Static Timing Analysis of Hard Real-Time
Systems

Reinhard Wilhelm
Saarbriicken

Absint

Angewandte Informatik GmbH

SAARLANDES

Hard Real-Time Systems

Hard real-time systems, often in safety-critical applications

abound
- Aeronautics, automotive, train industries, manufacturing control

Slezalilveg) [el Embedded controllers must finish

Reaction in <10 mSec their tasks within given time bounds.
Developers would like to know the
Worst-Case Execution Time (WCET)
to give a guarantee.

Wing vibration of airplane,
sensing every 5 mSec

Crankshaft-synchronous
tasks in cars < 45 uSec

Structure of the Lecture
The Problem
Sketch of a solution and report of success
Tool architecture
Analyzing cache behavior
An excursion to Predictability
Analyzing pipeline behavior

Ongoing and future work

Static Timing Analysis
- the Problem -
The problem:
Given

1. asoftware to produce some reaction,

2. a hardware platform, on which to
execute the software,

3. required reaction time.
Derive: a guarantee for timeliness.

- the initial execution state of

What does Execution Time Depend on?

Caused by caches, pipelines,

speculation etc.
* the input - this has always
been so and will remain sz

N Explosion of
the platform - this is the space of
(relatively) new, inputs and —
interferences from the i”i”“':im*es ;T;g
environment - this depeNgds all exhaustive |
on whether the system approaches Architecture

design admits it (preemptiv infeasible
scheduling, interrupts).

"external” interference as
seen from analyzed task

Modern Hardware Features

* Modern processors increase performance by using:
Caches, Pipelines, Branch Prediction,
Speculation

* These features make bounds computation difficult:
Execution times of instructions vary widely

- Best case - everything goes smoothly: no cache miss,
operands ready, needed resources free, branch correctly
predicted

- everything goes wrong: all loads miss the
cache, resources needed are occupied, operands are not
ready

- Span may be several hundred cycles

(Concrete) Instruction
Execution

mul

Fetch Issue Execute Retire
I-Cache miss? Unit occupied? Multicycle? Pending instructions?

1 4

o
—.

30 :
51 —_— ‘ 3 6
S, %1

: The threat:
Access Times Over-estimation by a factor of 100 ®

X=a+b;

0000000000000000000000

MPC 5xx / \ PPC 755

Execution Time depending on Flash Memory Execution Time (Clock Cycles)
(Clock Cycles)

mClock Cycles

0 Wait 1 Wait Cycle External
Cycles (6,1,1,1,...)

Best Case WorstCase

Hard or
impossible to
determine

worst-case performance
worst-case guarantee

Notions in Timing Analysis

Upper

bNd
[

Determine
upper bounds

WCET|timing

Maximal
observed
execution

time

must be found or
upper bounded

The actual WCET

I

<«—— measured execution times

Minimal
observed
execution

time

possible execution times

timing predictability

timing [BCET

Lower
bound

Salul} Jo uolnqgLysip

instead

aiT WCET Analyzer

IST Project DAEDALUS final
review report:

"The AbsInt tool is probably the
best of its kind in the world and it
is justified to consider this result
as a breakthrough.”

Several time-critical subsystems of the Airbus A380
have been certified using aiT;

ai T is the only validated tool for these applications.

cache-miss penalty

over-estimation

Tremendous Progress 2o
during the past 15 Year

The explosion of penalties has been compensated

by the improvement of the analyses!

60

L~

25 30-50%

5%
20-30% —
—~ 150 — <
10%
A
1995 2002 2005

Lim et al. Thesing et al. Souyris et al.

High-Level Requirements for
Timing Analysis

» Upper bounds must be safe, i.e. not

underestimated

» Upper bounds should be tight, i.e. not far
away from real execution times

» Analogous for lower bounds
» Analysis effort must be tolerable

Note: all analyzed programs are terminating,
loop bounds need to be known =

no decidability problem, but a complexity problem!

Timing Accidents and Penalties

- cause for an increase
of the execution time of an instruction

- the associated increase

+ Types of timing accidents
- Cache misses
- Pipeline stalls
- Branch mispredictions
- Bus collisions
- Memory refresh of DRAM
- TLB miss

History-Sensitivity of
Instruction Execution-Time

Contribution of the execution of an instruction to a
program's execution time

+ depends on the execution state, e.g. the time for a
memory access depends on the cache state,

- the execution state results from the execution
history.

