
HETEROGENEOUS PARALLEL
COMPUTING WITH OPENCL

Sebastian Klose
 kloses@in.tum.de

27.05.2013

Montag, 27. Mai 13

mailto:kloses@in.tum.de
mailto:kloses@in.tum.de

AGENDA

•Motivation

•OpenCL Overview

•Hardware Examples

•OpenCL on Altera FPGAs

Montag, 27. Mai 13

MOTIVATION

Montag, 27. Mai 13

TREND OF PROGRAMMABLE
HARDWARE

CPUs
DSPs

Multicores

GPUs

FPGAs

Brief Overview of the OpenCL Standard Page 3

November 2012 Altera CorporationImplementing FPGA Design with the OpenCL Standard

Figure 3. Recent Trend of Programmable and Parallel Technologies

Considering the need for creating parallel programs for the emerging multicore era, it
was recognized that there needs to be a standard model for creating programs that
will execute across all of these quite different devices. The lack of a standard that is
portable across these different programmable technologies has plagued
programmers. In the summer of 2008, Apple submitted a proposal for an OpenCL
(Open Computing Language) draft specification to The Khronos Group in an effort to
create a cross-platform parallel programming standard. The Khronos Group consists
of a consortium of industry members such as Apple, IBM, Intel, AMD, NVIDIA,
Altera, and many others. This group has been responsible for defining the OpenCL
1.0, 1.1, and 1.2 specifications. The OpenCL standard allows for the implementation of
parallel algorithms that can be ported from platform to platform with minimal
recoding. The language is based on C programming language and contains extensions
that allow for the specification of parallelism.

In addition to providing a portable model, the OpenCL standard inherently offers the
ability to describe parallel algorithms to be implemented on FPGAs, at a much higher
level of abstraction than hardware description languages (HDLs) such as VHDL or
Verilog. Although many high-level synthesis tools exist for gaining this higher level of
abstraction, they have all suffered from the same fundamental problem. These tools
would attempt to take in a sequential C program and produce a parallel HDL
implementation. The difficulty was not so much in the creation of a HDL
implementation, but rather in the extraction of thread-level parallelism that would
allow the FPGA implementation to achieve high performance. With FPGAs being on
the furthest extreme of the parallel spectrum, any failure to extract maximum
parallelism is more crippling than on other devices. The OpenCL standard solves
many of these problems by allowing the programmer to explicitly specify and control
parallelism. The OpenCL standard more naturally matches the highly-parallel nature
of FPGAs than do sequential programs described in pure C.

Brief Overview of the OpenCL Standard
OpenCL applications consist of two parts. The OpenCL host program is a pure
software routine written in standard C/C++ that runs on any sort of microprocessor.
That processor may be, for example, an embedded soft processor in an FPGA, a hard
ARM processor, or an external x86 processor, as depicted in Figure 4.

CPUs DSPs Multicores Arrays FPGAs

Single Cores Fine-Grained
Massively

Parallel Arrays

Coarse-Grained
Massively Parallel
Processor Arrays

Multicores
Coarse-Grained
CPUs and DSPs

Brief Overview of the OpenCL Standard Page 3

November 2012 Altera CorporationImplementing FPGA Design with the OpenCL Standard

Figure 3. Recent Trend of Programmable and Parallel Technologies

Considering the need for creating parallel programs for the emerging multicore era, it
was recognized that there needs to be a standard model for creating programs that
will execute across all of these quite different devices. The lack of a standard that is
portable across these different programmable technologies has plagued
programmers. In the summer of 2008, Apple submitted a proposal for an OpenCL
(Open Computing Language) draft specification to The Khronos Group in an effort to
create a cross-platform parallel programming standard. The Khronos Group consists
of a consortium of industry members such as Apple, IBM, Intel, AMD, NVIDIA,
Altera, and many others. This group has been responsible for defining the OpenCL
1.0, 1.1, and 1.2 specifications. The OpenCL standard allows for the implementation of
parallel algorithms that can be ported from platform to platform with minimal
recoding. The language is based on C programming language and contains extensions
that allow for the specification of parallelism.

