
Programming Real-Time Applications
with SIGNAL
PAUL LE GUERNIC, THIERRY GAUTIER, MICHEL LE BORGNE, AND CLAUDE LE MAIRE

This paper presents the main features of the SIGNAL language
and its compiler. Designed to provide safe real time system pro-
gramming, the SIGNAL language is based on the synchronous
principles. Its semantics are defined via a mathematical model
of multiple-clocked paws of data and events. SIGNAL programs
describe relations on such objects, so that it is possible to program
a real time application via constraints. The compiler calculates the
solutions of the system and may thus be used as a proof system.
Moreover, the equational approach is a natural way to derive mul-
tiprocessor executions of a program. Finally, this approach meets
the intuition through a graphical interface of block-diagram style,
and the system is illustrated on a speech recognition application.

I. INTRODUCTION
SIGNAL is a block-diagram oriented synchronous lan-

guage for real time programming. According to the syn-
chronous approach, time is handled according to the first
two of its three following characteristic aspects: partial
order of events, simultaneity of events, and finally delays
between events. In a synchronous framework, time is
modeled as a chronology; durations are constraints to
be verified at the implementation. Then it is possible to
consider that computations (and in particular computa-
tions about time) have zero duration. This hypothesis is
acceptable if any operation of ideal zero duration has a
bounded effective duration. We refer the reader to [l]
for a discussion of the principles of synchronous pro-
gramming. As discussed in this introductory paper, the
styles of synchronous languages may be classified into
imperative ones and equational ones. The first style relies
on models of the state-transition machine family. CSML
[17], ESTEREL [18], and the STATECHARTS [20] follow
this style. The second one relies on models of multiple-
clocked interconnected dynamical systems. LUSTRE [191
follows this style, based on a strictly functional point
of view. In SIGNAL, programming is performed via the
specification of constraints or relations on the involved
signals. As a consequence, the SIGNAL compiler performs
formal calculations on synchronization, logic, and data

Manuscript received September 27, 1990; revised March 15, 1991.
P. LeGuernic, T. Gautier, and M. LeBorgne are with IRISA, Campus

C. LeMaire was with IRISA, Campus de Beaulieu, 35042 Rennes

IEEE Log Number 9102319.

de Beaulieu, 35042 Rennes Cedex, France.

Cedex, France. He is now with VERILOG, Grenoble, France.

dependencies to check program correctness and produce
executable code.

The paper is organized as follows. Section I1 is devoted
to an informal presentation of the main features of the
language. The mathematical model supporting SIGNAL is
briefly discussed in Section 111, further information may be
found in [2]-[4], and [l l] ; based on this formal model, it is
explained how the SIGNAL compiler operates. Distributed
code generation is discussed in the Section IV. Finally, a
speech recognition application that was introduced in [l] is
described in Section V.

11. THE LANGUAGE
In this section we introduce the reader to programming in

SIGNAL. For that purpose, we investigate the two examples
introduced in [l], namely the digitalfilter and the mouse.
Finally the use of SIGNAL as a proof system to verify
temporal properties is introduced in the last subsection.

The SIGNAL language handles (possibly infinite) se-
quences of data with time implicit: such sequences will
be referred to as signals. At a given instant, signals may
have the status absent (denoted by I) and present. Jointly
observed signals taking the status present simultaneously
for any environment will be said to possess the same clock,
and they will be said to possess different clocks otherwise.
Hence clocks may be considered as equivalence classes of
signals that are always present simultaneously. Operators
of SIGNAL are intended to relate clocks as well as values of
the various signals involved in a given dynamical system.
Such systems have been referred to as Multiple-Clocked
Recurrent Systems (MCRS) in [l]. To introduce the SIGNAL
operators, we first discuss single-clocked systems, and then
consider multiple-clocked ones.

A. Getting Started in SIGNAL Programming: Simple Examples
1) Monochronous signals: digital filtering: A classical sec-

ond order digital filter is a representative for the class of
dynamical systems having a single time index:

gn = n1gn-1 + a2gn-2 + boun + blU,-1 + b2Un-2. (1)

It allows us to introduce the operators of SIGNAL
which handle what we will call monochronous (or

0018-9219/91$01,00 0 1991 IEEE

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991 1321

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

synchronous)signals, i.e., signals with a common time
index.

Such a filter is built from two types of equations:
Yn = un + U,;
z , = Yn-1.

Corresponding to these two types of equations, we have two
types of monochronous operators in the SIGNAL language:
the ‘‘static’’ ones and the “dynamic” one. Provided that the
equations refer to the same index n, it is possible to make
it implicit. Then the operators are defined on sequences of
values (the signals).

Static monochronous operators are the extensions to
sequences of the classical arithmetic or logical operators.
Typical examples are +, -, *, /, **, or, and, not, =,
< , etc. For instance, the SIGNAL equation:

Y : = U + V

is nothing but the coding of

V n 2 0 yn = U , + U,

with implicit handling of the time index n.
Dynamic monochronous operator: the delay. The

SIGNAL delay operator defines the output signal whose
n,thelement is the (n - k) t h element of the input one (k is
a positive integer), at any instant but the first one at which
it takes an initialization value. For example, the SIGNAL
equation

z := Y $1

is the coding of

V n > 0 2, = yIL-1

(the initial value yo is given in the declaration of Z).
An example of the behavior of the delay operator (with

zero as initial condition) is shown in the following diagram:

Y : 2 5 1 0 4 1 3 7 9 ...
2 : 0 2 5 1 0 4 1 3 7 ...

To summarize, the $ k operator corresponds to the z P k shift
operator used in signal processing or in control.

Composition of processes: SIGNAL equations such as
those presented above define elementary processes; the
composition P1 1 P2 of two processes P1 and P2
defines a new process, where common names refer to
common signals (P1 and P2 communicate through their
common signals). This is just the notion of conjunction of
equations in mathematics. This operator is thus associative
and commutative.

Defining zy, = yn-l, zxy, = zyn-l = yn-2; . . . makes
the translation into SIGNAL of the filter (1) straightforward:

(I ZY := Y $1
I ZZY := ZY $1
1 zu := U $1
1 zzu := zu $1

I)

I Y := A1 * ZY + A2 * ZZY + BO * U
+ B1 * ZU + B2 * ZZU

An alternative program uses the vector signals VU,, VU,,
and constant vectors A and B:

U n - 2

vu,= [Yn-21 Yn-1 , vun= 1 ,

Those vector signals are handled in SIGNAL with the
following window operator:

VU := U window 3

defines a sliding window of length 3 on U.
The alternative program is then the following:

(1 VY := Y $1 window 2
1 VU := U window 3
I Y := PROD {A, VY} + PROD {B, VU}
I)

with initial values given in the declarations of the vectors
VY and VU. (PROD {Vl, V2) is an externally defined
function which computes the inner product of the vectors
V1 and V2).
2) More advanced features: The model concept (or

process declaration) encapsulates a set of equations; it
allows the user to isolate local definitions and provides
parameterized descriptions. A process model can be
expanded (an instance of a model is a process).

Modular programming: block-diagrams: A graphical
interface [5] has been designed to allow a user friendly
definition of SIGNAL programs. A composition of processes
has a hierarchical block-diagram representation (paral-
lelism is thus a built-in concept in SIGNAL); the processes
are represented by boxes; interconnections between input-
output ports (or input-output signals) of the processes
are represented by lines. The processes may be defined
using equations or composition of equations (see Fig. l),
references to previously declared processes (see Fig. 4), or
embedded graphical composition of processes.