* Needed: an invariant about the set of execution
states produced by all executions reaching a
program point,

Deriving Run-Time Guarantees

» Our method and tool, aiT, derives Safety
Properties from these invariants :

Certain timing accidents will never happen
Example: At program point p, instruction
fetch will never cause a cache miss.

- The more accidents excluded, the lower
the upper bound.

Murphy's
invariant
| |
l |
Fastest Variance of execution times Slowest

Tool Architecture @ Legend:
Executable QDLHD

Determines enclosing [RO R Phase
|

intervals for the set of

construction
Determines ters and

used for
. p Control-flow
!)e’rermmes 4dresses. Graph
infeasible
paths

Value Loop bound

Abstract Interpretations Analysis analysis

Control Flow
AEWAIS

Annotated
CFG
Mlcm- Basic Block Global
architectural Timine Tnfo Bound
Analysis & Analysis

Abstract Interpretation IZ reger ng a
rogramming

Abstract Interpretation in Timing Analysis

» Abstract interpretation is
always based on the semantics
of the analyzed language.

A semantics of a programming
language that refers to time

needs to incorporate the Architectire
execution platform!

- Static timing analysis is thus
based on such a semantics.

The Architectural Abstraction

inside the Timing Analyzer

Timing analyzer

Architectural abstractions
value Cache Pipeline
Analysis, Abstraction|| Abstraction
Control-Flow —_—
Analysis,
Loop-Bound D | E—
Analysis

Different abstract BN

domains, but combined
analyses due to cyclic
dependences

abstractions of the
processor's arithmetic,
separate analyses

Value Analysis

- Motivation:

- Provide access information to data-cache/pipeline
analysis

- Deftect infeasible paths
- Derive loop bounds

* Method: calculate intervals, i.e. lower and upper
bounds

for the values occurring in the machine program
(addresses, register contents, local and global
variables)

* Method: Interval analysis (Cousot/Cousot77)
+ Generalization of Constant Propagation

Value Analysis I

DI: [-4,4]A0: [0x10000,0x10000]

move.l #4,D0

» Intervals are computed along the

DO [4.4] A0: [ox10000.0x10000] CFG edges
DI: [-4.4] S .
* At joins, intervals are ,,unioned

add.l D1,D0O

DI: [-4,4]AO: [0x LO00D,0x 1 0000]
DO: [0.8]

D1:[-2,+2

 access [0x10000,0x 10008 D1: [-4,0]

move.l (AO0,DO0),D

D1: [-4,+2]

Reducing Complex Domains

Components with domains of states C;, C,, ..., C,

Analysis has to track domain C; x C, x... x C,

Start with the powerset domain 2 ¢, ¢, x- x¢,

! !

Find an abstract domain C,;# Find abstractions C,;# and C,,#
transform into C# x 2 ¢, *- ¢, || factor out C;;# and transform

r‘eS'l' In'|'0 2 622# Ko X Ck

This has worked for caches and
This has worked for the arithmetic

cache-like devices.

of the pipeline.

program ——> C,,# ——> Program with__ 5 C, # e xC
annotations

value analysis microarchitectural

analysis

Complexity Issues

Independent-attribute

analysis Relational analysis

* Feasible for domains * Necessary for mutually
with no dependences or dependent domains
precision ana'ysis

+ Examples: value analysis, . Highly complex
cache analysis

- Efficient!

Other parameters:
Structure of the underlying domain, e.g. height of lattice;
Determines speed of convergence of fixed-point iteration.

Tool Architecture Binary Legend:
Executable @D

CF G Ro.] Phase

construction

.

Control-flow
Graph

e

) Value Loop Bound Control-flow
Abstract In ferp/"e fations Analysis Analysis Analysis

Mlcrc:-- Basic Block Global
architectural Timine Inf Bound
Analysis Tming nto Analysis
. Integer Linear
Abstract Interpretation g .
Programming

Caches: Small & Fast Memory on Chip

- Bridge speed gap between CPU and RAM
» Caches work well in the average case:
- Programs access data locally (many hits)

- Programs reuse items (instructions, data)

- Access patterns are distributed evenly across the cache
* Cache performance has a strong influence on
system performancel

» The precision of cache analysis has a strong
influence on the degree of over-estimation!

