotope order for the computation of nonlinear maps.
maxError — maximum allowed abstraction errors before a reachable set is split.

reductionInterval — number of time steps after which redundant reachable sets are
removed.

9 Bouncing Ball Example

We demonstrate the syntax of CORA for the well-known bouncing ball example, see e.g. [23]
Section 2.2.3]. Given is a ball in Fig. [[9 with dynamics § = —g, where s is the vertical position
and g is the gravity constant. After impact with the ground at s = 0, the velocity changes

to v/

= —aw (v = $§) with a € [0,1]. The corresponding hybrid automaton can be formalized

according to Sec. [Al as
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Figure 19: Bouncing ball.

The MATLAB code that implements the simulation and reachability analysis of the bouncing

ball example is:

function bouncingBall ()

$set options————""""—"—-————

options.x0 = [1; 0]; %initial state for simulation
options.RO = zonotope ([

options.startLoc
options.finallLoc = 0; %0: no final location

options.tStart = 0; S$start time

options.tFinal 5; %final time

options.timeStepLoc{l} = 0.05; %time step size in location 1
options.taylorTerms = 10;

options.zonotopeOrder = 20;

options.polytopeOrder = 10;

options.errorOrder=2;

options.reductionTechnique = ’"girard’;

options.isHybrid = 1;

options.isHyperplaneMap = 0;

options.enclosureEnables = [5]; %choose enclosure method(s)
options.originContained = 0;

options.polytopeType = 'mpt’;

1; %initial location

%specify hybrid automaton---------------- -- - - - ------------------~—~—~—\—\—(—(—(—(———

$define large and small distance
dist = 1le3;
eps = le-6;

A = [0 1; 0 0]; % system matrix
% input matrix

B = eye (2

)i
1inSys linearSys ('’ linearSys’,A,B); %linear continuous system

inv = intervalhull ([-2*eps, dist; -dist, dist]); %invariant

guard = intervalhull ([- eps, 0; -dist, 0]); S%Sguard set
reset.A = [0, 0; 0, -0.75]; reset.b = zeros(2,1); S%reset
trans{l} = transition(guard,reset,l,’a’,’b’); %Stransition
loc{l} = location(’locl’,1l,inv,trans,linSys); %$location

HA = hybridAutomaton (loc); % select location for hybrid automaton
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%$set input:

options.uLoc{l} = [0; -1]; %Sinput for simulation
options.uLocTrans{1l} = options.uloc{l}; %center of input set
options.Uloc{l} = zonotope(zeros(2,1)); %input deviation from center

$simulate hybrid automaton
HA = simulate (HA,options);

$compute reachable set
[HA] = reach(HA,options);

%choose projection and plot------————-——------—--"----—"
options.projectedDimensions = [1 2];

options.plotType = "b’;

plot (HA,  reachableSet’,options); %plot reachable set

plot (options.RO,options.projectedDimensions,’blackFrame’); %plot initial set
plot (HA,’ simulation’,options); S%plot simulation

simulated trajectory

initial set

Figure 20: Hlustration of the reachable set of the bouncing ball. The black box shows the initial
set and the black line shows the simulated trajectory.

10 Disclaimer

The toolbox is primarily for research. We do not guarantee that the code is bug-free.

One needs expert knowledge to obtain optimal results. This tool is prototypical and not all
parameters for reachability analysis are automatically set. Not all functions that exist in the
software package are explained. Reasons could be that they are experimental or designed for
special applications that are addressing a limited audience.

If you have questions or suggestions, please contact us through http://www6.in.tum.de/.
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11 Conclusions

CORA is a toolbox for the implementation of prototype reachability analysis algorithms in
MATLAB. The software is modular and is organized into four main categories: vector set
representations, matrix set representations, continuous dynamics, and hybrid dynamics. CORA
includes novel algorithms for reachability analysis of nonlinear systems and hybrid systems with
a special focus on scalability; for instance, a power network with more than 50 continuous state
variables has been verified in [24]. The efficiency of the algorithms used means it is even possible
to verify problems online, i.e. while they are in operation [25].

One particularly useful feature of CORA is its adaptability: the algorithms can be tailored to
the reachability analysis problem in question. Forthcoming integration into SpaceEx, which has
a user interface and a model editor, should go some way towards making CORA more accessible
to non-experts.
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