
Lab Course “Microntroller Programming” Exercise 4

Exercise 4: Timers, Output Compare and Input Capture

Overview

Microcontrollers usually have at least one timer. Timers are counters that are either incremented
or decremented at a fixed frequency. The timer frequency is usually configurable. When reaching
zero or a user-defined value, timer interrupts can be generated. Although the number of hardware
timers is limited, we can use a single hardware timer to implement an extensible set of software
timers.

Timers in ATmega168

ATmega168 integrates three timers, namely Timer0, Timer1 and Timer2. Each timer has a counter
register, which holds a value that changes in every timer clock cycle. Timer0 is an 8-bit general
purpose timer, which means that the counter register is 8 bits wide. Hence, the counter value is
between 0 and 255. Timer1 is 16-bit wide and Timer2 is another 8-bit timer, but it offers some
additional functionality.

The timers can directly be driven by the system clock, which provides the fastest operation.
Alternatively, the timer clock can be scaled down by using a so-called prescaler. This is basically
a number that indicates how many system clock ticks should pass until the timer is incremented.
In ATmega168, Timer0 and Timer1 share the same prescaler module, which includes four outputs
running at 8, 64, 256, 1024 times slower frequency, respectively. Timer2 has its own prescaler with
additional factors of 32 and 128 and can even be clocked by an external (asynchronous) clock or
event source.

During this session we will only use Timer1, since it provides the highest range of values.

Output Compare Unit

Timer1 has an output compare unit, which continuously compares the current timer counter
(TCNT1) with the Output Compare Registers (OCR1A and OCR1B). When TCNT1 equals one of the
registers, the comparator signals a match, which will set the Output Compare Flag (OCF1x) and
generate an interrupt if enabled. Note that OCR1A and OCR1B work independently and a separate
ISRs can be implemented for them.

Exercise 4.1

a) Which types of interrupts can be generated by Timer1? How can they be enabled/disabled?
What is the name to use for the ISR for output match interrupt A and B?

b) The timer in ATmega168 can be configured to have several Waveform Generation Modes
(WGM). In which registers are the Waveform Generation Mode bits located?

For exercises 4.1, 4.2, 4.3 and 4.4, we will use the WGM 4.

c) For WGM 4, which register controls the TOP (maximum) value of Timer1? What will occur
in case the counter reaches TOP?

d) Assume we choose the timer clock to be clkI/O/256, where clkI/O is 16 MHz. Which value
should we store in OCR1A in order to generate a sequence of timer interrupts with an interval
of 1 second?
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Exercise 4.2

a) Implement a timer_init() function that initializes the timer and a main program that
generates an interrupt for a real time interval of 500 ms. Use the output compare unit for
the implementation. Let an LED blink at the respective frequency.

b) In the previous sessions, we used an imprecise wait() function. Using Timer1, develop an
accurate timed_wait() function that interprets the parameter as milliseconds and lets the
program “sleep” for the given interval. Demonstrate your program by letting an LED blink.

c) Develop an application that implements at least three software timers with different frequen-
cies using Timer1. The respective counter of the software timers should be updated within
the ISR of the hardware timer. Demonstrate the different frequencies using LEDs.

Input Capture Unit

Timer1 has an input capture unit that can store the current value of the Timer1 counter when
an external event happens. This means that we can tell when exactly the event happened without
having to care about how much time has passed between the event and our ISR being called.

This feature also allows calculation of the frequency of external signals. The pin used to capture
external events is called Timer/Counter1 Input Capture Input (ICP1). When an event is detected
at ICP1, the current 16-bit value in the timer counter register (TCNT1) is copied to the Input
Capture Register (ICR1). This value then represents the time-stamp of the event. Note that ICR1
will be overwritten when subsequent events happen. When enabled, an interrupt will generated
upon capturing an event.

Exercise 4.3

a) Which pin is used as ICP1 in ATmega168?

b) Input capture is edge sensitive. How to set it to be rising edge or falling edge sensitive?

Exercise 4.4

a) Implement an application to measure the time interval between a button is pressed and
released. Display the measured result (in ms) in the debug console. Note that you should
adapt the prescaler for this to work properly for longer time intervals. It is acceptable if your
program works for button press times up to 4 s.

b) Implement an application that will wait a random amount of time between 2 and 10 seconds
(see hints section) and switch an LED on after the interval has passed. Then, measure the
time until the user presses a button (i.e., the reaction time). Be sure to precisely measure
the time by using the input capture unit. Output the result in milliseconds to the console.

c) Optional: Improve your programs from exercises 4.4 a) and 4.4 b) to handle longer time
intervals by enabling and counting timer overflow interrupts.