Caches: How they work

CPU: read/write at memory address a
- sends a request for ato bus

Cases: i

- Hit: ;

- Block m containing ain the cache:
request served in the next cycle

* Miss:
- Block m not in the cache:
m is transferred from main memory to the cache,
m may replace some block in the cache,
request for ais served asap while transfer still continues
» Replacement strategy: LRU, PLRU, FIFO,...determine which
line to replace in a full cache (set)

Cache Analysis

How to statically precompute cache contents:

* Must Analysis:
For each program point (and context), find out which blocks
are in the cache — prediction of cache hits

* May Analysis
For each program point (and context), find out which blocks
may be in the cache
Complement says what is not in the cache — prediction of
cache misses

» In the following, we consider must analysis until otherwise
stated.

- Consider one instruction in

(Must) Cache Analysi\sy /

the program. _‘T

* There may be many paths
leading to this instruction.

* How can we compute |

whether a will always be in -
cache independently of
which path execution Question:

Is the access to a
takes?

always a cache hit?

Determine LRU-Cache-Information
(abstract cache states) at each Program Point

youngest age - O

1X}
{a, b}

oldest age - 3

Interpretation of this cache information:
describes the set of all concrete cache states

in which X, a, and b occur
X with an age not older than 1
a and b with an age not older than 2,

Cache information contains
1. only memory blocks guaranteed to be in cache.
2. they are associated with their maximal age.

Cache Analysis - how does it work?

* How to compute for each program point an
abstract cache state representing a set of
memory blocks guaranteed to be in cache each
time execution reaches this program point?

» Can we expect to compute the largest set?

* Trade-off between precision and efficiency -
quite typical for abstract interpretation

(Must) Cache analysis of a memory access
with LRU replacement

concrete abstract
X transfer transfer
) function function X3
5 (cache) (analysis) [{2. D}
After the access to a,
a is the youngest memor
access to a block in Z:achge, Y access to a
and we must assume that
X has aged.
\ 4 \ 4
a {a}
X
9) {Db, X}
\'

What happens when control-paths merge?

{a} {c}
We can {} {e} We can
guarantee L] {c,f} {a} guarantee
this content IR CHP @l this content

on this path.

on this path. \

Which content
can we

guarantee
on this path?

combine cache information at each control-flow merge point

Abstract Domain: Must Cache

Representing sets of concrete caches by their description

concrete caches]
Abstraction

abstract cache

o 0
1’
\Z,X}

1S}

Abstract Domain: Must Cache

Sets of concrete caches described by an abstract cache
concrete caches

Concretization

abstract cache

Y {}
{}

{z,x}

{s}

z,x6£{:

remaining line filled up
with any other block

a and y form a Galois connection

The Influence of the Replacement Strategy

(an excursion into the area of Predictability)

LRU:

Information gain
through access to m

m

+ aging of
prefix of
unknown
length of
the cache
contents

FIFO:

m < cache
at least
k-1
youngest
still in
cache

Predictability of Caches
- Speed of Recovery from Uncertainty

N
\
\\ \

— "\ ~1.Initial cache contents?
| __=2.Need to combine information
¥ X -3.Cannotresolve address of x...
eadf | |eadl s’ 4. IMprecise analysis domain/
| update functions
N

mul

%y - Need to recover information:

l Predictability = Speed of Recovery

J. Reineke et al.: Predictability of Cache Replacement
Policies, Real-Time Systems, Springer, 200

Metrics of Predictability:
evict & fill

Two Variants:
M = Misses Only
HM

Seg:{a b c d e f g h)

Results: tight bounds

\

00 /3k — 48
Klogok +k — 1

f(k) —e(k) <k

IN general

Generic examples prove tightness.

Tool Architecture Binary Legend:
Executable @D

CEG Re- } (Phase |

construction

.

Control-flow
Graph

e

) Value Loop Bound Control-flow
Abstract .Z'm‘e/"p/"e fations Analysis Analysis Analysis
Pipeli
pel = Annotated
CFG

b2 150> Basic Block S

architectural Timine Inf Bound

Analysis Tming nto Analysis

Abstract Interpretation Ilgfeger L’”?‘”"
rogramming

Hardware Features: Pipelines

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Fetch

WB

Execute Decode

Execute Decode
WB Execute

WB

Ideal Case for a 1-issue pipeline: 1 Instruction per Cycle

Non-ideal Case: Pipeline Hazards

Several types:

Data Hazards: Operands not yet available
(Data Dependences)

» Resource Hazards: needed resource not in necessary state
- Pipeline unit occupied
- Bus occupied

- Prefetch queue empty
- Reorder buffer full

+ Control Hazards: Conditional branch, direction unknown

* Cache Hazards: Instruction or operand fetch causes cache
miss

In general different penalties!