Figure 1 depicts the graphical specification of the process
model F ILTER corresponding to (1). It is built using the
SIGNAL graphical interface.’ Note that Y is the only output

of actual screens from the SiGIU’AL graphical interface.
‘In this paper, all block-diagram figures, except for Fig. 2, are copies

1322 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

FILTER A I , A2, BO, B1, B2

Fig. 1. A declaration of the process model FILTER.

vz I I
V[l] .=VI[I] .VZ[l] V[N].=VI(N].VZ[N]

I

Fig. 2. An array of processes.

signal visible from the outside of the process (the other
ones are “local” signals).

Array of processes: The structure of “array of processes”
is useful when specifying systolic algorithms or when
describing regular architectures. As a simple example, the
component-wise extension to vectors of a given operator
may be defined by an array expression. For instance,
array I to N of V := V l [I] * V 2 [I] endis
the extension of the product, as represented in Fig. 2.

3) Summary: At this point, we are able to describe ar-
bitrary dynamical systems possessing a single time index.
Their coding is straightforward in SIGNAL. The modularity
offered by the language is equivalent to that of signal flow
graphs or block-diagrams. Moreover, we can also describe
regular arrays of processes.

Although these constructs are sufficient for classical
digital signal processing or control, additional primitives
are needed for developing complex real time applications.
These will be introduced next.

B. Handling Multiple-Clocked Systems

I) A small example: clicking on a mouse: We consider the
mouse handler described in [l]. Let us recall its
specifications. This process has two inputs:

9 CLICK: a push-button;
TICK: a clock signal.

LE GUERNIC et al.: PROGRAMMING APPLICATIONS WITH SIGNAL

The mouse handler has to repeatedly decide if, during some
interval following an initial CLICK, some other CLICK’S
have been received; intervals are composed of a constant
number A > 0 of TICK’S and are disjoint. At the end of
each such interval, the mouse emits a signal DOUBLE when
another CLICK has been received since the initial one, a
signal SINGLE otherwise. In [l], it has been discussed
how this example may be specified using Multiple-Clocked
Recurrent Systems (MCRS), see Section IV-C of this paper
and (6H9) therein. From this discussion follows that two
additional fundamental primitives are needed to specify
such MCRS, namely:

extracting a new time index from an existing one

interleaving signals to produce the union of time

The reader may also convince himself that these are conve-
nient primitives; it has been argued in [2] that these are in
fact the convenient primitives to provide a synchronous lan-
guage with maximum expressive power for synchronization
and control. These primitives are indeed primitive operators
of SIGNAL. These are presented next.

2) Polychronous operators: The extraction: the SIGNAL
process

((7)-(9) are instances of this);

indexes (see (6)).

Y := X when B

where X and Y are signals and B is a boolean signal,
delivers Y = X whenever X and B are present and B is
true, and delivers nothing otherwise. The behavior of the
when operator is illustrated in the following diagram:

X : 1 2 I 3 4 I 5 6 9 . . .
B : t f t f t f I f t . . .
Y : l 1 1 1 4 I 1 I 9 . . .

(I stands for “no value”). The when operator may be
proved associative and idempotent in the set of events.
When X is a constant, the clock of X when B is the
clock of B when B.

The deterministic merge: the SIGNAL process

Y := U default V

defines Y by merging U and V, with priority to U when both
signals are present simultaneously. It yields Y = U whenever
U is available, and Y = V whenever V is available but U
is not; otherwise, Y is not delivered. The behavior of the
default operator is illustrated in the following diagram:

u : l 2 1 3 4 I 5 I 9 . . .
V : I I 3 4 1 0 8 9 2 I . . .
Y : 1 2 3 3 4 8 5 2 9 . ‘ .

The default operator may be proved associative (which
avoids the use of parentheses). Moreover, when is right
distributive on default. When V is a constant, the clock

1323

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

of Y is any clock greater than the clock of U.
3) Some extensions: When specifying time constraints, it

may be useful to refer to the clock of some signal. The
following derived operators are of particular interest in that
case.

The variation

T := when B

of the when operator defines the event type signal
T which is present whenever the boolean signal B is
present and has the value t rue and delivers nothing
otherwise; it is equivalent to T := B when B.
An event type signal (or “pure” signal) is an always
t rue boolean signal. Hence not T denotes the boolean
signal with clock T which always carry the value
f a l s e .
Given any signal X,

T := event X

defines the event type signal T whose occurrences are
simultaneous with those of X: it represents the clock
of x.
Finally constraints may be defined on the clocks of
signals. In this paper, the following notations are used:

X ^ = Y

x ̂ < Y
X and Y have the same clock;2

X is no more frequent than Y,
which is equivalent to
X* = X when event Y.

The following derived operator specifies a synchronized
memory: The SIGNAL process

Y := X c e l l B

where B is a boolean signal, delivers at the output Y either
the present value of X (when the latter is present), or the
last received value of X when B is present and t rue . It is
equivalent to:

(I Y := X default (Y $1)
I Y ^ = ((event X) default (when B))
I)
4) Programming the mouse: A “chronogram” of the mouse

is described in Fig. 3.3 This shows the sequence of intervals
where CLICK’S are monitored (in the figure, the number
of TICK’S in an interval is a = lo). As it appears in

’It is written synchro

3This figure depicts a simulation environment for the mouse written in
SIGNAL under SunView.

{X, U} in the syntax of the current version

Fig. 3. A chronogram of the mouse

the figure, we introduce naturally the two following pure
signals:

START, which indicates the beginning of a new inter-
val;
RELAX, which indicates the end of the current interval.

Then, consider a first module which aims at producing
the outputs of the MOUSE, namely SINGLE and DOUBLE.
This module gets as its inputs CLICK, START, and RELAX.
The corresponding specification is:

(I DOUBLE-CLICK := ((not START)
default
(CLICK in]START, RELAX]))cell RELAX

DOUBLE-CLICK)
I SINGLE := RELAX when (not

I DOUBLE := RELAX when DOUBLE-CLICK I)

The meaning of these equations is the following. DOU-
BLE-CLICK is a boolean signal which states at the end of
the elapsed time whether a single (status f a l s e) or several
(status t r u e) CLICK’S have been received. For this purpose,
each START sets DOUBLE-CLICK to f a l s e (not START
is taken with priority). Since START’S are also CLICK’s,
at feast one CLICK has been received in the considered
interval. Then if a second CLICK is received within the
allowed delay, DOUBLE-CLICK is set to t rue . Testing for
this is performed by the expression “CLICK in] START ,
RELAX] ” defined as follows:

delivers those X’s which belong to the left-open and right-
closed interval] S T], where S and T are both pure signals.
Note the cell RELAX expression which delivers at every
RELAX the current status of DOUBLE-CLICK.

What remains now is to indicate how to produce the
events START and RELAX. For this purpose, two operators
are introduced:

X in]S,T] (i)

X not in]S,T] (ii)
#X in]S,T] (iii)

Expression (ii) delivers those X’s which do not belong
to] S , TI. Expression (iii) counts the occurrences of X
within the mentioned interval and is reset to zero every S;
this signal is delivered exactly when expression (i) deliv-
ers its output. Using these operators, the second module of
the MOUSE program is presented next:

(I START := CLICK not in]START, RELAX]
I (I N := (#TICK in]START, RELAX])

I ZN := N $1 % initial value 0 %
I N ^= (CLICK default TICK)
I RELAX := TICK when (ZN =

c e l l event N

1324 PROCEEDINGS OF THE IEEE. VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

Fig. 4. The process model MOUSE.