In addition to providing a portable model, the OpenCL standard inherently offers the
ability to describe parallel algorithms to be implemented on FPGAs, at a much higher
level of abstraction than hardware description languages (HDLs) such as VHDL or
Verilog. Although many high-level synthesis tools exist for gaining this higher level of
abstraction, they have all suffered from the same fundamental problem. These tools
would attempt to take in a sequential C program and produce a parallel HDL
implementation. The difficulty was not so much in the creation of a HDL
implementation, but rather in the extraction of thread-level parallelism that would
allow the FPGA implementation to achieve high performance. With FPGAs being on
the furthest extreme of the parallel spectrum, any failure to extract maximum
parallelism is more crippling than on other devices. The OpenCL standard solves
many of these problems by allowing the programmer to explicitly specify and control
parallelism. The OpenCL standard more naturally matches the highly-parallel nature
of FPGAs than do sequential programs described in pure C.

Brief Overview of the OpenCL Standard
OpenCL applications consist of two parts. The OpenCL host program is a pure
software routine written in standard C/C++ that runs on any sort of microprocessor.
That processor may be, for example, an embedded soft processor in an FPGA, a hard
ARM processor, or an external x86 processor, as depicted in Figure 4.

CPUs DSPs Multicores Arrays FPGAs

Single Cores Fine-Grained
Massively

Parallel Arrays

Coarse-Grained
Massively Parallel
Processor Arrays

Multicores
Coarse-Grained
CPUs and DSPs

Brief Overview of the OpenCL Standard Page 3

November 2012 Altera CorporationImplementing FPGA Design with the OpenCL Standard

Figure 3. Recent Trend of Programmable and Parallel Technologies

Considering the need for creating parallel programs for the emerging multicore era, it
was recognized that there needs to be a standard model for creating programs that
will execute across all of these quite different devices. The lack of a standard that is
portable across these different programmable technologies has plagued
programmers. In the summer of 2008, Apple submitted a proposal for an OpenCL
(Open Computing Language) draft specification to The Khronos Group in an effort to
create a cross-platform parallel programming standard. The Khronos Group consists
of a consortium of industry members such as Apple, IBM, Intel, AMD, NVIDIA,
Altera, and many others. This group has been responsible for defining the OpenCL
1.0, 1.1, and 1.2 specifications. The OpenCL standard allows for the implementation of
parallel algorithms that can be ported from platform to platform with minimal
recoding. The language is based on C programming language and contains extensions
that allow for the specification of parallelism.

In addition to providing a portable model, the OpenCL standard inherently offers the
ability to describe parallel algorithms to be implemented on FPGAs, at a much higher
level of abstraction than hardware description languages (HDLs) such as VHDL or
Verilog. Although many high-level synthesis tools exist for gaining this higher level of
abstraction, they have all suffered from the same fundamental problem. These tools
would attempt to take in a sequential C program and produce a parallel HDL
implementation. The difficulty was not so much in the creation of a HDL
implementation, but rather in the extraction of thread-level parallelism that would
allow the FPGA implementation to achieve high performance. With FPGAs being on
the furthest extreme of the parallel spectrum, any failure to extract maximum
parallelism is more crippling than on other devices. The OpenCL standard solves
many of these problems by allowing the programmer to explicitly specify and control
parallelism. The OpenCL standard more naturally matches the highly-parallel nature
of FPGAs than do sequential programs described in pure C.

Brief Overview of the OpenCL Standard
OpenCL applications consist of two parts. The OpenCL host program is a pure
software routine written in standard C/C++ that runs on any sort of microprocessor.
That processor may be, for example, an embedded soft processor in an FPGA, a hard
ARM processor, or an external x86 processor, as depicted in Figure 4.