Abstract Instruction-Execution

Fetch Issue Execute Retire
I-Cache miss? Unit occupied? Multicycle? Pending instructions?

30

Interference between processor components leads to
Timing Anomalies: Assuming local worst case leads to lower

overall execution time and vice versa.
Ex.: Cache miss in the context of branch prediction

Designing a Pipeline-Analysis Domain

Let's try an analogy to the cache domain:

+ Abstract pipeline state to describe sets of
concrete pipeline states at a program point,

* should express how far the instructions of the
basic block have certainly progressed into the
pipeline stages:

{i3}

{i4,i5}

{i2}

{i1}

Abstract Transfer Functions

- What is needed for an abstract transfer?

» A counter for the stall cycles,

+ State of prefetch queue and reorder buffer,
» Occupancy of pipeline units

Pipeline | | Pipeline
Prefetch queue It | [2 Reorder buffer
{i3} {i4,i5} {i2} {i1}
26 24 O 5

Abstract Pipeline Domain ctd.

Many components of concrete pipeline states have to be
represented in abstract pipeline states,

Component transitions depend on the state of other
components,

all make transitions every cycle,
— need to keep track of these states in combination, no
modular analysis ®

What is different about cache analysis?

- Abstract caches code in a compact way all that is needed for a
transition,

- Cache analysis can be split off since it makes a ftransition every
memory access and returns Hit/Miss to the pipeline

Characteristics of Pipeline Analysis

* Abstract Domain of Pipeline Analysis

- Power set domain
- Elements: sets of states of a state machine

- Join: set union

* Pipeline Analysis

- Manipulate sets of states of a state machine

- Store sets of states to detect fixpoint

- Forward state traversal

- Exhaustively explore non-deterministic choices

+ State-space explosion! Fortunately only on the
basic-block level.

CPU as a (Concrete) State Machine

* Processor (pipeline, cache, memory,
inputs) viewed as a big state machine,
performing transitions every clock cycle

» Starting in an initial state for an
instruction
transitions are performed,
until a final state is reached:
- End state: instruction has left the pipeline
- # transitions: execution time of instruction

A Concrete Pipeline Executing a Basic Block

function exec (b : basic block, s: concrete pipeline state)
1. tfrace

interprets instruction stream of b starting in state s
producing trace 7.

Successor basic block is interpreted starting in initial
state /ast(t)

length(t)gives number of cycles

An Abstract Pipeline Executing a Basic Block

function exec (6 : basic block, s: abstract pipeline state)
I frace

interprets instruction stream of b6 (annotated
with cache information) starting in state s
producing trace #

length(1t) gives number of cycles

What is different?

Abstract states may lack information, e.g. about cache
contents.

» Traces may be longer (but never shorter).

Starting state for successor basic block?
In particular, if there are several predecessor blocks.

Alternatives:
» sets of states
« combine by least upper bound (join),
hard to find one that
* preserves information and
 has a compact representation.

An Abstract Pipeline Executing a Basic Block
- processor with timing anomalies -

function analyze (6 : basic block, S: analysis state) T: set

of trace - -

Analysis states = 2BSx¢S
PS = set of abstract pipeline states 83 =S5, 82
CS = set of abstract cache states -

interprets instruction stream of 6 (annotated with cache

information) starting in state S producing set of traces
I

max(length(T)) - upper bound for execution time

last(T) - set of initial states for successor block
Union for blocks with several predecessors.

Pipeline Analysis: Overall Picture

Fixed point iteration over Basic Blocks (in
context) {s; s, s;}abstract state

Cyclewise evolution of processor model
for each instruction

Basic Block

ARVA

S10 Sy S, 13

Reducing Complex Domains

Components with domains of states C;, C,, ..., C,

Analysis has to track domain C; x C, x... x C,

Start with the powerset domain 2 ¢, ¢, x- x¢,

! !