(DELTA-1))
I)

I)
The first equation selects those CLICK’S that are also

START’S, and selects also the first CLICK. The other equa-
tions count the TICK’S and deliver the result as frequently
as needed (thanks to cell event N). A graphical editing
of the resulting MOUSE program is shown in the Fig. 4
using the SIGNAL graphical interface. In this figure, the
two modules we introduced are labeled SIMPLEMOUSE
and GO, respectively. Note that CLICK and TICK are
independent inputs of this program.

Comments: The text of the two modules should be
taken as a specification since the operators we introduced
are not available in the current version of the language.
They will be available however in a forthcoming version
of it, with all variations on the shape of the considered
interval ([S I T [, [SIT], etc.). Thus we shall present
without further discussion this program written in the
current version of SIGNAL where these macros are built
as SIGNAL processes. Then we shall provide the expansion
in SIGNAL of the operator (i) .

The actual program is the following:

process MOUSE = (integer DELTA)
{ ? event TICK, CLICK

(I (I START := NOT-IN-INTERVAL
! event SINGLE, DOUBLE }

{CLICK, START, RELAX}
I (1 N := COUNT-IN-INTERVAL {TICK,

START, RELAX} cell event N
I ZN := N $1
I N ^= CLICK default TICK
I RELAX := TICK when

(ZN = (DELTA-1))
I)

1 (1 DOUBLE-CLICK := ((not START)
default IN-INTERVAL {CLICK,
START, RELAX}) cell RELAX

1 SINGLE := RELAX when (not
DOUBLE-CLICK)

1 DOUBLE := RELAX when
DOUBLE-CLICK

I)
1)

where event START, RELAX;

LE GUERNIC et al.: PROGRAMMING APPLICATIONS WITH SIGNAL

integer N, ZN init 0;
logical DOUBLE-CLICK

end

The first three lines specify the name of the process
model and its interface (DELTA is a parameter; ‘ I ? ”

stands for “input” and “!” for “output”). IN-INTERVAL,
NOT-IN-INTERVAL, and COUNT-IN-INTERVAL are
instances of subprocesses corresponding respectively to
(i), (ii), and (iii) presented earlier.

As an example, the process IN-INTERVAL, correspond-
ing to the expression X in] S , T], may be defined as
follows:

process IN-INTERVAL = { ? X; event S I T
! Y }

(I BELONGS-TO-INTERVAL ^= (S

I (1 WILL-BELONG := (not T)
default S default
BELONGS-TO-INTERVAL

WILL-BELONG $1 I)

default T default (event X))

I BELONGS-TO-INTERVAL :=

I Y := X when BELONGS-TO-INTERVAL
I)

where logical WILL-BELONG,
BELONGS-TO-INTERVAL
init false

end

Processes NOT-IN-INTERVAL and COUNT-IN
-INTERVAL corresponding to operators (ii) and (iii)
are defined similarly.

Using SIGNAL for specifying a MCRS [l] releases the
programmer from the burden of handling explicitly multiple
time indexes. Every signal in the language has an implicit
time index and the SIGNAL operators define relations be-
tween the time indices.

c. Summary: SIGNAL-Kernel

To summarize, the kernel-language SIGNAL possesses
only five basic constructions which are recalled in the
following:

Y := f (x1 , . . ., x n)
instantaneous functions to signals with
common clock

extending

Y : = X $N delay (shift register)
Y := X when B condition based

down sampling
Y : = U default V
P 1 Q composition of processes

merge with priority

All other operators are built as macros on this kernel-
language and model declarations. Moreover the language
allows modular programming and external functions calls.
It can be used to describe internally or externally generated

1325

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

interruption or exception handling, data-dependent down
and up sampling [3], mixed passive/active communications
with the external world [4]. Thus the SIGNAL language has
all the features needed for real time applications program-
ming. It has been proved in [2] that SIGNAL possesses
maximum expressive power for synchronization mecha-
nisms, in particular data dependent upsampling can be
expressed in SIGNAL which proved very useful in most of
the applications we developed.

The following feature of SIGNAL programming style
should be emphazised. Since the compiler synthesizes the
global timing from the programmer’s specifications, the
following programming style is recommended: specify local
timing constraints involving very few different clocks, and
let the compiler do the rest. This is different from LUSTRE’S
programming style, where the programmer must have a
global view of the timing to write the program.

D. Specifying Logical Temporal Properties

Various techniques are used to verify programs:temporal
logic [6], [13] in CSML and the STATECHARTS, automata re-
ductions and verification [14], [15] in ESTEREL and LUSTRE
for instance. The LUSTRE language also uses assertions to
express constraints on boolean signals, and offers tools to
compute boolean dynamical expressions written in LUSTRE
itself [8]. Thanks to the powerful model of SIGNAL, the
SIGNAL language itself can be used as a partial proof
system.

As an example, consider a memory M, which can be
written (signal WRITE) and read (signal READ):

(I M := WRITE default (M $1)
I READ := M when (event READ)
I)

Each value written in M (first line) is read when needed
(second line).

Now suppose that writing in the memory is allowed only
when the previous value of the memory has been read. Let
us encode the status (being written or being read) of the
memory as follows:

FULL := (event WRITE)
default (not (event READ))

Then the above constraint is expressed by the following
equation:

WRITE ^= when (not (FULL $1))

Conversely, if we want any written value to be read at
most once, we have to write:

READ ^ = when (FULL $1)

Finally, putting these three additional equations together
specifies a single token buffer, it turns out that this is also
its programming.

This example illustrates an important feature of the
SIGNAL language. To insure that a property is verified on a
SIGNAL program, encode this property as SIGNAL equations.
These equations may be used in different ways. First it
could be checked whether the corresponding constraints
are already implied by the program. Second the equations
may be simply added to the program to make sure that
the desired property is satisfied. We will see in the next
section how SIGNAL’S “clock calculus” can be used for this
purpose.

111. THE SIGNAL COMPILER As A FORMAL
CALCULUS SYSTEM

A. The Formal Model

The reasoning mechanisms of SIGNAL handle 1) the pres-
ence/absence, 2) boolean values since they are important in
modifying clocks, and 3) the dependency graphs to encode
data dependencies in nonboolean functions. Dependency
graphs are needed to detect short circuits such as in X :=
X+1, and to generate the execution schemes. Three labels
are used to encode absent, true, false as well as the status
present we consider as a nondeterminate “true or false”
value. The finite field Fs of integers modulo 3 is used for
this p ~ r p o s e : ~

true --f +1, false + -1, absent --f 0 , present -+ *l.

For instance, using this mapping, (a or b) = event
a and y : = u+v are respectively encoded as follows:

U’ = b2, ub(u - l) (b - 1) = 0 (2)
Y2 Y2

Yy2 = u2 = 112,u - y , v - y. (3)

In these equations, the variables a , b , . . . refer to infinite
sequences of data in F3 with time index implicit. The first
part of (2) expresses that the two signals a and b must have
the same clock, while the second one encodes the particular
boolean relation. The first part of (3) again expresses that
all signals must have the same clock, while the labeled
graph expresses that the mentioned dependencies hold when
y2 = 1, i.e., when all signals are present. This is referred to
as the conditional dependency graph, since signals may be
related via different dependencies at different clocks. Let
us describe how the other primitive operators of SIGNAL
are encoded in this way.

