
Static Timing Analysis of Hard Real-Time
Systems

Reinhard Wilhelm
Saarbrücken

Hard Real-Time Systems
Hard real-time systems, often in safety-critical applications

abound
– Aeronautics, automotive, train industries, manufacturing control

Wing vibration of airplane,

sensing every 5 mSec

Crankshaft-synchronous

tasks in cars < 45 uSec

Sideairbag in car,

Reaction in <10 mSec
Embedded controllers must finish
their tasks within given time bounds.
Developers would like to know the
Worst-Case Execution Time (WCET)
to give a guarantee.

Structure of the Lecture

The Problem

Sketch of a solution and report of success

Tool architecture

Analyzing cache behavior

An excursion to Predictability

Analyzing pipeline behavior

Ongoing and future work

Static Timing Analysis
- the Problem -

The problem:

Given

1. a software to produce some reaction,

2. a hardware platform, on which to
execute the software,

3. required reaction time.

Derive: a guarantee for timeliness.

What does Execution Time Depend on?

• the input – this has always
been so and will remain so,

• the initial execution state of
the platform – this is
(relatively) new,

• interferences from the
environment – this depends
on whether the system
design admits it (preemptive
scheduling, interrupts).

Caused by caches, pipelines,
speculation etc.

Explosion of
the space of
inputs and

initial states

all exhaustive
approaches
infeasible

―external‖ interference as
seen from analyzed task

Architecture

Software

Input

initial
state

Modern Hardware Features

• Modern processors increase performance by using:
Caches, Pipelines, Branch Prediction,
Speculation

• These features make bounds computation difficult:
Execution times of instructions vary widely
– Best case - everything goes smoothly: no cache miss,

operands ready, needed resources free, branch correctly
predicted

– Worst case - everything goes wrong: all loads miss the
cache, resources needed are occupied, operands are not
ready

– Span may be several hundred cycles

(Concrete) Instruction
Execution

mul

Fetch
I-Cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1

1

3

3

4

6

41
3

s1

s2

Access Times

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

MPC 5xx PPC 755

x = a + b;

The threat:
Over-estimation by a factor of 100 

Notions in Timing Analysis
Hard or

impossible to
determine

Determine
upper bounds

instead

aiT WCET Analyzer

IST Project DAEDALUS final
review report:

"The AbsInt tool is probably the

best of its kind in the world and it

is justified to consider this result

as a breakthrough.‖

Several time-critical subsystems of the Airbus A380

have been certified using aiT;

aiT is the only validated tool for these applications.

Tremendous Progress
during the past 15 Years

1995 2002 2005

o
ve

r-
es

ti
m

a
ti

o
n

20-30%

15%

30-50%

4

25

60

200
ca

ch
e-

m
is

s
p
en

a
lt

y

Lim et al. Thesing et al. Souyris et al.

The explosion of penalties has been compensated

by the improvement of the analyses!

10%

25%

High-Level Requirements for
Timing Analysis

• Upper bounds must be safe, i.e. not
underestimated

• Upper bounds should be tight, i.e. not far
away from real execution times

• Analogous for lower bounds

• Analysis effort must be tolerable

Note: all analyzed programs are terminating,
loop bounds need to be known

no decidability problem, but a complexity problem!

Timing Accidents and Penalties

Timing Accident – cause for an increase
of the execution time of an instruction

Timing Penalty – the associated increase
• Types of timing accidents

– Cache misses
– Pipeline stalls
– Branch mispredictions
– Bus collisions
– Memory refresh of DRAM
– TLB miss

History-Sensitivity of
Instruction Execution-Time

Contribution of the execution of an instruction to a
program‗s execution time

• depends on the execution state, e.g. the time for a
memory access depends on the cache state,

• the execution state results from the execution
history.

• Needed: an invariant about the set of execution
states produced by all executions reaching a
program point.

Deriving Run-Time Guarantees

• Our method and tool, aiT, derives Safety
Properties from these invariants :
Certain timing accidents will never happen.
Example: At program point p, instruction
fetch will never cause a cache miss.

• The more accidents excluded, the lower
the upper bound.

Murphy‘s
invariant

Fastest Variance of execution times Slowest

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Value

Analysis

Determines enclosing
intervals for the set of
values in registers and
local variables, used for
determining addresses.

Loop bound

analysis

Determines

loop bounds

Control Flow

Analysis

Determines
infeasible
paths

Abstract Interpretation in Timing Analysis

• Abstract interpretation is
always based on the semantics
of the analyzed language.

• A semantics of a programming
language that refers to time
needs to incorporate the
execution platform!

