
LUSTRE: A declarative language
for programming synchronous systems*

P. Caspi D. Pilaud N. Halbwachs J. A. Plaice
Laboratoire “Circuits et Systkmes” Laboratoire de GEnie Informatique

BP68, 38402 St Martin d’HBres, FRANCE

Received IO/1386

Abstract

LUSTRE is a synchronous data-flow language for
programming syetema which interact. with their en-
vironments in real-time. After an informal presen-
tation of the language, we describe its semantics by
means of structural inference rules. Moreover, we
ehow how to use this semantics in order to gener-
ate efficient, sequential code, namely, a finite state
automaton which represents the control of the pro-
gram. Formal rules for program transformation are
also presented.

Introduction

This paper presents the language LUSTRE, whose main
application field is the programming of automatic control
and signal processing systems. In this field, design is tra-
ditionally driven by means of two types of tools. First,
specifications are often systems of equations (differential or
finite difference equations, boolean equations, . . .). Second,
implementations are often nets of operators connected with
wires (switches, gates, analog diagrams). Such tools present
several ad&tag- as a basis for a programming language.

l Systems of equations are mathematically tractable
objects. In such systems, variables are interpreted
in the mathematical sense, without any notion of as-
signment, side effect, etc., often carried by variables
in usual programming languages. An equation is then
an invariant assertion, true at each instant.

‘This work was partially supported by a grant from PRC-C3 (CNRS).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

Both in systems of equations and in operator nets,
there is neither the notion of control nor that of se-
quentiality. The only constraints on the evaluation
order arise from the dependencies between variables.
As a consequence, any implementation, be it aequen-
tial or highly parallel, can be easily derived.

As pointed out above, the considered equations are
generally time invariant: variables may be considered
to be functions of time, and X-E means that at each
instant t, Z: = ct. Hence, such models are likely to
provide a simple and natural way of handling time,
a problem which is never adequately solved in usual
languages, in spite of the work increasingly devoted
to it.

LUSTRE is a programming language founded on these
remarks. A program is a system of equations defining vari-
ables, which are functions from time to their domain of
values. Since we are concerned with discrete systems, time
is projected onto the set of naturals, making variables infi-
nite sequences of values. Furthermore, a program may be
viewed as an operator net, aa is standard for data-flow lan-
guages, with a further assumption called synchrony, which
states that operators respond instantaneously to their in-
put.

Our equational point. of view may be summarized by
the two following principles:

Substitution principle An equation X=E specifies a full
synonymy between the variable X and the expression
E. Thus, in every context, the identifier X may be
replaced by the expression E, and conversely. This
property is very useful in program transformation.

Definition principle Let X=E be the equation defining the
variable X. Then the behavior of X must be com-
pletely specified by this equation and the behavior of
variables appearing in the expression E.

A program defines a function from its input (sequences)
to its output (sequences). From the assumption of syn-
chrony, all functions expressible in the language must sat-
isfy the following properties:

‘0 1987 0-89791-215-2/87/OlIBOl78 750
178

Causality The output at any instant t may only depend
upon input received before or at t. Notice that in this

sense, LUCID [l], a close parent of LUSTRE, allows
the definition of uncausal programs.

Bounded memory There must exist a finite bound such
that, at each instant, the number of past input values
that are necessary to produce the present and future
output values remains smaller than that bound.

Moreover, in order to be usable for real-time program-
ming, the language must present the following features:

Efficient code generation possibility This feature en-
tails that most consistency checks must be possible at
compile time. Moreover, we shall see that very effi-
cient code can be produced from LUSTRE programs,
through the construction of finite automata, as done
for the language ESTEREL [7].

Execution time predictability It is necessary to be able
to verify the realism of the synchrony assumption,
which holds only when the response time of the pro-
gram is negligible with respect to the reaction time
of its environment. Thii constraint forbids the use of
unbounded loops and recursive functions.

Finally, in the considered application field, program re-
liability is especially important. This goal has been ap-
proached in LUSTRE by two means:

Strong consistency checks allowed by a coercive syntax
and strict rules of static semantics.

Simple formal semantics It minimizes the risk of pr+
gram misunderstanding. In particular, it must be
perfectly clear when a variable changes.

The language is informally presented in Section 1, and
its use is illustrated in Section 2 through the programming
of a stopwatch. Section 3 presents the most important as-
pects of the formal semantics of LUSTRE. It is showed
in Section 4 how this semantics may be used to produce
sequential code from LUSTRE programs. Section 5 is de-
voted to formal transformations of programs, which benefit
from the mathematical nature of the language. In con-
clusion, LUSTRE is compared with related languages and
formalisms and future work ls outlined.