Process y : = x $1. As easily checked, boolean shift
registers are encoded as follows:

En+l = (1 - X 2) E n + II: , Eo = yo

Y = X 2 E n

In this equation, En is the current state, and En+l is
its next value according to any (hidden) clock which
is more frequent than the clock of II: (50 = yo is the
initial value). This is a nonlinear dynamical system
over F3. The nonboolean shift register is just encoded
via the equality of clocks: y2 = 2’.

4Elements of Fs are written { - l , O , 1).

1326 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

Process y := x when b. In the boolean case, we
get the coding

y = 2 (- b - b2)

while in the nonboolean case, we must encode the
constraints on clocks and dependencies:

Process y := U default v. In the boolean case
we get

y = U + v (1 - U 2)

while in the nonboolean case we get:

(l - U 2) v 2 U 2

Y2 = U 2 S V 2 (1 - U 2) , U ____/ y , ,

Process P 1 Q. Here P, Q denote SIGNALprocesses. The
graph of the process PIQ is the union of graphs of P
and Q; in the same way, the equations associated with
the process P /Q are the equations of P and those of Q.

Moreover, in addition to dependencies between signals, de-
pendencies relating signals and clocks must be considered.
In particular, any signal y depends on its clock y2, as
expressed by the dependency:

Y2
Y - Y2.

Finally we end up with the general form to encode any
SIGNAL program:

In this system, Z, Y are vectors with components in 3 3 ,

A , B , C denote polynomial vectors on the components
S (i) , Y (j) of S.Y . The components of E are the states
of the boolean registers, and the components Y (j) of Y
are the encoding in F3 of all signals Y (j) involved in the
program. The time index n may be any time index which is
more frequent than the clocks of all components of Y. The
two last equations specify the conditional dependencies,
where H (i , j) = 1 specifies the clock where the referred
dependency holds. The equations of (4) show why the
work of the SIGNAL compiler relates to formal calculus on
dynamical systems involving the finite field -?’s and graphs.

It is shown in [3], [4], and [9] how this coding can
be used, with the help of polynomial ideal theory, to

LE GUERNIC et al.: PROGRAMMING APPLICATIONS WITH SIGNAL

answer fundamental questions about the properties of a
given program:

Does the program exhibit contradictions? Consider
for instance the following program:

(I x := a when (a > 0)
1 y := a when not (a > 0)
1 2 : = x + y 1)

Writing a for short instead of (a > 0), its clock
calculus yields -a - a2 = a - a2 whence cr: = 0:
this means that a must be always absent, the program
refuses its inputs and does nothing.
Are there short circuits? Consider the following pro-
gram:

(I x := sin {y} + b
1 y := a default x 1)

The clock calculus and conditional dependency graph
are:

Due to the short circuit including x and y, this
program is deadlocked unless the clock of this short
circuit is always absent, i.e., (1 - u 2) z 2 = 0, or
equivalently, (1 - n2)b2 = 0. Hence, y2 = n2, and
this program implements:

(1 y := a
1 x := sin {a} + b I)

Is the program setting constraints on its inputs? Con-
sider the program:

(I x := a when (a > 0)
I z : = a + x 1)

Writing a instead of (a > 0), the clock calculus is

z ? = a 2 = 2 2 , 2 2 = 2 (- a - a 2) , c y 2 = a2

1321

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

which forces

a2 = 0 or 1 + a + a2 = 0 i.e., a = I

Hence when a is present, we must have a > 0 oth-
erwise the program is deadlocked by a contradiction.
However SIGNAL cannot reason on nonboolean data
types. Hence, considering that a is the output of a
nonboolean function (testing a > 0), the constraint
a2(1 -a) = 0 is replaced by the stronger one a2 = 0,
which does not involve the value (t rue or fa lse) of
a any more: a is then refused so that this program
refuses to do anything.

4) Is the program deterministic, i.e., is it a function?
Consider the following program (which specifies a
counter with external reset):

p r o c e s s P = { ? s ! t }
(I n t := (0 when s) d e f a u l t (t + l)

1 t := n t $1
I)

end

Its clock calculus yields

nt2 = t2 = s2 + (1 - s2)t2

5)

which is equivalent to t 2 2 s2: if s is the specified
input, the clock of the output t is not a function of any
external signal. Hence this program is not a function.
Inserting the following synchronization equation, t
^= (s d e f a u l t U) , where U is another input,
completely specifies the timing and we get a function.
Does the program verib some property?-the speci-
fication of the buffer presented in Section 11-D is a
good exercise.

of a given clock K only if H lies above K according to this
partial order. No hierarchy is defined on the roots of the
trees, but constraints can exist. When this forest reduces to
a single tree, then a single master clock does exist, from
which other clocks derive. In this latter case, the program
can be executed in master mode, i.e., by requiring the data
from the environment. If several trees remain, additional
synchronization has to be provided by the external world
(e.g., small real time kernels, see [l]) or by another SIGNAL
program.

The conditional dependency graph is attached to the
forest in the following way. The signals available at a given
clock are attached to this clock, and so are the expressions
defining these signals. The so obtained “conditional hierar-
chical graph” is the basis for sequential as well as parallel
code generation.

Moreover, the proper syntax of SIGNAL can be used to
represent this graph. For that purpose, the compiler rewrites
the clock expressions as SIGNAL boolean expressions: the
operator d e f a u l t represents the upper bound of clocks
(sum) and the operator when represents the lower bound
(product); then, any clock expression may be recursively
reduced to a sum of monomials, where each monomial
is a product of down samplings (otherwise, the clock is
a root). The definitions of the signals are also rewritten
to make explicit the clocks of the calculations that define
these signals.

The rewritten process is equivalent to the initial one,
but the clock and dependency calculus is now solved, and
all the clocks handled in the program are made precisely
explicit. The so obtained process will be referred to as the
solved form of the considered program.

An example taken from the MOUSE is developed in the
appendix. Its solved form, which exhibits a forest of several
clock trees, is detailed. Then, a simulated real-time monitor
is provided which delivers the inputs CLICK and TICK to
this program. This simulator is itself written in SIGNAL. The
pair {program, monitor} is then processed by the compiler
and produces a single tree for its solved form. This solved
form is shown and the sequential c code generated from
this program is given.

B. The Work of the Compiler
w e have briefly d e ~ r i b e d the mathematical model SUP-

Porting the work of the compiler. The way the compiler
uses this model is the following. The compiler uses a very
efficient algorithm to construct a hierarchy of clocks with
respect to the following rules:

If C is a free boolean signal (i.e., it results from the
evaluation of a function with nonboolean arguments,
or it is an input signal of the program, or it is the status
of a boolean memory), then the clock defined by the
t rue values of C (i.e., when C) and the clock defined
by the f a l se values of C (i.e., when n o t C) are put
under the clock of C; both are called down samplings.
If a clock K lies under a clock H then every clock
which lies under K also lies under H.
Let H be a clock defined as a function of down
samplings HI, . . . , H,, if all these down samplings lie
under a clock K, then H also lies under K.

IV. TOWARD PARALLEL IMPLEMENTATION

consists of a definition of P as
A distributed implementation of a SIGNAL program P

into modules PI , . . . , P, which will be one to one mapped
onto a set of n processors. Thanks to the equational
approach, the modules P; can be built either downwards
by breaking, or upwards by clustering subprocesses. Hence
we have developed a systematic method to serialize such

The resulting hierarchy is a collection of interconnected
trees, say a forest. The partial order defined by this forest
represents dependencies between clocks: The actual value
of a clock H may be needed to compute the actual value

modules, while avoiding possible deadlocks. This method,
which generalizes the use of semigranules such as presented
in [lo], is outlined next. It turns out that the same method
can be used to improve the efficiency of the implementa-

1328 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

Fig. 5. Context dependent implementation.

tion, by reducing the overhead due to process scheduling.

