
Kai Huang

MPSoC Programming In General

 Multi-Processor System-on-Chip

o Multiple, usually heterogeneous, processing
elements, a memory hierarchy, and I/O
components, linked by an on-chip interconnect

 What is it used for ?

o Meet the performance needs of domain specific
applications while limiting the power consumption

 What is MPSoC programming?

o To develop applications for MPSoC platforms

6/3/2013 Kai.Huang@tum 2

What is MPSoC?

6/3/2013 Kai.Huang@tum 3

What is MPSoC?

IBM CELL Broadband Engine

Intel SCC

 Moors Law

 Power Wall

o The Power Wall means faster
computers get really hot.

6/3/2013 Kai.Huang@tum 4

Why is MPSoC?

 Law of Physics: All
electrical power
consumed is eventually
radiated as heat

6/3/2013 Kai.Huang@tum 5

Power Wall

Reasoning: use multiple cores with
lower frequency to obtain the same

overall performance

 Memory Wall

 ILP Wall

 Power is still a issue

6/3/2013 Kai.Huang@tum 6

What Is the Problem of MPSoC?

 The Memory Wall means 1000 pins on a CPU
package is way too many

o Bandwidth limit

o Distance between processing cores and memory

6/3/2013 Kai.Huang@tum 7

Memory Wall

Time

µProc

60%/yr.

DRAM

7%/yr.

1

10

100

1000

DRAM

CPU

Processor-Memory

Performance Gap:

(grows 50% / year)

“Moore’s Law”

 ILP Wall means a deeper instruction pipeline
really means digging a deeper power hole

6/3/2013 Kai.Huang@tum 8

ILP (Instruction Level Parallelism) Wall

“Effort”

Performance

Scalar

In-Order
Moderate-Pipe

Superscalar/OOO

Very-Deep-Pipe

Aggressive

Superscalar/OOO

Made sense to go

Superscalar/OOO:

good ROI

Very little gain for

substantial effort

Source: G. Loh

6/3/2013 Kai.Huang@tum 9

Power Wall for MPSoC

Reasoning: packing more transistors
needs deeper sub micro CMOS

techniques which results in larger
leakage current

 Memory Wall

 ILP Wall

 Power is still a issue

 How to program an MPSoC affects a lot!

6/3/2013 Kai.Huang@tum 10

What Is the Problem of MPSoC?

 Scientific/Super computing
o Where data parallelism is abundant

 Data Centers
o Independent queries

o Few shared writes

o Buying more hardware is cheaper and faster than
efficient programming

 Computer Graphics
o Near infinite, homogeneous parallelism

o Portable libraries: OpenGL, DirectX

6/3/2013 Kai.Huang@tum 11

Parallel Programming Success Stories

6/3/2013 Kai.Huang@tum 12

Language Classification

Complete
Memory

Abstraction

Stack
Memory

Abstraction

Stack
Memory

Abstraction

Python

Haskell

malloc
free Fortran

C/C++

Assembly
OpenCL

Garbage
Collection

No
Memory
Concept Temporal logic

Esteral

Java

6/3/2013 Kai.Huang@tum 13

TIOBE Programming Community Index

6/3/2013 Kai.Huang@tum 14

Parallel Architectures in Two Dimensions

Homogeneous Heterogeneous

GPU

Grid

SIMD

Multi-Thread

Fine Grain

Coarse Grain

RISC

MPSoC

VLIW

Vector

Stream

 Coarse-grained level parallelism

 Design space exploration

 Easy to adopt Legacy code

 Non-functional prosperity verification

6/3/2013 Kai.Huang@tum 15

What We Need

6/3/2013 Kai.Huang@tum 16

Distributed Operation Layer in ETHZ-TIK

17

Versatile MPSoC Software Design Flow

hardware platform

Atmel DIOPSIS

runtime environmentsoftware synthesissystem specification

Application (Process Network)

MPSoC Architecture

PPC

DSP

interconnect

DSP DSP DSP

DSPDSPDSPDSP

MPARM

DNA OS

Linux +

protothreads

RTEMS

TIMA HdS

generation tool

(AGES)