1 Informal presentation

1.1 Variables, Equations, Data Operators

As indicated above, any variable or expression in LUSTRE
denotes au infinite sequence of values. Variables are de-
fined by means of equations: if X is a variable and E is an
expression, the equation X=E defines X to be the sequence

(20 = eo,q = e1,. . . , z, = e,, . . .),

where (eo, ei,. . . , c,, . . .) is the sequence of values of the
expression E.

Expressions are built up from variables, constants (con-
sidered to be infinite constant sequences) and operators.
The usual arithmetic, boolean and conditional operators on
values are extended to pointwisely operate over sequences,
and are hereafter referred to as data operators. For in-
stance, the expression

if X>Y then X-Y else Y-X

denotes the sequence whose n-th term is the absolute dif-
ference of the n-th values of X and Y.

1.2 Sequence Operators

In addition to data operators, LUSTRE contains only four
non-standard operators, called sequence operators, which
actually manipulate sequences.

To keep track of the value of an expression from one
cycle to the next, there is a memory or delay operator called
pre (ypreviousn). If

x = (20,51,. . .) z,, . . .),

then

pre (X1 = (nil, 20,21,. . . , z,-1, . . .),

where nil is a.n undefined value, akin to the value of an
uninitialized variable in imperative languages. The com-
piler ensures that no data operator is ever applied to nil.

To initialize variables, the -> (“followed by”) operator
is introduced. If

x = (zo, 21,. . . ,Z,, . . .)

and

y = (YO,Yl,...,Yn ,...)

are two variables (or expressions) of the same type, then

x-‘Y = (ZO,Yl,YZ,...,Yn,...),

i.e., X->Y is equal to Y except at the first instant.
As an example of use of these operators, the equation

X = 0 -> pre(X) + 1:

defines X to be 0 initially, and its previous value incremented
by 1 subsequently. Hence, X is the sequence of naturals.

The last two operators require some introduction. Up
to now, one can consider a program to have a cyclic be-
havior, namely computing at its n-th cycle the n-th value
of every variable. However, if we are to consider variables
whose values only make sense under some condition, it be-
comes necessary to be able to define variables which are not
computed at every cycle. We thus introduce the sampling
operator when.

Let E be an expression and B be a boolean expression.
E when B is then an expression whose sequence of values is
extracted from the sequence of E by taking only those values
which occur when B is true. The point is that E when B

179

E=(co e2 es

9 tt tt

. . . 1

B=(tt f . ..)

X=E when B =(z. = co 21 = e2 x2 = es . . .)

Table 1: The when operator

B=(tt fl tt tt 8 f . . .)

E=(ee el e2 es e4 e5 . . . 1
X=EwhenB=(co e2 es . . . 1

Y= current(X) =(ee e0 e2 es e.3 e5 . . . 1

Table 2: The current operator

does not ahave the same notion of time” ss E and B, as
shown by Table 1. Now, several remarks must be made
about this operation.

In the above example, X is said to be computed on clock
B. This means that the only notion of time that X “knows”
is the sequence of cycles where B is true. As a consequence,
the question =what is the value of X when B is not true?”
makes no more sense than the question “what is the value
of a variable between two integer instants?“.

Our model of variables consisting of sequences is no
longer sufficient: two variables may describe the same se-
quence of values without being equal. Henceforth, a vari-
able will be characterized not only by its sequence of values,
but also by its clock. Let us call a stream the couple formed
by a sequence and a clock. Streams and clocks are recur-
sively defined as follows:

< clock> ::= true 1 <boolean stream>
<stream of type T > ::= <sequence of type T ><clock >

Intuitively, if the stream associated with an expression is of
clock true, then the expression is renewed with the basic
cycle of the program. Constants are always assumed to be
on the basic clock. A non basic clock is defined by a boolean
expression, which in turn has a clock. Thus clocks may be

nested: for instance, the millisecond can be modeled as a
clock (a boolean variable which is true at each tick of a
quartz) and the second can be another ciock defined on the
millisecond clock. Moreover, this example shows that the
when operation allows the basic cycle to be quite unrelated
to physical time, which can be handled as an input to the
program.

Now, suppose that we wish to apply an operator on
expressions with different clocks (e.g., to sum X and E in
the example of Table 1). Since an operator operates on
terms of the same rank, and since these terms can exist
at different instants, either the causality or the bounded
memory condition could be violated. In order to operate on
expressions with different clocks, we must first put them on
the same clock, either by sampling (when) or by projecting,
using our last operator, current.

If E is an expression of clock B, then current(E) is an
expression whose clock is the same as that of B and whose
value at each cycle of this clock is the value taken by E at

the last cycle when B was true. Table 2 illustrates the com-
bination of the when and current operators. The current
operator allows operations over variables of different clocks,
since if x and X’ are variables of respective clocks B and B’,
and if B and B’ have the same clock,

current (X1 op current (X’>

is a legal expression for every binary operator op.

