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Introduction

Simultaneous Localization and Mapping
Localization: knowing your environment, calculate your
position
Mapping: building a map of your environment

SLAM using RGB-D data
traditional approaches:

1 SLAM with RGB data only
2 SLAM using laser scanners

new development: Kinect style cameras
=> cheap acquisition of RGB-D data

=> RGB-D SLAM
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The Approaches

RGB-D Mapping using RGB-D ICP (Henry et al.)

Figure: Henry et al.,RGB-D mapping: Using Kinect-style depth
cameras for dense 3D modeling of indoor environments in:
International Journal of Robotics Research, 2012
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The Approaches

RGB-D SLAM System (Endres et al.)

Figure: Endres et al.,An Evaluation of the RGB-D SLAM System
in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2012
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The Approaches

Visual Odometry (Audras et al.)

Figure: Audras et al.,Real-time dense appearance-based SLAM
for RGB-D sensors in Australian Conference on Robotics and
Automation, 2011
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RGB-D ICP (Henry et al.)

Input: source RGB-D frame Fs, target RGB-D frame Ft
Output: optimized relative Transformation T

1 extract feature points from Fs and Ft

2 perform RANSAC alignment => first approximation T ′

3 if inliers < klow : discard T ′

4 if inliers > khigh: return T ′ as final transformation
5 else: compute closest points from T ′

6 optimize T ′ until change(T ′) < γ or iterations > nmax
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RGB-D ICP (Henry et al.)

Input: source RGB-D frame Fs, target RGB-D frame Ft
Output: optimized relative Transformation T

1 extract feature points from Fs and Ft

2 perform RANSAC alignment => first approximation T ′

RANSAC = Random Sample Consensus
randomly choose three pairs of feature points
calculate a transformation from theses points
check errors from other feature points
repeat for other triplets
return Transformation with most inliers
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Front-End (Endres et al.)

similar to RGB-D ICP
RANSAC + ICP to perform alignment
alignment with up to 20 frames
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Visual Odometry (Audras et al.)

only intensity data is used
no feature extraction
pixels with maximal gradient along one direction are
chosen
minimize jacobian of error function
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Global Optimization

imperfect alignment => accumulated error (drift)
goal: minimize drift
different approaches possible
here: loop closure detection

1 detect if same location is visited for the second time
2 use information to optimize map:

Figure: Henry et al.,RGB-D mapping: Using Kinect-style
depth cameras for dense 3D modeling of indoor
environments in: International Journal of Robotics
Research, 2012
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Internal Representation

dense point cloud
expensive regarding space
no improvement possible
a lot of redundancy

surfels
improvements possible
needs less space

voxels
improvements possible
can store free space explicitly
multi resolution mapping
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Practical Demonstration

YouTube Video from Henry et al.:

http://www.youtube.com/watch?v=58_xG8AkcaE&feature=player_embedded
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Thank you for your attention!
Questions?
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