• Static timing analysis is thus
based on such a semantics.

Architecture

program

The Architectural Abstraction
inside the Timing Analyzer

Timing analyzer

Architectural abstractions

Cache
Abstraction

Pipeline
Abstraction

Value
Analysis,
Control-Flow
Analysis,
Loop-Bound
Analysis

abstractions of the
processor‘s arithmetic,
separate analyses

Different abstract
domains, but combined
analyses due to cyclic
dependences

Value Analysis
• Motivation:

– Provide access information to data-cache/pipeline
analysis

– Detect infeasible paths

– Derive loop bounds

• Method: calculate intervals, i.e. lower and upper
bounds
for the values occurring in the machine program
(addresses, register contents, local and global
variables)

• Method: Interval analysis (Cousot/Cousot77)

• Generalization of Constant Propagation

Value Analysis II

• Intervals are computed along the

CFG edges

• At joins, intervals are „unioned“

D1: [-2,+2] D1: [-4,0]

D1: [-4,+2]

Reducing Complex Domains
Components with domains of states C1, C2, … , Ck

Analysis has to track domain C1 C2 … Ck

Start with the powerset domain 2 C1
C

2
… C

k

Find an abstract domain C1

transform into C1
2 C

2
… C

k

This has worked for caches and
cache-like devices.

Find abstractions C11
and C12

#

factor out C11
and transform

rest into 2 C
22

… C
k

This has worked for the arithmetic
of the pipeline.

C11
program program with

annotations
2 C

22
… C

k

value analysis microarchitectural
analysis

Complexity Issues
Independent-attribute
analysis

• Feasible for domains
with no dependences or
tolerable loss in
precision

• Examples: value analysis,
cache analysis

• Efficient!

Relational analysis

• Necessary for mutually
dependent domains

• Examples: pipeline
analysis

• Highly complex

Other parameters:
Structure of the underlying domain, e.g. height of lattice;
Determines speed of convergence of fixed-point iteration.

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Caches

Caches: Small & Fast Memory on Chip

• Bridge speed gap between CPU and RAM
• Caches work well in the average case:

– Programs access data locally (many hits)
– Programs reuse items (instructions, data)
– Access patterns are distributed evenly across the cache

• Cache performance has a strong influence on
system performance!

• The precision of cache analysis has a strong
influence on the degree of over-estimation!

Caches: How they work

CPU: read/write at memory address a,
– sends a request for a to bus

Cases:
• Hit:

– Block m containing a in the cache:
request served in the next cycle

• Miss:
– Block m not in the cache:

m is transferred from main memory to the cache,
m may replace some block in the cache,
request for a is served asap while transfer still continues

• Replacement strategy: LRU, PLRU, FIFO,...determine which
line to replace in a full cache (set)

a

m

Cache Analysis

How to statically precompute cache contents:

• Must Analysis:

For each program point (and context), find out which blocks

are in the cache prediction of cache hits

• May Analysis:

For each program point (and context), find out which blocks

may be in the cache

Complement says what is not in the cache prediction of

cache misses

• In the following, we consider must analysis until otherwise

stated.

(Must) Cache Analysis
• Consider one instruction in

the program.

• There may be many paths

leading to this instruction.

• How can we compute

whether a will always be in

cache independently of

which path execution

takes?

load a

Question:
Is the access to a
always a cache hit?

Determine LRU-Cache-Information
(abstract cache states) at each Program Point

{a, b}
{x}

youngest age - 0

oldest age - 3

Interpretation of this cache information:
describes the set of all concrete cache states

in which x, a, and b occur

• x with an age not older than 1

• a and b with an age not older than 2,

Cache information contains
1. only memory blocks guaranteed to be in cache.
2. they are associated with their maximal age.

Cache Analysis – how does it work?
• How to compute for each program point an

abstract cache state representing a set of
memory blocks guaranteed to be in cache each
time execution reaches this program point?

• Can we expect to compute the largest set?

• Trade-off between precision and efficiency –
quite typical for abstract interpretation

(Must) Cache analysis of a memory access
with LRU replacement

{a, b}
{x}

access to a

{b, x}

{a}

After the access to a,

a is the youngest memory
block in cache,
and we must assume that
x has aged.

b
a

access to a

b

a

x

y

y

x

concrete
transfer
function
(cache)

abstract
transfer
function
(analysis)

What happens when control-paths merge?

{ a }

{ }

{ c, f }

{ d }

{ c }

{ e }

{ a }

{ d }

{ }

{ }

{ a, c }

{ d }

“intersection
+ maximal age”

We can
guarantee
this content

on this path.