1.3 Nodes and Nets

A node is a LUSTRE subprogram. It receives input vari-
ables, computes output variables, and possibly local vari-
ables, by means of a system of equations. For instance, we
can define a general counter as follows:

node COUNT (init. incr: int; reset: boo11
returns (n: int):

let
n = init ->

if reset then init else prefn) + incr:
tel:

Node instantiation takes a functional form: if N is the
name of a node declared with heading

node N (ir : 71; ir : 7s; . . . ; & : rP)
returns f jl : Bi; j2 : 82; j, : 8,) :

and if &,...,E,, are expressions of type 71,. . . , r,,, then
the instantiation N (El,. . . ,EJ is an expression of type
tuple(&, . . .) e,) whose n-th value is the tuple (jl., . . . , jp,,)
computed by the node from input parameters El,. . . , E,,,
Conditional and sequence operators are polymorphic, and
can be applied to tuples. Coming back to the general
counter, one may write

even = COUNTfO. 2. false):
mod5 = COUNTfO. 1. pre(mod5=4));

thus defining even to be the sequence of even numbers and
mod6 to be the cyclic sequence of integers module 5.

Concerning clocks, and in agreement with the data-flow
philosophy, the basic execution cycle of a node is deter-
mined by the clock of its input parameters. As an example,
the instantiation

180

B=(tt f tt .f tt

COUNT((O.l.false) when B) =(0 1 2

COUNT(O.l,falae) when B =(0 2 4

Table 3: Sampling input vs. sampling output

. . .

. . . ;

. . . 1

COUNT((0. 1. false) when B)

counts whenever B is true. Now the when operator does not
distribute over sequence operators, so synchronyzing the
execution of a node by sampling its input generally differs
from sampling its output, as shown by Table 3.

A node may receive input parameters with different
clocks, but when the clock of a parameter is not the ba-
sic clock, this clock must be passed as a parameter. For
instance, one can declare a node with heading

node N (millisecond: bool;
(second: bool) when millisecond)

returns . . .

This header means that the first parameter (whose clock is
always the basic clock of the node) is the clock of the second
parameter. A node may also return parameters with dif-
ferent clocks, provided these clocks be visible from outside
the node.

This mechanism for declaring and instantiating nodes
allows the definition of whole nets of parallel, synchronous
operators. In fact, any operator may be considered to be a
node: for instance, the equation

X = 0 -> pre(X> + 1;

describes the net in Figure 1.

Figure 1: An operator net

1.4 Practical issues

Of course, the language is much too simple to be practically
usable. In the design of LUSTRE, we focused on tempo-
ral aspects, thus forsaking standard topics, such as type
mechanisms, input/output facilities, etc. Moreover, we do
not consider the data-flow approach as dogma. There are
indeed many programs which are easier to write in an im-
perative style. For all these reasons, there is the possibility
in a LUSTRE program to call external functions written
in a host language (currently C, which is also the target
language of our compiler). These functions are treated as
data-operators which operate in null-time. They are also
used for interfacing programs: a LUSTRE program calls
its environment as a function (e.g. “teletype” or “sensor”)
which takes as inputs the outputs of the program, and/or
returns its inputs. One can also use external types, whose
members are handled by means of functions.

2 An Example

Let us illustrate the use of our language through the pro-
gramming of a stopwatch (other examples may be found in
[5,6]). We begin with a simplified version.

The stopwatch receives three signals: a start-stop
button, a reset button, and the l/100 sec. ha emitted
from a quartz. It computes the time as follows: the time
is initially 0, and is reset to 0 whenever the reset button
is pushed. It is incremented at each l/100 sec. when the
stopwatch is in the running state. Initially the stopwatch is
in the not running state, and the state changes whenever
the start-stop button is pushed.

All the events (buttons, l/100 sec.) will be implemented
as boolean variables: the variable is true when and only
when the event occurs. The integer output time will be
computed by the node COUNT defined above, with parame-
ters 0, 1, reset, sampled according to a suitable clock CK.
So, time will be the projection onto the basic clock of the
expression

COUNT((0, 1. reset) when CK);

Now, the node COUNT must perform a cycle at the initial
instant, and whenever either the hs event occurs in the
running state, or the reset event occurs. So, the clock
CK is as follows

CK = true -> (HS and running) or reset;

The running state variable remains to be defined. It is
initially false and changes whenever the start-stop event

181

occuw. We uze a node TWOSTATES, of general usage, which
takes az parameters an initial value and two events, set
and reset, and returns a boolean value.