A. Some Issues on Distribution

The following notations will be used for the figures
throughout this section: solid arrows denote data dependen-
cies enforced by the considered programs, dashed arrows
indicate additional ordering that results from a given imple-
mentation. For instance, in Fig. 5(a), the program specifies
that a must be received first before producing x (and
similarly for b and y), and the dashed arrows express that
in the considered implementation, it is first waited for both
a and b, and then x and y are produced. Adding dashed
lines within a dependency graph will be referred to in the
sequel as performing order enhancement.

Using these notations, consider the following program,
where f and g are some arbitrary functions:

P = (1 y := g(b) 1 x := f (a) 1)

The sequence of getting values followed by putting results,
repeated forever, is a correct execution scheme of P if we
assume that any input signal is available whenever needed;
each step is described in Fig. 5(a).

Unfortunately, the context of P may for instance be the
following SIGNAL program:

R = (1 a := h(y) 1)

where h is again some function. Its only correct execution
scheme is the sequence of getting y followed by putting a,
repeated forever as described in Fig. 5(b).

The SIGNAL source program P I R is certainly a correct
one. However, the concurred execution of their sequential
implementation ob j -P and ob] B, is obviously dead-
locked (Fig. 5(c)): ob j -P is waiting for a; to produce a,
o b j 2 needs y which cannot be delivered by ob]-P. This
is depicted by the cycle in Fig. 5(c). Now if we consider
the following program (see Fig. 6(a)):

Q = (1 y := g (a , b) I x := f (a , b) 1)

then for any program R' such that y or x is needed
to calculate a or b, the program Q I R ' is incorrect.
Thus any implementation of this program Q in which
communications are serialized in agreement with the local

51n the sense of multitasking systems.

Fig. 6. Second example.

partial order specified by the graph of Fig. 6(a) is a correct
one. For instance, sequence of {getting b ; getting a ;
putting y ; putting x} repeated forever does not cause
additional deadlocks whatever the environment is. This
implementation obj -Q is depicted by the added dashed
lines in Fig. 6(b).

This is what we call order enhancement of the graph.
Thus the key to code distribution is the dependency graph,
and possible deadlocks with the environment that might
result from an unclever order enhancement must be pre-
vented. Appropriate tools for the general case of multiple
clocks are briefly presented in the next section.

B. Conditional Dependency Graph, Interface Conditional
Graph, and Code Distribution

Motivated by the discussion of this simple example, we
present now the following method for code distribution. We
assume that the distribution of the graph of the program
has been performed according to suitable criteria we do
not consider here. Then we concentrate on one particular
module. For this module, the method consists of the three
following stages:

1) Calculate transitive dependencies of external signals:
this yields the interface conditional graph;

2) Given this interface conditional graph, calculate all
legal order enhancements (that are guaranteed com-
patible with any arbitrary correct environment);

3) From these legal order enhancements, calculate a
proper execution scheme of the considered module.

The so-obtained object code can be stored as a reusable
executable module. Steps 1, 2, and 3 are also the way to
separate compilation of modules.

1) Getting the interface conditional graph: It is easily de-
rived using the two following rules:

rule of series
hk

XhYrCZ+X.Z (5)

(X precedes Z whenever X precedes Y, at the instants where
h = 1, and Y precedes Z, at the instants where k = 1).

rule of parallel
h v k

x-Y

where h V IC = h + (I - h)k denotes the supremum of the
two clocks h and k (h and k are polynomial functions in

LE GUERNIC et al.: PROGRAMMING APPLICATIONS WITH SIGNAL 1329

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

- 1 I

Fig. 7. Order enhancement

F3 taking 0 , l as only values): X precedes Y whenever X
precedes Y at the instants where h = 1, or X precedes Y
at the instants where IC = 1.

Successive applications of these rules yield the kind of
graph depicted as solid branches in Fig. 7 (in which local
nodes do not appear).

2) The legal order enhancements: Referring to Fig. 7, let
us concentrate on two interface signals, say X and Y. Denote
generically by h,,(X,Y) the clock of some legal order
enhancement that puts X before Y in the execution scheme.
The conditions which must be satisfied by h,,(X, Y) are the
following :

1) No internal cycle should result from the additional
clock h,,(X, Y) in the graph. This yields the condition:

(7) h,,(X,Y) h- = 0

2) No possibility of an additional cycle due to the
environment results from h,,(X, Y); this yields the
inequalities:

(every input ei which precedes X also precedes every
output s j following Y: this insures that, in any
context, no dependency from an output s j to an input
e, can be introduced, which could create a deadlock).

Elementary algebra shows that (7) and (8) can be sum-
marized as the single inequality:

We will say that a conditional dependency graph G1 is
lower than another one G2 if and only if they have the
same nodes, and each time x --i y occurs in G1 (when
its label hl is equal to l), then z - y occurs in G2
(hz = 1); so hl 5 h2. Applying order enhancement results
in a graph where each h,,(X, Y) takes its maximal value (it
is not the graph of a partial order but the upper bound of
the maximal order enhancements).

.....

Fig. 8. Sequential order enhancement.

h. I

(a) (b)
Fig. 9. Cyclic order enhancement.

3) Getting execution schemes: Consider again the pro-
gram p above, and denote by h the clock of all solid
branches in Fig. 5(a). The original graph coincides with
the interface conditional graph, and (9) shows that no legal
order enhancement does exist in this case, so that the only
reusable form is the source code.

Now, consider some program S whose conditional de-
pendency graph is shown in Fig. 8(a); the resulting order
enhancement is depicted in Fig. 8(b). S has the unique
sequential execution scheme shown in Fig. 8(c). It is
obtained by picking the subgraph of the dashed or solid
branches that is both a path and covers all nodes.

For some programs, the order enhancement may result
in a cyclic graph as shown in Fig. 9(b). Such cycles do
not express that deadlocks have been created, but just
indicate that external communications within the cycle
can be performed in an arbitrary order, depending on the
environment’s offer or request at a particular instant. For
instance, we may equally well first receive a and then b or
the converse: this is depicted in Fig. 9(c).

4) The lazy evaluation of a module: Similar techniques
may be used to calculate the clock h~ of those instants
where it is really needed to compute a signal Z at the
execution: Z must be computed when it is needed to
compute some output of the module or some state variable,
and the corresponding clock is calculated using the “rule of
series” (5) and “rule of parallel” (6) we have shown before.

5) Getting a methodology for distributed implementa-
tions: From the previous discussion emerges the following
method:

Separate compilation may be performed following the
method we outlined above: synthesizing the interface
conditional graph, and then deducing the scheduling
from the order enhancements yields a control process
C associated with a given program P, this module can
then be used as executable code in any environment.
Alternatively, it is also possible to specialize this
control process using some prior information on the

1330 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

_...- ' unvoiced-
d e n t -

Fig. 10. Modular description of an acoustic-phonetic decoder.

environment (e.g., other SIGNAL modules or the prop-
erties of their interfaces) that are also stated in suitable
control processes.

V. PROGRAMMING ENVIRONMENT
We present here a realistic experience with SIGNAL,

which has been used to describe the acoustic-phonetic
decoder of an automatic speech recognition system. Our
purpose is not to detail the program (which would be much
too long-the interested reader is referred to [12]), but
rather, to give a flavor of how a large project could be
developed with the SIGNAL environment.