We can
guarantee

this content

on this path.

Which content
can we

guarantee
on this path?

combine cache information at each control-flow merge point

Abstract Domain: Must Cache

z
s
x
a

x
s
z
t

z
s
x
t

s
z
x
t

z
t
x
s

Abstraction

Representing sets of concrete caches by their description

concrete caches

{ }

{ }

{z,x}

{s}

abstract cache

Abstract Domain: Must Cache

{ }

{ }

{z,x}

{s}

Concretization

{s
{z, x

Sets of concrete caches described by an abstract cache

remaining line filled up
with any other block

concrete caches

abstract cache

and form a Galois connection

The Influence of the Replacement Strategy
(an excursion into the area of Predictability)

Information gain
through access to m

LRU:

m

m

m

m

+ aging of
prefix of
unknown
length of
the cache
contents

FIFO:

m

m

m

m

m cache
at least
k-1
youngest
still in
cache

Predictability of Caches
- Speed of Recovery from Uncertainty

-

read
y

mul

x, y

read

x

write

z

1. Initial cache contents?

2. Need to combine information

3. Cannot resolve address of x...

4. Imprecise analysis domain/

 update functions

 Need to recover information:

 Predictability = Speed of Recovery

J. Reineke et al.: Predictability of Cache Replacement
Policies, Real-Time Systems, Springer, 2007

Metrics of Predictability:
..
.

..
.

..
.

[f,e,d]

[f,e,c]

[f,d,c]

[h,g,f]

fill
evict

Seq: a b c d e f g h

Two Variants:

M = Misses Only

HM

evict & fill

Results: tight bounds

Generic examples prove tightness.

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Pipelines

Hardware Features: Pipelines

Ideal Case for a 1-issue pipeline: 1 Instruction per Cycle

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Non-ideal Case: Pipeline Hazards
Several types:
• Data Hazards: Operands not yet available

(Data Dependences)
• Resource Hazards: needed resource not in necessary state

– Pipeline unit occupied
– Bus occupied
– Prefetch queue empty
– Reorder buffer full
– …

• Control Hazards: Conditional branch, direction unknown
• Cache Hazards: Instruction or operand fetch causes cache

miss
In general different penalties!

Abstract Instruction-Execution

mul

Fetch
I-Cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1

1

3
10

6

41

s

unknown

4
3

3
Interference between processor components leads to
Timing Anomalies: Assuming local worst case leads to lower
overall execution time and vice versa.
Ex.: Cache miss in the context of branch prediction

Designing a Pipeline-Analysis Domain

Let‗s try an analogy to the cache domain:

• Abstract pipeline state to describe sets of
concrete pipeline states at a program point,

• should express how far the instructions of the
basic block have certainly progressed into the
pipeline stages:

{i1}{i2}{i4,i5}{i3}

Abstract Transfer Functions
• What is needed for an abstract transfer?

• A counter for the stall cycles,

• State of prefetch queue and reorder buffer,

• Occupancy of pipeline units

• …

{i1}{i2}{i4,i5}{i3}

504226

Prefetch queue Reorder buffer

Pipeline
Unit 1

Pipeline
Unit 2

Abstract Pipeline Domain ctd.

• Many components of concrete pipeline states have to be
represented in abstract pipeline states,

• Component transitions depend on the state of other
components,

• all make transitions every cycle,
need to keep track of these states in combination, no

modular analysis 

• What is different about cache analysis?
– Abstract caches code in a compact way all that is needed for a

transition,

– Cache analysis can be split off since it makes a transition every
memory access and returns Hit/Miss to the pipeline

Characteristics of Pipeline Analysis

• Abstract Domain of Pipeline Analysis
– Power set domain

• Elements: sets of states of a state machine

– Join: set union

• Pipeline Analysis
– Manipulate sets of states of a state machine

– Store sets of states to detect fixpoint

– Forward state traversal

– Exhaustively explore non-deterministic choices

• State-space explosion! Fortunately only on the
basic-block level.

CPU as a (Concrete) State Machine

• Processor (pipeline, cache, memory,
inputs) viewed as a big state machine,
performing transitions every clock cycle

• Starting in an initial state for an
instruction
transitions are performed,
until a final state is reached:
– End state: instruction has left the pipeline

– # transitions: execution time of instruction

A Concrete Pipeline Executing a Basic Block

function exec (b : basic block, s : concrete pipeline state)
t: trace

interprets instruction stream of b starting in state s
producing trace t.