@ode TWO-STATES (init. set, reset: bool)
returns (state : bool) ;

let
state =

tel :

running =

init ->
if set and not prefstate)
then true
else if reset and precstate)

then false
ale0 prefetate) ;

TWO,STATES(falee. start-stop. atart,stop);

The complete program of this first version of the stopwatch
is as follows:

node SIMPLE-STOPWATCH
(start-stop, reset. hs: boo11

returns (time: int):
var CK. running: bool:
let

time =
current(COUNT((0. 1. reset) when CK));

CK = true -> (HS and running) or reset:
running =

TWO,STATESffalse, start-atop, start-stop);
tel;

Now, let us consider a more realistic stopwatch: it has a

lap button for handling intermediate time by freezing the
display. The stopwatch computes two times.

s an internal time, computed as before;

s a displayed time, which is equal to the internal time
when the stopwatch is not in lap mode, and which is
frozen when the lap mode is entered.

The stopwatch is initially in notlap mode. The lap mode
is entered whenever the lap button is pushed in running
state and left the next time the lap button is pushed.

Moreover, the reeet event for the internal time corre-
sponds now to a pushing of the lap button in not running
state and in not lap mode.

The displayed time is always equal to the value of the
internal time the last time the stopwatch was not in lap
mode:

diep-time = current(int,time when not-in-lap):

The mode is again described using the TWOSTATES node:

not-in-lap =
TWO-STATESftrue, lap, lap and running);

It remains to define i&-time:

int-time =
SIf@LE3TOPWATCH(etart,stop. reset. he):

reset = lap and prefnot-in-lap)
and prefnot running) ;

and the variable running, as before, since it is not exported
by the node SIMPLE-STOPWATCH.

3 Operational Semantics

Although the first semantics written for LUSTRE [4] was
denotational B la Kahn [lS], we shall present the operational
one which has been used as a basis for the construction of
our compiler. We uze structural inference rules B la Plotkin
[20]. While this semantics is quite simple, it cannot be thor-
oughly presented in a single paper (a complete description
may be found in [Q]). W e only present its most illustra-
tive features: the clock consistency and the kernel of the
dynamic semantics.

3.1 Clock Rules

As mentioned above, a clock may be statically associated
with each expression of a program. The clock consistency
rules essentially state that operands of any operator must
be on the same clock. The rules are checked at compile
time.

First, we must make precise what we mean by =on the
same clock”. Ideally, it would refer to equality of boolean
streams. However, static checking of the equality between
two boolean variables being undecidable, we are led to con-
sider finer equivalences on clocks. Let G be some equiv-
alence relation between boolean expressions such that two
equivalent expressions denote the same stream. In this sub-
section, we consider clocks to be the equivalence classes of
the relation Z. In the current version, the relation E is the
syntactic identity of identifiers. Notice that this definition
seems to violate the substitution principle, since replacing
the second operand of a when operator by its definition may
result in changing its clock. We do admit that we allow
substitution to change the result of consistency checks, but
once these checks have been passed, the dynamic semantics
will not be affected by substitution.

We define a clock environment w to be a function from
identifiers to clocks. The clock environment associates with
each variable the clock of the right-hand side of its defini-
tion. Let CK(exp,w) be the clock of the expression exp in
the environment w. From an equation X = exp, we shall
deduce

w(X) = CK(exp,w).

Hen&, the definition of w is recursive, and w will be de-
fined as a solution of a fix-point equation. However, not
every solution of this equation is suitable, as is shown by
the following example. Let M and N be two nodes returning
output parameters on the same clock as their input param-
eters, and consider the program

X = M(Y); Y = N(X);

182

The only information that we can acquire about the clocks
of X and Y is

w(x) = w(Y)

which is clearly insufficient to give a determined meaning
to the program. Now consider the program

X=M(Y): Y=:(X); Z=X+l:

Since the constant 1 is on the basic clock and the operator
+ must be applied to operands on the same clocks, the only
solution which makes sense of the program is

w(X) = w(Y) = w(Z) = true(the basic clock)

However, accepting such a solution would violate the def-
inition principle (“the behavior of a variable is completely
specified by its definition”), since it would deduce the clock
of X from its use, rather than from its definition. Thus our
rules must reject such a program.

We shall define an ordering relation among clocks, SO

that the environment be the least solution of the fix-point
equation. The set of clocks is structured ss a flat lattice as
follows

ck<ck%(ck=IVck’=TVck=k’),

where I and T must be respectively interpreted as the
undefined clock and the erroneous clock. Let us denote the
least upper bound operator in this lattice by iJ.

Now the clock environment associated with a system of
LUSTRE equations is the least solution of the associated
system of clock equations. The program is correct with
respect to its clocks if the range of this environment does
not intersect the set {I, T}.

We must now define the function CK, which gives the
clock of an expression in a given environment. The rules
are as follows.

Constants

For any constant k, CK(k,w) = true.

Variables

For any identifier X, CK(X, w) = w(X).