Hints

• It is actually not so easy to generate numbers that are somewhat random on a micro-
controller. See http://www.rn-wissen.de/index.php/Zufallszahlen_mit_avr-gcc (Ger-
man) for starting points.
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Clock Sources

Until now, we did not care much about how the microcontroller is clocked. We just assumed that
a clock signal of 16 MHz is available. However, in real applications, the type and frequency of a
clock source is very important, because it influences accuracy and power consumption.

But what actually is a clock signal? Figure 1 depicts three different types of clock signals. All clock
signals are periodic, but depending on the method used to generate them, they may look quite
different.

high

low

period

Figure 1: Various Clock Signals

The left part of Figure 1 shows a rectangular signal which can only be generated by logic circuits.
The other two signals are generated by oscillators. The signal on the right is typically generated
by crystal oscillators. Note that it does not matter how “pretty” the clock signal is. The only
requirement is that it oscillates between two states, which are characterized by the fact that the
“high” state clearly has a voltage value higher than a certain threshold and the “low” state clearly
has a voltage value lower than a certain threshold.

Exercise 4.5

a) Two of the most famous types of clock sources are RC circuits and crystal oscillators. Do
some research on the web to find out how they are built and list their advantages and
disadvantages.

b) In which of the following applications would it be meaningful to use simple RC circuits as
clock sources? Explain your decision.

i) A wall clock that shows the current time of the day.

ii) A sensor node that measures the current temperature and transfers the value to a PC
over UART every 5 minutes.

iii) A controller for a model airplane.

iv) A simple calculator.

Exercise 4.6

ATmega168 can be configured to use an internal or external clock source. Until now, we have been
using an external clock source of 16 MHz provided by the crystal oscillator on the STK500 board
(the silver component between the processor and the RS232 CTRL port). However, ATmega168
also provides an internal RC oscillator. In this application, we will try to compare the quality of
these two oscillation sources.
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Start by changing the following settings:

• Connect to STK500 from AVR Studio.

• On the Fuses tab, click on Read.

• The SUT_CKSEL value should read Ext. Crystal Osc. 8.0- MHz; Start-up time PWRDWN/RE-
SET: 16K CK/14 CK + 65 ms (this should be the last item in the drop-down list).

• Please be very careful now to select the correct new value, otherwise you might render
the chip unusable. Change the value for SUT_CKSEL to Int. RC Osc. 8 MHz; Start-up time
PWRDWN/RESET: 6 CK/14 CK + 65 ms.

• Click on Program.

You have now changed the microcontroller’s oscillator to an 8 MHz internal RC circuit based
oscillator. The value you have programmed is stored in a special memory in the chip called the
fuses. The fuses define basic settings for the microcontroller’s operation. Changes to the fuses will
remain in place, that’s why it is dangerous if one sets them to a wrong value. To undo your changes
after this exercise, reset SUT_CKSEL to the value mentioned above.

For being able to estimate the quality of the internal RC oscillator, we need a reference clock. We
will be using the external 16 MHz crystal oscillator for this purpose.

a) First implement a timer2_init() function that initializes Timer 2 for use in asynchronous
mode (use an external clock source on TOSC1) and a prescaler of 256.

b) Create an application that initializes Timer 2, defines a Timer Overflow ISR and enables the
respective interrupt.

c) How often will the Timer Overflow interrupt fire in this configuration, given an external
clock signal of 16 MHz?

d) Based on your application, design an program that measures the approximate difference in
clock cycles between the external crystal oscillator at 16 MHz and the internal RC oscillator
at 8 MHz. For this purpose, use another timer that increments much faster than Timer 2
and record the number of timer ticks of the “fast counter” between each Timer 2 overflow
interrupt. Make sure your program has a deterministic runtime for each call of the ISR.
Your application should perform several measurements and then output the results including
the mean tick count of the “fast counter” (over all measurements) as well as the absolute
difference and the relative error in percent (for each measurement) to the debug console. A
sample output could look like:

1 Measurements :
2 # 1: 32829 (mean+5.30 = +0.01615%)
3 # 2: 32819 (mean−4.70 = −0.01432%)
4 # 3: 32827 (mean+3.30 = +0.01006%)
5 : : : :
6 # 8: 32844 (mean+20.30 = +0.06185%)
7 # 9: 32845 (mean+21.30 = +0.06489%)
8 #10: 32831 (mean+7.30 = +0.02224%)
9 Mean : 32823.70

Note

• Exercise 4.6 of course can not give us confidence whether the internal RC oscillator or the
external crystal oscillator shows these variations. We can however assume that the crystal
oscillator is much more precise and that most of the error is introduced by the RC oscillator.
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