A. A Speech-to-Phoneme Recognition System:
Global Description

The reader is referred to [l] for a more detailed descrip-
tion of this application. Figure 10 depicts a block-diagram
of a part of the speech-to-phoneme recognition system as
developed at IRISA. The FFT box involves a sliding-block
processing of the speech signal. The filtering and
segmentation boxes process the speech signal sample-
by-sample. The + (resp. +) inside the segmentation boxes
indicates that the signal is processed forward only (resp.
forward-backward): the data-dependent up sampling mech-
anism is used in the corresponding SIGNAL programs. The
detection and event labeling boxes involve event
detection. Thus several sophisticated mechanisms that are
provided by SIGNAL were used in this application. We
should emphasize that the IRISA speech group was reluc-
tant to write any real time oriented FORTRAN programming
of this application, only SIGNAL allowed us to develop such
a real time programming. Finally, the SIGNAL graphical
interface proved well suited for developing this application.
Figure 11 shows a graphical view of the decoder as written
in SIGNAL.

-+

B. Building a Control Panel for Experimentation
To take advantage of the SIGNAL approach, a tool box

for the on-line scanning of the results has been developed
using SIGNAL. These developments were intended to allow
an on-line interaction of the user during the execution, with
both the program itself and the display of its results. This
is achieved without modifying the source program, but just
by connecting "probe" and "debug" modules we describe
briefly:

"probe" processes allow to monitor the program
without disturbing its execution. Such a process is

LE GUERNIC et al.: PROGRAMMING APPLICATIONS WITH SIGNAL

real F-ECH!
integer KMIN, LIYITBACK, W T A F J

DECODFR

Fig. 11. A graphical view of the DECODER process model
which is composed of an automatic segmentation (SEGMENTA-
TIONMODULE), a voiced-unvoiced-silent decision (VOICEXODEL),
a detection of plosive bursts (BURSTMODEL), a coordination
between boundaries labeling (LABELING) and vector quantization
(VQNODULE).

Fig. 12. A probe process is associated with the speech signal.

R E I N J E C I
L3lml"T

Fig. 13. A debug process is associated with the backward signal.

.

associated with a port of the program. Figure 12
shows a probe process associated with the speech
signal. A probe process is a SIGNAL process with
no output, which is declared as an external process.
to be analyzed by the display system (X-windows or
SunView).
"debug" processes allow to control the running of the
program through a panel-driven down or up sampling
of some signals, or the on-line change of some param-
eters. Such a process is associated with a link between
two ports (Fig. 13).
An intermediate tool consists of a "pace maker,"
which makes only the program running slower by
encapsulating it in a program accessing a physical
clock. The logical time may be a subset of this clock
managed by up and down buttons.

Figure 14 shows an environment for the acoustic-phonetic
decoder, developed under the SunView window manage-
ment system.