Synchronous operators

For any op @ {when, current},

CK(op(expr , expt , exp,), w) = (J CK(eTi>W)
i=l

Sampling

The operands of the when operator must be on the same
clock:

CK(exp, w) U CK(ck, u) # T
CK(exp when ck,w) = ck

Projection

One may only project an expression which is not on the
basic clock:

CK(w, w) = ck, ck # true

CK(current (exp), w), CK(ck, w)

The rules for nodes are more complicated. We only
outline the algorithm for finding the clock (generally a tupie
of clocks) of a node instantiation:

The analysis of a node declaration provides a local en-
vironment which subsumes:

l the relations between the clocks of input parameters;

l the clocks of local variables and output parameters,
computed under the assumption that the first input
parameter is on the clock true (since its clock defines
the basic clock of the node)

The restriction of this local environment according to (in-
put and output) parameters must range over parameters
(since the clock of an output parameter must be visible
from outside the node).

When the node is called, this restricted environment is
considered in order to

l check that the actual input parameters are on suitable
clocks;

l compute the clocks of output parameters, by renam-
ing formal by actual parameters, and renaming the
clock true by the clock of the first actual input pa-
rameter.

3.2 Dynamic Semantics

For simplicity, and without loss of generality, we define the
dynamic semantics on a very simplified basic syntaz, de-
fined as follows:

prog ::= eqs

eqs ::= eq 1 eq; eqs

eq ::= id= (ck)exp

*xp ::= sexp 1 sexy>sexp 1 k fby sexp 1 currfsexp, k)

s=FJ ::= k 1 id) dop(sexp, . . . , sexp)
ck ::= exp 1 true

where k stands for a constant and dop stands for any data
operator.

It can be shown that any LUSTRE program which is
correct according to the static semantics can be translated
into that syntax. This translation consists of

computing the clocks;

expanding nodes, by replacing each node instantia-
tion by its body, after suitable instantiation of pa-
rameters and clocks, and renaming of local variables.
Thus we only consider flat programs (systems of equa-
tions);

translating pre (exp> and current (exp) into
nil fby exp and currcexp. nil) respectively (fby
is the LUCID “followed by” operator; it is equivalent
to -> pre);

183

introducing anxiliary variables and performing suit-
able substitutions so that the right-hand side of each
equation contains at most one sequence operator;

indicating the clocks in the equations (true stands for
the basic clock of the program). The when operators
are then redundant, and may be dropped.

3.2.1 Semantic Domains

Let us define a memory c to be a function from identifiers
to values, and a history h to be a sequence of memories.
A memory associates I with an identifier when the corre-
sponding variable does not have to be computed (its clock
is false or does not. have to be computed). A memory will
give the values of variables at a given cycle. A system of
equations eqs is compatible with a memory u if the first. cy-
cle of evaluation of eqs associates the value O(X) with each
identifier X defined in eqs. The semantics of a program is
the transformation

(input history) ==+ (output history)

it computes.
We shall not give the semantics of simple expressions

(sexp) aa they are obvious. Let us define the following
predicates.

o I- sexp : k In the memory (I, the simple expression exp
evaluates as k.

u k exp 5 ex$ In the memory o the expression exp eval-
uates as k, and exp will be later on evaluated as exp’.

eq s eq’ The equation eq is compatible with the memory
Q and will later on be considered as eq’.

eqs 5 eqs’ The system of equations eqs is compatible with
the memory B, and will later on be considered as eqs’.

h k eqs : h’ From its input history h, the program defined
by the system of equations eqs produces the output
history h’.

3.2.2 Rules

Programs

eqs % eqs’, h E eqs’ : h’

o[input].h t- eqs : a(0utputj.h’

where a[input] and a[output] respectively denote the
restriction of u to the input and output variables of the
program.

Systems of equations

eq JG eq’, eqs 5 eqs’

eq; eqs s eq’; eqs’

Equations

If the clock is true, the right-hand expression is evaluated
and its value is associated with the variable on the left-hand
side.

a(ck) = tt, u k exp 5 exp’, a(id) = k

id= (ck) exp 5 id= (ck) exp’

If the clock is not true, the left-hand variable is not evalu-
ated.

a(ck) # tt, a(id) = I

id=(ck)exp % id=(ck)exp

These rules define Q to be the solution of a fixpoint equa-
tion. Moreover, this solution must be unique (otherwise the
program contains a deadlock; this problem will be detailed
in section 4.1).

Expressions

Simple expressions are always evaluated in the same man-
ner.

aksexp:k
k al-sexp+sexp

The result of a -> operator is the value of its first operand.
The expression will henceforth be evaluated as the second
operand.

atsexpl:k
k

u t- sexpI->sexp2 + 8exp2

The result, of a fby operator is the value of its first operand.
The result of the second operand is stored in the expression
to be evaluated later on.

u t- sexp : kl

u I- k fby sexp 4 k1 fby sexp

If an expression is evaluated, its current value is the result
of the expression, which must be stored for further evalu-
ations. If the expression is not evaluated, its current value
is the stored value.