CPUs DSPs Multicores Arrays FPGAs

Single Cores Fine-Grained
Massively

Parallel Arrays

Coarse-Grained
Massively Parallel
Processor Arrays

Multicores
Coarse-Grained
CPUs and DSPs

Brief Overview of the OpenCL Standard Page 3

November 2012 Altera CorporationImplementing FPGA Design with the OpenCL Standard

Figure 3. Recent Trend of Programmable and Parallel Technologies

Considering the need for creating parallel programs for the emerging multicore era, it
was recognized that there needs to be a standard model for creating programs that
will execute across all of these quite different devices. The lack of a standard that is
portable across these different programmable technologies has plagued
programmers. In the summer of 2008, Apple submitted a proposal for an OpenCL
(Open Computing Language) draft specification to The Khronos Group in an effort to
create a cross-platform parallel programming standard. The Khronos Group consists
of a consortium of industry members such as Apple, IBM, Intel, AMD, NVIDIA,
Altera, and many others. This group has been responsible for defining the OpenCL
1.0, 1.1, and 1.2 specifications. The OpenCL standard allows for the implementation of
parallel algorithms that can be ported from platform to platform with minimal
recoding. The language is based on C programming language and contains extensions
that allow for the specification of parallelism.

In addition to providing a portable model, the OpenCL standard inherently offers the
ability to describe parallel algorithms to be implemented on FPGAs, at a much higher
level of abstraction than hardware description languages (HDLs) such as VHDL or
Verilog. Although many high-level synthesis tools exist for gaining this higher level of
abstraction, they have all suffered from the same fundamental problem. These tools
would attempt to take in a sequential C program and produce a parallel HDL
implementation. The difficulty was not so much in the creation of a HDL
implementation, but rather in the extraction of thread-level parallelism that would
allow the FPGA implementation to achieve high performance. With FPGAs being on
the furthest extreme of the parallel spectrum, any failure to extract maximum
parallelism is more crippling than on other devices. The OpenCL standard solves
many of these problems by allowing the programmer to explicitly specify and control
parallelism. The OpenCL standard more naturally matches the highly-parallel nature
of FPGAs than do sequential programs described in pure C.

Brief Overview of the OpenCL Standard
OpenCL applications consist of two parts. The OpenCL host program is a pure
software routine written in standard C/C++ that runs on any sort of microprocessor.
That processor may be, for example, an embedded soft processor in an FPGA, a hard
ARM processor, or an external x86 processor, as depicted in Figure 4.

CPUs DSPs Multicores Arrays FPGAs

Single Cores Fine-Grained
Massively

Parallel Arrays

Coarse-Grained
Massively Parallel
Processor Arrays

Multicores
Coarse-Grained
CPUs and DSPs

Brief Overview of the OpenCL Standard Page 3

November 2012 Altera CorporationImplementing FPGA Design with the OpenCL Standard

Figure 3. Recent Trend of Programmable and Parallel Technologies

Considering the need for creating parallel programs for the emerging multicore era, it
was recognized that there needs to be a standard model for creating programs that
will execute across all of these quite different devices. The lack of a standard that is
portable across these different programmable technologies has plagued
programmers. In the summer of 2008, Apple submitted a proposal for an OpenCL
(Open Computing Language) draft specification to The Khronos Group in an effort to
create a cross-platform parallel programming standard. The Khronos Group consists
of a consortium of industry members such as Apple, IBM, Intel, AMD, NVIDIA,
Altera, and many others. This group has been responsible for defining the OpenCL
1.0, 1.1, and 1.2 specifications. The OpenCL standard allows for the implementation of
parallel algorithms that can be ported from platform to platform with minimal
recoding. The language is based on C programming language and contains extensions
that allow for the specification of parallelism.

In addition to providing a portable model, the OpenCL standard inherently offers the
ability to describe parallel algorithms to be implemented on FPGAs, at a much higher
level of abstraction than hardware description languages (HDLs) such as VHDL or
Verilog. Although many high-level synthesis tools exist for gaining this higher level of
abstraction, they have all suffered from the same fundamental problem. These tools
would attempt to take in a sequential C program and produce a parallel HDL
implementation. The difficulty was not so much in the creation of a HDL
implementation, but rather in the extraction of thread-level parallelism that would
allow the FPGA implementation to achieve high performance. With FPGAs being on
the furthest extreme of the parallel spectrum, any failure to extract maximum
parallelism is more crippling than on other devices. The OpenCL standard solves
many of these problems by allowing the programmer to explicitly specify and control
parallelism. The OpenCL standard more naturally matches the highly-parallel nature
of FPGAs than do sequential programs described in pure C.