1331

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

I N P U SIGNAL brO --dm
OETEClED IUQ

LABELS FC Wn VC

DIVEROENCE TEST
ON FILTERED SIGNAL

~~~~ ~ 

Fig. 14. Synchronous environment for an acoustic-phonetic decoder (pronounced digit: "6"). 

VI. CONCLUSION 
We have presented the SIGNAL synchronous program- 

ming language for real time systems development. The 
following key features should be mentioned: 

SIGNAL is a block-diagram oriented language. As such, 
it is provided with a graphical interface for program 
editing and execution. 
Since block-diagrams naturally specify constraints or 
relations between the involved signals, SIGNAL is a lan- 
guage of equational style. This has several important 
consequences we list now: 
- The programmer has only to specify local syn- 

chronization constraints involving few signals; 
synthesizing the whole synchronization is the 
task of the compiler. 
SIGNAL is its own proof system: desired prop- 
erties can be expressed as (possibly non deter- 
ministic) SIGNAL programs, and processed by 
the compiler as additional equations. Checking 
for contradictions in the resulting program is 
the mechanism for proofs. 
The behavior of a program P in a context C 
may be easily studied as a program C I P 
(proofs, simulation.. .). 

- 

- 

The conditional graph associated with control equa- 
tions is the universal tool for proving, distributing, 
optimizing SIGNAL programs. 

To summarize, various services such as proof, compi- 
lation, distributed implementation, are all supported by the 
SIGNAL formal system. This releases the user from handling 
different formalisms and associated tools for these tasks. 

SIGNAL is currently available under two different ver- 
sions that were developed with different objectives. The 
INRIA H2 SIGNAL system provides the interface used in 
this article, and produces the intermediate level hierarchical 
code we have discussed. Sequential FORTRAN or c code 
is currently produced. Developments on distributed imple- 
mentation are in progress based on this version. Tools for 
proving dynamical properties will be integrated in a short 
time. 

The CNET-TNI V3 version is commercially available. 
A multiple windowing system of MacIntosh style is pro- 
vided for both program editing and on-line monitoring 
and supervision of the execution. Sequential c code is 
produced. Experiments have been performed based on this 
version to produce distributed OCCAM [16] code for a 
multi-Transputer system. 

The SIGNAL environment has been experimented on 
significant applications in the area of signal processing and 
control: a speech recognition system, a radar system, a 
digital watch, a rail road crossing were the major ones. 

Finally, the SYNDEX system [7] has been developed 
at INRIA to distribute automatically SIGNAL programs 
onto multiprocessor architectures; it uses the hierarchical 
conditional graph as input. 

APPENDIX: 
A SAMPLE WORKS OF THE COMPILER 

Let us consider an excerpt of the MOUSE process 
presented in Section II-B-4), namely the S IMPLEMOUSE 
process in which we specify also the subprocess 
IN-INTERVAL; moreover, we add the constraint (which 
is verified in the overall MOUSE process) that START'S are 
also CLICK'S: 

1332 PROCEEDINGS OF THE IEEE, VOL 79, NO. 9, SEPTEMBER 1991 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore.  Restrictions apply. 



START ^< CLICK 

The SIMPLEMOUSE process is the following: 

process SIMPLE-MOUSE = 
{ ? event START, CLICK, RELAX 

! event SINGLE, DOUBLE } 
( I  START ^< CLICK 

I DOUBLE-CLICK := ((not START) 
default IN-INTERVAL {CLICK, 
START, RELAX}) cell RELAX 

1 SINGLE := RELAX when 
(not DOUBLE-CLICK) 

I DOUBLE := RELAX when DOUBLE-CLICK 
I )  

where logical DOUBLE-CLICK 
process IN-INTERVAL = 

{ ? X; event S I  T 

( I  BELONGS-TO-INTERVAL ^= (S 
! Y }  

default T 
default (event X)) 

I ( 1  WILL-BELONG := (not T) 
default S 
default BELONGS-TO-INTERVAL 

WILL-BELONG $1 
I BELONGS-TO-INTERVAL := 

I )  
I Y := X when BELONGS-TO-INTERVAL 
I )  

where logical WILL-BELONG, 
BELONGS-TO-INTERVAL init false 

end 
end 

Its solved process, as calculated by the compiler, is as 
follows: 

process SIMPLE-MOUSE-TRA = 
{ ? event START, CLICK, RELAX 

! event SINGLE, DOUBLE } 
( I  ( 1  START ^ =  START I )  

1 ( I  CLICK ^= (START default CLICK) 

I ( I  RELAX ^= RELAX 1 )  
1 )  
H- 1 2-H 
H-15-H 
H-15-H( 

) 
SINGLE 
DOUBLE 
Y := CI 
H-2 5-H 
H-2 6-H 

= START default RELAX I )  
= CLICK default H-12-H 

= RELAX when H-28-H I )  
= RELAX when H-27-H I )  
CK when H-21-H 1 )  
= START default Y 1 )  
= RELAX default H-25-H 

H-2 6-H ( 1 
) 
H-14-H := when ((not H-12-H) 
default CLICK) 1 )  

I ( 1  H-18-H := when ((not RELAX) 

1 ( I  H-24-H := when ((not START) 
default START) I )  

default Y) I )  
1 )  

where 
process H-15-H = 

{ ? event H-15-H, H-14-H, H-18-H, 
RELAX 

! event H-21-H } 
( I  H-15-H ^= WILL-BELONG ^= 

BELONGS-TO-INTERVAL 
I ( I  H-21-H := when 

BELONGS-TO-INTERVAL I )  
1 ( I  BELONGS-TO-INTERVAL := 

WILL-BELONG $1 

default H-18-H 
default (BELONGS-TO-INTERVAL 
when H-14-H) I )  

1 WILL-BELONG := (not RELAX) 

I )  
where logical WILL-BELONG, 
BELONGS-TO-INTERVAL init false 

end; 
process H-26-H = 

{ ? event H-26-H, H-24-H, START 

( I  H-26-H ^= DOUBLE-CLICK 
! event H-27-H, H-28-H } 

1 ( I  H-27-H := when DOUBLE-CLICK 
I H-28-H := when(not 
DOUBLE-CLICK) 

I )  

1 )  

I ( 1  DOUBLE-CLICK := ((not START) 
default H-24-H) cell H-26-H 

I )  
where logical DOUBLE-CLICK 

end 
end 

The hierarchy is represented as the embedding of de- 
clared subprocesses. If a clock is an external event, its name 
is the name of this external signal, otherwise it is named 
H-i-H. 

For each clock named X, the solved process contains: 
its definition (for instance, H-12-H := START de- 
fault RELAX) or constraint (CLICK ^= (START 
default CLICK)); 
a process with the same name containing the graph 
and clocks depending on X (see the processes H-15-H 
and H-26-H), or directly the subgraph of synchronous 
calculations (cf. the body of declared subprocesses). 

Let us comment the SIMPLEMOUSE-TRA process. In the 
hierarchy: 

events START and RELAX are free clocks; it 
is the reason why they appear at the top of 
SIMPLEMOUSE-TRA with the constraint X ^= X; 

LE GUERNIC et a1 PROGRAMMING APPLICATIONS WITH SIGNAL 

~- 

1333 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore.  Restrictions apply. 



CLICK is constrained to be greater than START and 
thus is also placed at the top level (it would also be 
possible to consider that CLICK is free and START 
constrained); 
H-12-H and H-15-H are clocks built on more than one 
of those free clocks and then also appear at the top of 
SIMPLEMOUSE-TRA with their definition; 
H-15-H is the clock of the boolean signals WILL-BEL- 
ONG and BELONGS-TO-INTERVAL, it is used 
to build the clock H-21-H defined by the true 
values of BELONGS-TO-INTERVAL: H-2 1-H is under 
H-15-H; its definition and that of the signals 
BELONGS-TO-INTERVAL and WILL-BELONG are 
contained in the subprocess H-15-H; 
RELAX, H-18-H, and H-14-H are “computation 
clocks” of WILL-BELONG; computation clocks as- 
sociated with a given signal are exclusive clocks, 
i.e., clocks which do not have common instants (for 
instance, H-18-H is the “complementary” of RELAX 
in START); the expressions of definition of the signals 
(for example, WILL-BELONG : = (not RELAX) 
default H-18-H default (BELONGS-TO-INT- 
ERVAL when H-14-H))  provide as a by-product the 
conditional data dependencies; 
SINGLE (for instance) is built on RELAX, which 
appears at the top level, and H-28-H, which is under 
H-26-H, and thus it also appears at the top level (see 
also DOUBLE, Y, H-25-H and H-26-H); finally, the 
computation clocks H-14-H, H-18-H, and H-32-H 
also appear at the top level. 

The compiler does not synthesize a unique master clock 
for the S IMPLEXOUSE process: no synchronization re- 
quirement is specified on the inputs START, CLICK, and 
RELAX. This process is used as a subprocess of the MOUSE 
process. It can also be directly executed. We have then 
to define a communication protocol with its asynchronous 
environment. A scanning mode of asynchronous execution 
is described in the following process (to simplify the 
presentation, we consider that the process SIMPLEXOUSE 
delivers the signal DOUBLE-CLICK as output): 

process S-SIMPLE-MOUSE = 
{ ? logical S-CLICK, S-RELAX, S-START 

( I  ( I  S-CLICK ^= S-RELAX 
! logical DOUBLE-CLICK } 

1 CLICK := when S-CLICK 
I RELAX := when S-RELAX 
1 ( 1  S-START *= CLICK 

1 START := when S-START 
I )  

I )  
I SIMPLE-MOUSE() 
1 )  

end 

Here, the compiler synthesizes a single master clock: This 
process can be run in a master mode. The solved process 