(I!-s.exD:k,. k,#l.

u!- curr(sexp.k) 3 currbexp.k,)

uI-aexp:l

ui- curr(sexp,k)-%curr(aexp,k)

4 Compilation of LUSTRE

This section deals with the most specific features of the
compilation of LUSTRE.

4.1 Variable dependencies and deadlock
detection

As usual in non-procedural languages, the only constraints
on the ordering of computations in LUSTRE result from
the dependencies between variables: a variable X instanta-
neously depends on Y at a given cycle if the value of Y at
this cycle must be known in order to compute the value of

184

X. At any cycle, this relation must be irreflexive: as men-
tioned in the semantics of equations, the memory must be
the unique fixpoint of a function, and this unicity is only
ensured when no variable instantaneously depends on itself:
of course, we don’t intend to solve implicit equations such
as

x= x**2 + 1;

Such a situation, which is called a deadlock in the termi-
nology of LUCID, may be difficult to detect. So, in the
present compiler, we are led to consider a coarser, static
dependency relation, which is the transitive closure of the
relation “the variable Y appears outside any pre operator
in the expression defining X”. This relation is easy to build
from the text of the program, and when it is not irreflexive,
the program will be rejected. Clearly, this approximation
ensures the detection of any deadlock, but may result, in
some cases, in rejecting correct programs, such as the fol-
lowing one:

X = if C then Y else Z;
Y = if C then Z else X;

4.2 Sequential code generation

4.2.1 Node expansion

First of all, let us notice, following a remark by G. Gonthier
[111, that in synchronous languages, sequential code cannot
be obtained in a modular way. This means that we cannot
produce sequential code for a LUSTRE node independently
of the instantiations of that node. For instance, consider
the folIowing, very simple node, which only lets its two
inputs traverse it:

node DUMMY (X.Y: int) returns (Xl.Yl: int);
let Xl = X; Yl = Y; tel;

Clearly, for any execution cycle of this node, the sequential
code should be either

Xl := x; Yl := Y:

or

Yl := Y; Xl := x;

Now, consider the call

(A.B) = DUMMY(C.A):

corresponding to the net of Figure 2. This call is perfectly
causal, but only the first version of sequential code is cor-
rect. Of course, one can exhibit a call for which only the
second version would be correct.

So, we are led to expanse the node calls, and to con-
sider only flat programs, as done for the description of the
dynamic semantics.

4.2.2 Control synthesis

Clearly, boolean variables play an important role in LUS-
TRE: as clocks or conditions, they are often used to imple-
ment what is usually represented by control in imperative
languages. Their computation must thus be carefully im-
plemented. Let us illustrate how the rules of the dynamic
semantics can be used to evaluate boolean expressions at
compile time. As for the ESTEREL language, we shall
build a finite automaton which is the control skeleton of
the object program. Moreover, [S] describes a very efficient
algorithm for thii construction.

Consider the following “program”, where b is an input
variable:

c = false -> b and not prefc);

Translation into basic syntax provides the program PO:

c = false -> b and not pc:
pc = nil fby c:

Now, from the rules of dynamic semantics, we have

where a(c) = false, I - nil and the program PI is
as fol1ows:

c = b and not pc;

PC = false fby c;

Again from the rules of dynamic semantics, we get that

l if the input b is false then

where a(c) = false, o(pc) = false

l if the input b is true then

PI e, P,

where o(c) = true, afpc) = false and the pro-
gram P2 is as follows:

c = b and not pc:

PC = true fby c;

Finally, we have that, whatever be the input b,

Figure 2:

185

Figure 3:

where u(c) - falro and o(pc) = true.
We have constructed the automaton of Figure 3, where

the diamond stands ss a test on the input.
In such a construction, complex boolean expressions

(such as comparison of integers) will be considered as in-
put. Non boolean computations are simply reported on the
transitions.

At the time of the writing of this paper, the current ver-
sion of the compiler does not incorporate the generation of
&rite state automata. Experience with ESTEREL [7] shows
that, in synchronous languages, the size of the automaton
generally remains small. However, if it should explode, its
size can be reduced by several means. Two possibilities
would be to allow the programmer to specify certain prop
erties of input variables (e.g., that two variables can never
both be true) or to restrict the simulation to some subset
of the boolean variables.

In addition to code generation, such automata may be
used to refine the static consistency checks:

l check of operation onto nil;

l detailed study of clock equivalence;

l refinement of the dependence relation;

Moreover, model checkers over transitions systems, such as
CESAR 1211 or EMC [lo] can be applied on automata.