Brief Overview of the OpenCL Standard
OpenCL applications consist of two parts. The OpenCL host program is a pure
software routine written in standard C/C++ that runs on any sort of microprocessor.
That processor may be, for example, an embedded soft processor in an FPGA, a hard
ARM processor, or an external x86 processor, as depicted in Figure 4.

CPUs DSPs Multicores Arrays FPGAs

Single Cores Fine-Grained
Massively

Parallel Arrays

Coarse-Grained
Massively Parallel
Processor Arrays

Multicores
Coarse-Grained
CPUs and DSPs

Montag, 27. Mai 13

OPENCL GOALS

• Khronos standard for unified programming of heterogeneous
hardware (GPU, CPU, DSP, Embedded Systems, FPGAs, ...)

• Initiated by Apple (2008) - Dec. 2008 OpenCL 1.0 Release

• explicit declaration of parallelism

• portability/code reuse: same code for different hardware

• ease programmability of parallel hardware

Montag, 27. Mai 13

AVAILABILITY
SDK Hardware Version

Intel OpenCL SDK Core i3/i5/i7
CPU & Integrated Intel HD GPU 1.2

AMP APP SDK AMD GPUs
X86 CPUs 1.2

Apple CPUs & GPUs 1.2

Altera selected boards 1.0

Qualcomm Qualcomm CPU & GPU 1.1

ARM Mali T604 GPU 1.1

.........

Montag, 27. Mai 13

Last Revision Date: 11/14/12 Page 21

1

1

1

1

*
0..1

*

*

Image

Context

1

1Platform

*
1..*

*

1

DeviceID

*MemObject
{abstract}

*

1 Buffer

*

Sampler

*

Kernel

*

1

*Program

*

0..1* CommandQueue * Event

*

Figure 2.1 - OpenCL UML Class Diagram

OPENCL OVERVIEW

Montag, 27. Mai 13

OPEN COMPUTING
LANGUAGE

Host
(C, C++, ...)

GPU

OpenCL

CPU

Accelerator
Platform Layer

 API
OpenCL C Language

(Kernel)

Runtime API

•C99 subset + extensions
•built-in functions
•(sin, cos, cross, dot, ...)

•“compile” kernel code
•execute compiled kernels on device(s)
•exchange data between host and
compute devices
•synchronize several devices

•query/select devices of host
•initialize compute devices

Montag, 27. Mai 13

PLATFORM MODEL

• one host

• one or more compute
devices

• compute devices are
composed of one or more
compute units

• compute units are divided
into one or more processing
elements

Co
m

pu
te

 U
nit

Co
m

pu
te

 U
nit

Co
m

pu
te

 U
nit

Co
m

pu
te

 U
nit

Compute
Device

Compute
Device

Host

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Montag, 27. Mai 13

EXAMPLE: NVIDIA KEPLER
GK110

�
�

An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64Ͳbit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

x The�new�SMX�processor�architecture�
x An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

x Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

Source: http://www.nvidia.de/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

•15 SMX = Compute Units

•1SMX = 192 Processing Elements

Montag, 27. Mai 13

http://www.nvidia.de/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.de/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

EXECUTION MODEL
• Kernel

unit of executable code - data parallel or task parallel

• Program
collection of kernels and functions (think of dynamic library)

• Command Queue
host application queues kernels & data transfers
in order or out of order

• Work-Item
execution of a kernel by a single processing element (think of thread)

• Work-Group
collection of work-items that execute on a single compute unit (think of cpu core)

Montag, 27. Mai 13

SPECIFY PARALLELISM

• say our “global” problem
consists of 1024x1024 tasks,
which can be executed in
parallel

• therefore we have 1024x1024
work-items

• group several work-items into
local workgroups

Montag, 27. Mai 13

MEMORY MODEL

Device

GlobalConstant

Workgroup

Local

Work Item

private

Work Item

private

Work Item

private

...

