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MPSoC Programming In General 



 Multi-Processor System-on-Chip 

o Multiple, usually heterogeneous, processing 
elements, a memory hierarchy, and I/O 
components, linked by an on-chip interconnect 

 What is it used for ? 

o Meet the performance needs of domain specific 
applications while limiting the power consumption  

 What is MPSoC programming? 

o To develop applications for MPSoC platforms 
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What is MPSoC? 
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What is MPSoC? 

IBM CELL Broadband Engine 

Intel SCC 



 Moors Law 

 Power Wall 

o The Power Wall means faster 
computers get really hot. 

 

6/3/2013 Kai.Huang@tum 4 

Why is MPSoC? 



 Law of Physics:  All 
electrical power 
consumed is eventually 
radiated as heat 
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Power Wall 

Reasoning: use multiple cores with 
lower frequency to obtain the same 

overall performance 



 Memory Wall 

 ILP Wall 

 Power is still a issue 
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What Is the Problem of MPSoC? 



 The Memory Wall means 1000 pins on a CPU 
package is way too many 

o Bandwidth limit 

o Distance between processing cores and memory 

6/3/2013 Kai.Huang@tum 7 

Memory Wall 

Time 

µProc 

60%/yr. 

DRAM 

7%/yr. 

1 

10 

100 

1000 

DRAM 

CPU 

Processor-Memory 

Performance Gap: 

(grows 50% / year) 

“Moore’s Law” 



 ILP Wall means a deeper instruction pipeline 
really means digging a deeper power hole 
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ILP (Instruction Level Parallelism) Wall 
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Power Wall for MPSoC 

Reasoning: packing more transistors 
needs deeper sub micro CMOS 

techniques which results in larger 
leakage current 



 Memory Wall 

 ILP Wall 

 Power is still a issue 

 

 

 How to program an MPSoC affects a lot! 
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What Is the Problem of MPSoC? 



 Scientific/Super  computing 
o Where data parallelism is abundant 

 Data Centers 
o Independent queries 

o Few shared writes 

o Buying more hardware is cheaper and faster than 
efficient programming 

 Computer Graphics 
o Near infinite, homogeneous parallelism 

o Portable libraries: OpenGL, DirectX 
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Parallel Programming Success Stories 
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Language Classification 
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TIOBE Programming Community Index 



6/3/2013 Kai.Huang@tum 14 

Parallel Architectures in Two Dimensions 
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 Coarse-grained level parallelism 

 Design space exploration 

 Easy to adopt Legacy code  

 Non-functional prosperity verification  
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What We Need 
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Distributed Operation Layer in ETHZ-TIK 
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Versatile MPSoC Software Design Flow 
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EU Project SHAPES Tool-Chain 



Structure 
 Process Network 

o Processes  

o SW channels (FIFO behavior) 

 Iterators 
o Scalability for processes, SW channels, 

entire structures 
 

Functional specification 
 Language: C/C++ 

 API: DOL  primitives 
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Application Specification 

XML Description Available 



 Separation of instruction/thread level 
parallelism (inside processes) and process-
level parallelism. 

 Use of iterators in 

o architecture specification 

o application specification 

o mapping specification 
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Scalability at Specification Level 

A[i,j] B C[i,j] 
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Definition of a process and Example 
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Definition of a process and Example 
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Scalable MPEG-2 Decoder 
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Scalable MPEG-2 Decoder 
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Target Platform Abstraction (1) 
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Target Platform Abstraction (2) 

- <processor name="processor1" type="DSP"> 

     <port name="processor_port" type="duplex" />  

     <configuration name="clock" value="100 MHz" />  

  </processor> 

+ <processor name="processor2" type="RISC"> 

+ <memory name="sharedmemory" type="DXM"> 

- <hw_channel name="in_tile_link" type="bus"> 

     <port name="port1" type="duplex" />  

     <port name="port2" type="duplex" />  

     <port name="port3" type="duplex" />  

     <configuration name="buswidth" value="32bit" />  

  </hw_channel> 

- <connection name="processor1link"> 

     <origin name="processor1"> 

  <port name="processor_port" />  

     </origin> 

     <target name="in_tile_link"> 

  <port name="port1" />  

     </target> 

  </connection> 

+ <connection name="processor2link"> 

+ <connection name="memorylink"> 

bus 

DSP RISC DXM 
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Mapping Specification 
- <binding name="generator_binding" type="computation"> 

   <origin name="generator" />  

   <target> 

     <resource name="processor2" />  

   </target> 

   <schedule type="roundrobin" />  

  </binding> 

+ <binding name="consumer_binding" type="computation"> 

- <binding name="square_binding" type="computation"> 

 <origin name="square" />  

 <target> 

  <resource name="processor1" />  

 </target> 

 <schedule type="fixedpriority"> 

  <configuration name="priority" value="1" />  

 </schedule> 

  </binding> 

+ <binding name="C1_binding" type="communication"> 

+ <binding name="C2_binding" type="communication"> 

in_tile_link 

DSP RISC DXM 

C1 C2 generator consumer square 

Iterated mapping 
possible 

Reasoning: Shift the design to 
system level and limit the ILP Wall 

to individual cores 
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 MPSoC programming 

o Reasons 

o Challenges 

o Principles 

o Practices 
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Summary 