5 Program Transformation

The mathematical nature of LUSTRE allows a wide range
of forma) transformations, usable for program optimization
and proof. In this section, we give a set of equivalence
rules, which we apply on a simple example. Other trans-
formations can be found in [12,14].

6.1 Equivalence rules

We shall focus on rules concerning operators which are spe-
cific to LUSTRE. Of course, usual axioms of boolean alge-
bra and arithmetic will also be used.

6.1.1 Axioms of sequence operators

x = x->x (1)
(X->Y)->z = x->(Y->Z) = x->z (2)
X->Y = if init then X else Y

where init = true->f also (3)
pre (k) = nil->k

for any constant k (4)
pre (XI = nil->pre(X) (5)
current (X when B) = X’

where X’ = if B then X else pre(X’> (6)
current(X) when B = X

if B is the clock of X (7)

5.1.2 Diotributivities

For any data operator op,

pre(X op Y) =pre(X) op pre(Y) (8)
(X->Y) op (Z-MJ) = (X op Z)->(Y op VI (9)
(X op Y) when B = (X when B)op(Y when 8) (10)

current(X op Y) =current(X) op current(Y)

whenever X and Y have the same clock (11)

5.2 Example of transformations

Let us prove that the node

node FOO(X) returns (Y) ;
var even: bool;
let

Y = if even then current(X when not even)
else currento(when even) ;

even = true -> not pre (even) :
tel;

behaves as the operator pre.

Proof Let us apply Rule 6 twice, we get

Y = if even then Yl else Y2;
Yi = if not even then X else pre(Yi);
Y2 - if even then X else pre(Y2):

Substitution of Yl and Y2 in Y and use of the standard rule
for conditional expressions yield

Y = if even then pre(Yi) else pre(Y2);

Now let us substitute even in Y:

Y = if (true -> not pre(even))
then pro(Yl)
elee pre (Y2) ;

From the distributivity of -> over operators (Rules 1 and 9),
and from the properties of the conditional, it becomes

186

Y = pre(Y1) -> if not pre (even)
then pre (Y 1)
else pre(Y2) ;

Now, from the definition of Yl and distributivity of pre
(Rule 8):

pre(Y1) = it not pre(rven)
then pre (X1
else pre (pre (Yi) > ;

and similarly for Y2. Substitution of these expressions in Y
provides

Y = pre(Y1) ->
if not pre(even)
then if not pre(even)

then pre (X)
else pre(pre(Yl))

else if pre(even)
then pre (X1
else pre (pre(Y2) 1;

Simplification of the conditional gives

Y= pre(Y1) -> if not pre(even)
then pre (X1
else pre (X) ;

A standard rule about the conditional expression yields

Y = pre(Yl)->pre(X) :
= (nil->pre (Yi)) ->pte (X1 : from Rule 5
= nil->pre(X) ; from Rule 2
= pre(X) ; from Rule 5

and we are done.

Conclusion

To conclude, we shall compare LUSTRE with related works,
and then consider some directions for further work.

Of course, LUSTRE can be viewed as’ a strict sublan-
guage of LUCID. In fact it applies the ideas of LUCID to
a domain (continuous real-time processing) for which they
are especially well-suited. However, our synchronous inter-
pretation of sequences leads to a restrictive use of LUCID
primitives, and these restrictions allow the production of
efficient code (uncausality is the main problem in LUCID
compilation, and the absence of an efficient compiler is the
main obstacle to LUCID development).

LUSTRE must be compared with asynchronous lan-
guages with real-time capabilities, such as ADA. Our opin-
ion is that, in asynchronous models, the notion of time
cannot be given a precise and clean semantics, since these

models have been designed precisely to make the behavior
of a parallel system independent of the speed of its Comp*
nents.

Real-time processing has been the main motivation of
the development of synchronous models [2,19]. These mod-
els are the basis of recent real-time languages such a~ ES-

TEREL (71, SIGNAL [17], the Statecharts of [15], and LUS-
TRE. The difference between LUSTRE and ESTEREL is
the difference between a declarative and an imperative lan-
guage; many arguments have been given in this debate, but
our opinion is that the best style to use depends on the ad-
dressed problem.

The main originality of LUSTRE with respect to other
data-flow languages such as VAL [18], LTS [3] or pFP (221
is the concept of clock, which allows the use of a multiform
notion of time. SIGNAL presents an analog concept, but
with more permissive rules of usage. Our coercive clock
rules have been introduced to minimize the risk of program
misunderstanding, and only practice will be able to decide
which option is better.

Future work must first concern the development of the
language and its compilation. An important problem is
the use of arrays. They are very useful for such problems
as the programming of systolic algorithms (141, but there
are difficulties in finding a suitable implementation, even if
we only consider arrays of &red dimension which are not
indexed by variables. A simple but inelegant solution con-
sists of considering esch array element as a simple variable.
More clever implementations can be found if we consider
only systolic arrays, i.e., by forbidding that an array el-
ement depend instantaneously on another element of the
same array.