Successor basic block is interpreted starting in initial
state last(t)

length(t) gives number of cycles

An Abstract Pipeline Executing a Basic Block

function exec (b : basic block, s : abstract pipeline state)
t: trace

interprets instruction stream of b (annotated
with cache information) starting in state s
producing trace t

length(t) gives number of cycles

What is different?

• Abstract states may lack information, e.g. about cache
contents.

• Traces may be longer (but never shorter).

• Starting state for successor basic block?
In particular, if there are several predecessor blocks.

s2s1
s?

Alternatives:

• sets of states

• combine by least upper bound (join),

hard to find one that

• preserves information and

• has a compact representation.

An Abstract Pipeline Executing a Basic Block
- processor with timing anomalies -

function analyze (b : basic block, S : analysis state) T: set
of trace

Analysis states = 2PS x CS

PS = set of abstract pipeline states

CS = set of abstract cache states

interprets instruction stream of b (annotated with cache
information) starting in state S producing set of traces
T

max(length(T)) - upper bound for execution time

last(T) - set of initial states for successor block

Union for blocks with several predecessors.

S2S1
S3 =S1 S2

Pipeline Analysis: Overall Picture

Basic Block

s1

s10

s2
s3

s11 s12

s1

s13

Fixed point iteration over Basic Blocks (in

context) {s1, s2, s3} abstract state

move.1 (A0,D0),D1

Cyclewise evolution of processor model

for each instruction

s1 s2 s3

Reducing Complex Domains
Components with domains of states C1, C2, … , Ck

Analysis has to track domain C1 C2 … Ck

Start with the powerset domain 2 C1
C

2
… C

k

Find an abstract domain C1

transform into C1
2 C

2
… C

k

This has worked for caches and
cache-like devices.

Find abstractions C11
and C12

#

factor out C11
and transform

rest into 2 C
22

… C
k

This has worked for the arithmetic
of the pipeline.

C11
program program with

annotations
2 C

22
… C

k

value analysis microarchitectural
analysis

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

• Execution time of a program =

Execution_Time(b) x Execution_Count(b)

• ILP solver maximizes this function to
determine the execution-time bound

• Program structure described by linear
constraints
– automatically created from CFG structure
– user provided loop/recursion bounds
– arbitrary additional linear constraints to

exclude infeasible paths

Basic_Block b

Path Analysis
by Integer Linear Programming (ILP)

if a then

b

elseif c then

d

else

e

endif

f

a

b

c

d

f

e

10t

4t

3t

2t

5t

6t

max: 4 xa + 10 xb + 3 xc +

2 xd + 6 xe + 5 xf

where xa = xb + xc

xc = xd + xe

xf = xb + xd + xe

xa = 1

Value of objective function: 19

xa 1

xb 1

xc 0

xd 0

xe 0

xf 1

Example (simplified constraints)

Reasons for Success

Using the right methods

• In our case: compiler methods, e.g. static program
analysis, and Integer Linear Programming

Good Engineering + Great Team Effort

The will to solve the problem

Ongoing and Future Work

• Integrate preemption costs into the tools (AbsInt)

• Analyze heap-manipulating programs

• Clarify the notion of Predictability (FP7 IST
project PREDATOR)

• Develop a discipline Design for Predictability

• Construct a predictable multi-processor platform
for embedded systems

Relevant Publications (from my group)
• C. Ferdinand et al.: Reliable and Precise WCET Determination of a Real-Life

Processor, EMSOFT 2001
• R. Heckmann et al.: The Influence of Processor Architecture on the Design and

the Results of WCET Tools, IEEE Proc. on Real-Time Systems, July 2003
• M. Langenbach et al.: Pipeline Modeling for Timing Analysis, SAS 2002
• St. Thesing et al.: An Abstract Interpretation-based Timing Validation of Hard

Real-Time Avionics Software, IPDS 2003
• R. Wilhelm: AI + ILP is good for WCET, MC is not, nor ILP alone, VMCAI 2004
• L. Thiele, R. Wilhelm: Design for Timing Predictability, 25th Anniversary edition

of the Kluwer Journal Real-Time Systems, Dec. 2004
• R. Wilhelm: Determination of Execution-Time Bounds, CRC Handbook on

Embedded Systems, 2005
• J. Reineke et al.: Predictability of Cache Replacement Policies, Real-Time

Systems, Springer, 2007
• Reinhard Wilhelm, et al. : The worst-case execution-time problem—overview of

methods and survey of tools, ACM Transactions on Embedded Computing
Systems (TECS) , Volume 7 , Issue 3 (April 2008)

• R.Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, IEEE TCAD, July 2009