is the following (we have kept only the skeleton of the 

1334 

program, dropping the definitions of the signals and the 
clocks which are only computation ones): 

process S-SIMPLE-MOUSE-TRA = 

S-RELAX 
{ ? logical S-START, S-CLICK, 

! event SINGLE, DOUBLE } 
( I  ( I  H-6-H := event S-CLICK 

1 H-6-H ^= S-RELAX 
I H-6-H() I 1 

I )  
where 
process H-6-H = 

{ ? event H-6-H; 
logical S-START, S-CLICK, 
S-RELAX 

! event SINGLE, DOUBLE } 
( I  ( I  CLICK := when S-CLICK 

1 CLICK ^= S-START 
I CLICK( ) 
I )  

1 ( I  RELAX := when S-RELAX 1 )  
1 ( 1  H-33-H := CLICK 

default RELAX 

1 )H-33-Ho 
I ( I  Y := CLICK when H-27-H I )  
1 ( 1  H-36-H := RELAX 

I ( I  H-37-H := Y default H-36-H 
I H-37-H ^= DOUBLE-CLICK 

default START I )  

I )  
I )  

where 
process CLICK = 

{ ? event CLICK; 
logical S-START 

! event START } 
( I  ( I  START := when S-START I )  

I )  
end; 
process H-33-H = 

{ ? event H-33-H 

( I  H-33-H ^= WILL-BELONG ^= 
! event H-27-H } 

BELONGS-TO-INTERVAL 
I ( I  H-27-H := when 

BELONGS-TO-INTERVAL I )  
I )  

end 
end 

end 

The clock H-6-H (which is the clock of the signal 
S-CLICK and S-RELAX) is the single root of the hier- 
archy; the clocks CLICK (which is the clock of the signal 
S-START), RELAX, H-33-H (which is the clock of the 
signals WILL-BELONG and BELONGS-TO-INTERVAL), 

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore.  Restrictions apply. 



Y, H-36-H, and H-37-H (which is the clock of the signal 
DOUBLE-CLICK) lie under H-6-H; the clock START lies 
under CLICK; the clock H-2 7 -H lies under H-3 3 -H. 
As an example of sequential code generation, the C code 

generated from this simplified program is a loop 

while(cs-simple-mouse()); 

with this function defined as follows: 

extern logical cs-simple-mouse() 
{ 

h-6-h = TRUE; 
rs-click(&s-clickl&h~4-h); 
if (!h-4-h) return FALSE; 
rs-relax(&s-relaxl&h_4_h);  
if (!h-4-h) return FALSE; 
start = FALSE; 
h-33-h = s-click 1 I s-relax; 
h-27-h = FALSE; 
if (s-click) 

{ 
rs_start(&s-start, tih-4-h); 
if (!h-4-h) return FALSE; 
start = s-start; 
} 

{ 
if (s-relax) 
will-belong = FALSE; 
else if (start) 
will-belong = TRUE; 
else will-belong = 
belongs-to-interval; 
h-27-h = belongs-to-interval; 
belongs-to-interval = 
will-belong; 
1 

if (h-33-h) 

y = s-click & &  h-27-h; 
h-37-h = y 1 1  s-relax ( 1  start; 
if (h-37-h) 

if (start) double-click = FALSE; 
else if (y) double-click = TRUE; 
wdouble-click(double-click); 
1 

return TRUE; 
1 

The variable be longs -to-interval is initialized 
with FALSE and rs-click, rs-relax, rs-start, and 
wdouble-click are input-output functions (the condition 
( ! h-4-h) tests for the end of each input). 

REFERENCES 
[l] A. Benveniste, G. Berry, “Real-Time systems design and pro- 

gramming,” see this special section. 
[2] A. Benveniste, P. Le Guernic, Y. Sorel, M. Sorine, “A denota- 

tional theory of synchronous communicating systems,” INRIA 

Research Report 685, Rennes, France, 1987, to appear in 
Information and Computation. 
A. Benveniste and P. Le Guernic, “Hybrid dynamical systems 
theory and the SIGNAL language,” IEEE Trans. Automat. 
Contr., vol. 35, pp. 535-546, May 1990. 
A. Benveniste, P. Le Guernic, and C. Jacquemot, Synchronous 
programming with events and relations: the SIGNAL language 
and its semantics, IRISA Research Report 459, Rennes, France, 
1989. 
P. Bournai, V. Kerskaven, and P. Le Guernic, “Un envi- 
ronnement graphique pour la conception d’applications temps 
reel,” Colloque sur I’inge‘nierie des interfaces homme-machine, 
Sophia-Antipolis, France, 1989, pp. 181-190. 
E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic 
verification of finite-state concurrent systems using temporal 
logic specifications,” ACM Trans. Programming Languages and 
Systems, vol. 8, no. 2, pp. 244-263, Apr. 1986. 
N. Ghezal, S. Matiatos, P. Piovesan, Y. Sorel, and M. 
Sorine, Syndex Un environnement de progranrrnation pour 
multi-processeur de traitement du signal. Mtcanismes de 
communication, INRIA Research Report 1236, Rocquencourt, 
France, 1990. 
N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.-C. Glory, 
“Specifying, programming and verifying real-time systems us- 
ing a synchronous declarative language,” in Automatic Verifi- 
cation Methods for Finite State Systems, Sifakis, Ed., lecture 
notes in computer science. Berlin, Germany: Springer-Verlag, 

M. Le Borgne, A. Benveniste, and P. Le Guernic, “Polynomial 
ideal theory methods in discrete event, and hybrid dynamical 
systems,” in Proc. 28th IEEE Conj Decision and Control, IEEE 
Control Systems Society, vol. 3 of 3, 1989, pp. 2695-2700. 
B. Le Goff, “Inference de contrble hierarchique: application au 
temps-reel”, Ph.D. dissertation, Universiti de Rennes I, France, 
1989. 
P. Le Guernic and T. Gautier, Data-flow to von Neumann: 
the SIGNAL approach, INRIA Research Report 1229, Rennes, 
France, 1990, also in Advanced Topics in Data-Flow Computing, 
Gaudiot and Bic, Eds. Englewood Cliffs, NJ: Prentice-Hall, 
1991, pp. 4 1 3 4 3 8 .  
C. Le Maire, Le langage SIGNAL : un exemple en segmentation 
automatique de la parole continue, INRIA Research Report 
1217, Rennes, France, 1990. 
A. Pnueli, “Applications of temporal logic to the specification 
and verification of reactive systems: A survey of current trends,” 
in Current Trends in Concurrency, de Bakker et al., Eds., lecture 
notes in computer science. Berlin, Germany: Springer-Verlag, 

V. Roy, R. de Simone, An Autograph Primer, INRIA Technical 
Report, Sophia-Antipolis, France, 1989. 
D. Vergamini, Verification by Means of Observational Equiv- 
alerrce on Automata, INRIA Research Report 501, Sophia- 
Antipolis, France, 1986. 
Inmos Ltd., The Occam Programnring Manual. Englewood 
Cliffs, NJ: Prentice Hall, 1984. 
“ CSML,” see this special section. 
“ ESTEREL,” see this special section. 
“ LUSTRE,’’ see this special section. 
D. Harel, “Statecharts: A visual formalism for complex sys- 
tems,” Science of Computer Programming, vol. 8, no. 3, pp. 
231-274, June 1987. 

1989, pp. 213-231, vol. 407. 

1986, pp. 510-584, vol. 224. 

Paul Le Guernic was born in Bonneval, France, 
in 1950 He graduated from the Institut National 
des Sciences AppliquCes de Rennes, France, in 
1974 

Since 1978 he has been with IRISA, Rennes, 
with an INRIA research position From 1974 to 
1978 he worked on language theory and compil- 
ing techniques which is the topic of research in 
his “Thkse de troisieme cycle” that he completed 
in 1976 Since 1978, he has been concerned 
mainly with parallel processing. Since 1981 he 

has also been concerned with real time systems The Programming 
Environment for Real Time Applications group that he manages has 
defined the language SIGNAL As a designer of the SIGNAL environment, 
he is also interested in symbolic manipulation tools. 

LE GUERNIC et al.: PROGRAMMING APPLICATIONS WITH SIGNAL 1335 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore.  Restrictions apply. 



Thierry Gautier was born in Paris, France, in 
1957. He graduated from the Institut National 
des Sciences AppliquCes, Rennes, France, in 
1980. 

Since 1983, he has been with IRISA, Rennes, 
with an INRIA research position. He has con- 
tributed to the design of the language SIGNAL 
which was defined by the Programming Envi- 
ronment for Real Time Applications group. The 
design of the language SIGNAL was the topic of 
his “Thkse de docteur-ineknieur” in 1984. He is 

particularly concerned with the extensions to the language and is interested 
in formal tools for a real time environment. 

where he is concerned 
development of formal ti 

of a book on robot cont 

Michel Le Borgne was born in Saint-Brieuc, 
France, in 1947. He graduated from the 
University of Rennes, France in 1970. 

Later, he joined the faculty staff of the 
University of Rennes in the DCpartement de 
Mathimatiques. After some work in Abelian 
Group Theory, he joined IRISA, Rennes in 
1980 when his interest moved towards robotics. 
From 1980 to 1989 he was interested in robot 
control. Presently be is with the Programming 
Environment for Real Time Applications group 

with applications of algebraic techniques to the 
301s for real time environments. He is the coauthor 
rol along with C. Samson and B. Espiau. 

1336 

Claude Le Maire was born in LoudCac, France, 
in 1961. 

From 1988 to 1990 he was with IRISA, 
Rennes, where he developed a workstation 
for speech recognition based on the language 
SIGNAL. This application was the topic of his 
Ph.D. thesis in 1990. Since 1991, he has 
been with the VERILOG company in Grenoble, 
France. 

PROCEEDINGS OF THE IEEE, VOL 19, NO 9, SEPTEMBER 1991 

____-  ~ 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:48 from IEEE Xplore.  Restrictions apply. 