Find an abstract domain C,;# Find abstractions C,;# and C,,#
transform into C# x 2 ¢, *- ¢, || factor out C;;# and transform

r‘eS'l' In'|'0 2 622# Ko X Ck

This has worked for caches and
This has worked for the arithmetic

cache-like devices.

of the pipeline.

program ——> C,,# ——> Program with__ 5 C, # e xC
annotations

value analysis microarchitectural

analysis

Tool Architecture @ Legend: |
Executable @D
[CEG Re- } [Phase |

construction

Control-flow
Graph

) Value Loop Bound Control-flow
Abstract In ferp/"e fations Analysis Analysis Analysis

e

Annotated
CEG
Mlcrc:-- Basic Block Global
architectural . . Bound

Timing Info

Analysis

Abstract Interpretation Ilgfeger L’”?‘”"
rogramming

Analysis

Path Analysis

by Integer Linear Programming (ILP)
+ Execution time of a program =

V. kbeecu’rion_Time(b)x Execution_Count(b)

« TLP solver maximizes this function to
determine the execution-time bound

* Program structure described by linear
constraints
- automatically created from CFG structure
- user provided loop/recursion bounds

- arbitrary additional linear constraints to
exclude infeasible paths

Example (simplified constraints)

max:4xa+10xb+3xc+

2xd+6xe +5xf

if a then o =
where Xq = Xp t X

b \
= x4 +
elseif ¢ then ‘ Yo~ T %e

d

3t
Xf = Xp * Xq * Xe
else Q / \ Xa = 1
2t 6t Value of objective function: 19
e 00 [
Xp

endif ! / X,
f .
0 5t X

X

-0 O O -

HELMUT SEIDL HELMUT SEIDL

REINHARD WILHELM REINHARD WILHELM
SEBASTIAN HACK SEBASTIAN HACK
E L]
L%,
22 Ubersetzerbau
.

Analyse und Transformation

I

Ubersetzerbau

Analyse und Transformation

e

Dieses Buch behandelt die Optimierungsphase von Ubersetzern. In dizser Phasewerden
Proqramme aur Effeienzsteigeruny tramsformiert. Damit die Semantik der Programme bei diesen
Trarefommaticnen erhalten bleibt, miissen jeweils moehdrige Arwendbarkei tsbedingungen erfillt s=sin.
[iese werden mittelsstatischer &nalyse der Frogramme iiberpnift. n diesem Buch werden Analysen
und Transfomationen imperativer und funktionaler Programme systematisch beschrishen.

Meben einer detaillierten Beschreibung wichtiger Dptimienngen bietet das Buch eine knappe
Eriibrung in die erforderfichen Konzepte und Methoden 2ur cperationalen Semantik, 2. vollstandigen
Yerhinden und Fixpunktalgorithmen.

eXamen.press
eXamen.press

ISEN 1614-5216

ISE -5l i
B364 lu_'-

BIb 329

LB
5 |r

=* Studierende und Praktiker } springerde

=* Technische Infarmatik

TOTEULIO]SURIL pun BSJ{IEU‘(n ‘B ql azl a S _I 9 q_n

@ Springer

Ongoing and Future Work

* Integrate preemption costs into the tools (AbsInt)
* Analyze heap-manipulating programs

* Clarify the notion of Predictability (FP7 IST
project PREDATOR)

+ Develop a discipline Design for Predictability

» Construct a predictable multi-processor platform
for embedded systems

Relevant Publications (from my group)

C. Ferdinand et al.: Reliable and Precise WCET Determination of a Real-Life
Processor, EMSOFT 2001

R. Heckmann et al.: The Influence of Processor Architecture on the Design and
the Results of WCET Tools, TEEE Proc. on Real-Time Systems, July 200

M. Langenbach et al.: Pipeline Modeling for Timing Analysis, SAS 2002

St. Thesing et al.: An Abstract Interpretation-based Timing Validation of Hard
Real- Time Avionics Software, IPDS 2003

R. Wilhelm: AL + ILP is good for WCET, MC is not, nor ILP alone, VMCAT 2004

L. Thiele, R. Wilhelm: Design for Timing P/"ea’/'cfab/'//'g)/, 25" Anniversary edition
of the Kluwer Journal Real-Time Systems, Dec. 2004

R. Wilhelm: Determination of Execution-Time Bounds, CRC Handbook on
Embedded Systems, 2005

J. Reineke et al.: Predictability of Cache Replacement Policies, Real-Time
Systems, Springer, 2007

Reinhard Wilhelm, et al. : The worst-case execution-time problem—overview of
methods and survey of tools, ACM Transactions on Embedded Computing
Systems (TECS), Volume 7, Issue 3 (April 2008)

R.Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, TEEE TCAD, July 2009