Workgroup

Local

Work Item

private

Work Item

private

Work Item

private

...

...

Host
Host Memory

Montag, 27. Mai 13

EXECUTION MODEL

• host application submits work
to the compute devices via
command queues

• context: environment within
which work-items executes
 includes: devices, memories
and command queues

Context

GPU CPU
Q

ueue

Q
ueue

Montag, 27. Mai 13

SYNCRONIZATION

• Events:
synchronize kernel executions between different queues in the
same context

• Barriers
synchronize kernels within a queue

Montag, 27. Mai 13

SIMPLE KERNEL EXAMPLE

• inside the kernel you (e.g.) program the execution of the
inner part of a loop

• built-in kernels can be used to exploit special hardware units

void	
 inc(
 float*	
 a,	
 float	
 b,	
 int	
 N	
)
{

for(
 int	
 i	
 =	
 0;	
 i	
 <	
 N;	
 ++i	
)
{

a[
 i	
]	
 =	
 a[
 i	
]	
 +	
 b;
}

}

void	
 main(
 void	
)	

{

...
inc(
 a,	
 b,	
 N	
);

}

kernel
void	
 inc(
 global	
 float*	
 a,	
 float	
 b	
)
{

int	
 i	
 =	
 get_global_id(
 0	
);
a[
 i	
]	
 =	
 a[
 i	
]	
 +	
 b;

}

//	
 host	
 code
void	
 main(
 void	
)	

{

...
clEnqueueNDRangeKernel(
 ...,	
 &N,	
 ...	
);

}

Montag, 27. Mai 13

OPENCL ON ALTERA FPGAS

+

Montag, 27. Mai 13

FPGA SOC

ALTERAS EXECUTION MODEL
Host CPU

User Program

OpenCL Runtime

FPGA

Accelerator
Accelerator
Accelerator

Embedded CPU

User Program

OpenCL Runtime

Accelerator
Accelerator
Accelerator

PCIe

Montag, 27. Mai 13

ALTERA OPENCL
COMPILATION

OpenCL
Host Program & Kernels

ACL Compiler Std. C Compiler

FPGA bitstream X86 Binary

PCIe

Produces throughput
and area report

Montag, 27. Mai 13

DIFFERENCES TO OTHER
OPENCL IMPLEMENTATIONS

• in contrast to CPU/GPU, specialized datapaths are generated

• for each kernel, custom hardware is created

• logic is organized in functional units, based on operation and linked
together to form the dedicated datapath required to implement the
special kernel

• execution of multiple workgroups in parallel in a custom fashion

• pipeline parallelism

Montag, 27. Mai 13

ALTERA LIMITATIONS
• OpenCL Version 1.0 (nearly completely)

• #contexts: 2 #cmd_queues/ctxt = 3;
#program_objects/ctxt = 3 #outstanding events/ctxt around 100
#concurrently running kernels=3 #kernels / device = 16
#arguments / kernel = 128 #work_items / work_group = 256

• max 256MB of host-side memory (CL_MEM_ALLOC_HOST_PTR)

• max 2GB DDR as device global memory

• No support for out-of order execution of command queues

• no Image read and write function (atm), no explicit memory fences, no floating point exceptions

• Memory:

• global memory visible to all work-items (e.g. DDR Memory on FPGA)

• local memory visible to a work-group (e.g. on-chip memory)

• private memory visible to a work-item (e.g. registers)

Montag, 27. Mai 13

BENEFITS

• shorter design cycles & time
to market

• performance

• performance per watt

• explicit parallelism

• “portable” 0 23 45 68 90

15,1

15,9

83,6

Performance per Watt in Million Terms/J

Terasic DE4
Xeon W3690
Tesla C2075 GPU

Montag, 27. Mai 13