Other research will concern code generation for paral-
lel architectures. In particular, it would be interesting to
compare a parallel implementation based on the data-flow
net with a control-flow imptementation using the finite au-
tomaton.

Finally, program verification must be further studied,
particularly in relation with temporal logic. LUSTRE can
be viewed as a subset of some temporal logic [13], and an in-
teresting topic is the expression of clock operators in tempo
ral logic. Furthermore, we must study weaker equivalence
relations over programs than the one considered in Sec-
tion 5. As a matter of fact, especially in real-time systems,
program correctness is often defined modulo some tempo-

ral approximation. It seems that clocks can be useful in
defining such approximate equivalences.
Acknowledgements: J.-L. Bcrgerand and Eric Pilaud
participated in the design of LUSTRE. We are also indebted
to Glrard Berry and his group for their help in writing the
semantics of LUSTRE and in designing the compiler.

References

[l] E. A. Ashcroft and W. W. Wadge. LUCID, the Data-
Flow Programming Language. Academic Press, 1985.

[2] D. Austry and G. Boudol. Alg&bre de processus et syn-
chronisation. Theor. Comp. Sci., 30(1):91-131, 1984.

13) S. A. Babiker, R. A. Fleming, and R. E. Milne. A
Tutorial for LTS. Technical Report 225.84.1, Standard
Telecommunication Laboratories, 1984.

187

I41

151

I61

I71

PI

IQ1

J-L. Bergerand. LUSTRE: Un langagc dtclaratif pour
le tcmps r&l. PhD thesis, University of Grenoble,
1986.

J-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud,
and E. Pilaud. Outline of a real-time data-flow lan-
guage. In R&time Systems Symposium, pages 33-42,
San Diego, 1985.

J-L. Bergerand, P. Caspi, N. Halbwachs, and J. A.
Ptice. Automatic control systems programming using
a real-time declarative language. In 4th IFAC/IFIP
Symposium on Software for Computer Control (SO-
COCO), Gras, Austria, 1986.

G. Berry and L. Cosserat. The ESTEREL syn-
chronous programming language and its mathemati-
cal semantics. In S. D. Brookes, A. W. Roscoe, and G.
Winskel, editors, Seminar in Concurrency, Springer-
Verlag, 1985.

G. Berry and R. Sethi. From regular expressions to
deterministic automata. To appear, 1986.

C. Buors. SCmantique op&ationnelle du langage LUS-
TRE. Master’s thesis, University of Grenoble, 1986.

[lo] E. Clarke, E. A. Emerson, and A. P. Sistla. Auto-
matic verification of finite state concurrent sysstcms us-
ing temporal logic specifications: a practical approach.
Technical Report, Carnegie-Mellon, 1983.

[ll] G. Gonthier. Private communication, 1985.

112) N. Haibwachs, A. Longcharnpt, and D. Pilaud. De-
scribing and designing circuits by means of a syn-
chronous declarative language. In IFIP Working Con-
ference from HDL Descriptiona to Guaranteed Corrtct
Circuit Dtsigns, Grenoble, 1986.

(131 N. H lb a wac h s and D. Pilaud. From a real-time data-
flow language to a multiple time-scale temporal logic.
In preparation, 1986.

(141 N. Halbwachs and D. Pilaud. Use of a real-time declar-
ative language for systolic array design and simulation.
In International Workshop on Systolic Arrays, Oxford,
1986.

115) D. Harel. Statecharts: a visual approach to complex
sysZems. In Advanced NATO Institute on Logies and
Models for Verification and Specification 01 Concur-
rent Systems, La Colle-sur-Loup, France, 1984.

PI

I171

PI

1191

WI

WI

I221

G. Kahn. The semantics of a simple language for par-
allel programming. In IFIP Congress, 1974.

P. le Guernic, A. Benveniste, P. Bournai, and T. Gau-
tier. SIGNAL: a data-flow oricnttd language for signal
processing. Technical Report 378, INRIA, 1985.

J. R. McGraw. The Val language: description and
analysis. ACM lkans. on Prog. Lang. and Syst.,
4(1):44-82, 1982.

R. Milner. Calculi for synchrony and asynchrony.
Theor. Comp. Sk., 25(3):267-310, 1983.

G. D. Plotkin. A structural approach to optrational sc-
mantice. Technical Report DAIMI FN-19, Arhus Uni-
versity, 1981.

J. P. Queille and J. Sifakis. Specification and verifica-
tion of concurrent systems in cesar. In International
Symposium of Programming, Springer-Verlag, 1983.

M. Sheeran. muFP, a language for VLSI design. In
ACM Symposium on Lisp and Functional Program-
ming, Austin, Texas, 1984.

188