DOL Cell

software

synthesis

DOL RTEMS

software

synthesis

IBM Cell BE

mapping

single processor

DOL functional

simulatioin

generation

SystemC or

POSIX threads or

protothreads

6/3/2013 Kai.Huang@tum 18

EU Project SHAPES Tool-Chain

Structure
 Process Network

o Processes

o SW channels (FIFO behavior)

 Iterators
o Scalability for processes, SW channels,

entire structures

Functional specification
 Language: C/C++

 API: DOL primitives

6/3/2013 Kai.Huang@tum 19

Application Specification

XML Description Available

 Separation of instruction/thread level
parallelism (inside processes) and process-
level parallelism.

 Use of iterators in

o architecture specification

o application specification

o mapping specification

6/3/2013 Kai.Huang@tum 20

Scalability at Specification Level

A[i,j] B C[i,j]

21

Definition of a process and Example

22

Definition of a process and Example

23

Scalable MPEG-2 Decoder

24

Scalable MPEG-2 Decoder

6/3/2013 Kai.Huang@tum 25

Target Platform Abstraction (1)

RISC

0
C0

processor

hardware channel

input / output /

bidirectional port

connection

DSP

0

RISC

1
C1

DSP

1

C_inter_tile

MEM

memory

6/3/2013 Kai.Huang@tum 26

Target Platform Abstraction (2)

- <processor name="processor1" type="DSP">

 <port name="processor_port" type="duplex" />

 <configuration name="clock" value="100 MHz" />

 </processor>

+ <processor name="processor2" type="RISC">

+ <memory name="sharedmemory" type="DXM">

- <hw_channel name="in_tile_link" type="bus">

 <port name="port1" type="duplex" />

 <port name="port2" type="duplex" />

 <port name="port3" type="duplex" />

 <configuration name="buswidth" value="32bit" />

 </hw_channel>

- <connection name="processor1link">

 <origin name="processor1">

 <port name="processor_port" />

 </origin>

 <target name="in_tile_link">

 <port name="port1" />

 </target>

 </connection>

+ <connection name="processor2link">

+ <connection name="memorylink">

bus

DSP RISC DXM

6/3/2013 Kai.Huang@tum 27

Mapping Specification
- <binding name="generator_binding" type="computation">

 <origin name="generator" />

 <target>

 <resource name="processor2" />

 </target>

 <schedule type="roundrobin" />

 </binding>

+ <binding name="consumer_binding" type="computation">

- <binding name="square_binding" type="computation">

 <origin name="square" />

 <target>

 <resource name="processor1" />

 </target>

 <schedule type="fixedpriority">

 <configuration name="priority" value="1" />

 </schedule>

 </binding>

+ <binding name="C1_binding" type="communication">

+ <binding name="C2_binding" type="communication">

in_tile_link

DSP RISC DXM

C1 C2 generator consumer square

Iterated mapping
possible

Reasoning: Shift the design to
system level and limit the ILP Wall

to individual cores

DOL Design Flow Demonstration

distributed
operation

layer

XML
visualization process

network XML

C source code

functional
simulation

instr.-accurate
simulation

mapping
design space
exploration

ann. process
network XML

architecture
XML

mapping
XML

application
developer

to HdS
refinement

DOL Design Flow Demonstration

distributed
operation

layer

XML
visualization process

network XML

C source code

functional
simulation

instr.-accurate
simulation

mapping
design space
exploration

ann. process
network XML

architecture
XML

mapping
XML

application
developer

to HdS
refinement

DOL Design Flow Demonstration

distributed
operation

layer

XML
visualization process

network XML

C source code

functional
simulation

instr.-accurate
simulation

mapping
design space
exploration

ann. process
network XML

architecture
XML

mapping
XML

application
developer

to HdS
refinement

DOL Design Flow Demonstration

distributed
operation

layer

XML
visualization process

network XML

C source code

functional
simulation

instr.-accurate
simulation

mapping
design space
exploration

ann. process
network XML

architecture
XML

mapping
XML

application
developer

to HdS
refinement

 MPSoC programming

o Reasons

o Challenges

o Principles

o Practices

6/3/2013 Kai.Huang@tum 32

Summary

