TUTI

Ubung Echtzeitsysteme WS 2013/14 - Sheet 4

A

Robotics and
Embedded Systems

Ubung Echtzeitsysteme WS 2013 / 2014

the power switch.

PORTD

LEDS

Atmel AVR

Philipp Heise, Christian Buckl

Exercise 0

Let there be light

Connect the STK500 to your PC using the serial cable and the USB/Serial converter. The
serial cable must be connected to port labeled with RS232 CTRL. Connect the pins with the
label LEDS with the pins labeled PORTD and the pins of the switches to the PORTB pins. This
is again shown in the schematic below. Dowload the skeleton code package light.zip from the
course homepage and unzip it. In order to use the skeleton code you need the packages avr-libc,
avrdude, bintutils-avr and gcc-avr. Further you need the rights to access the serial device e.g.
/dev/ttyUSBO. Edit the CMakeLists.txt and edit the AVR_PROGRAMMER_DEVICE variable
to the real dev-file - if necessary. Connect the power-source to the board and turn it on using

o
s © 0603 e
@ EE o ‘ m:. \1 Ewann smE

P ' w & . E‘E‘:l ATy
BI6 L] -
@ EE } u403 ‘ Jps0z !kﬂ d! _

= 5 TR E m 600

= - -

= 0y - 80" Tgg =

s Fe P00 | B 85 m ([sm]
P " e] e OBEL padh =]
- e B @ o Hegie —
Og - 3 e ©
mg B 1704 = ﬁ X300 E Hl E%E ;o
0E o = = Bl
.50 - =
B (T] - WL | B o

o - 1903 s "'n = @

. A\ : [

w, B ! o
@ ‘N } - i I a?uaaz
- =] - = ofmmm F;,‘ @
05 M|) (== 1'% O O

-

e Setup the build folder in the provided skeleton code and call CMake.

e To compile the program call make light. After sucessfull compilation three files are gener-

ated light-atmegal68.elf, light-atmegal68.hex and light-atmegal68.map.

e To deploy and run the generated code on the microcontroler you need to call make up-

load_light. All leds on the STK500 should blink now.

[y

1300

301

m . ¥ Robotics and
Ubung Echtzeitsysteme WS 2013/14 - Sheet 4 Embedded Systems

Exercise 1 Basic IO and the LEDs

Have a look at the official documentation of the AVR ATMegal68
(http://www.atmel.com/images/doc2545.pdf). As you can see in the documentation the micro-
controller offers 23 programmable I/O lines. The pins at the microcontroller are grouped into
8bit goups with the names B,C' and D. Most pins can be used for reading and writing, which
means that they either sense the current logical level at the pin or set it. To indicate how the
pins are used there exist special data direction registers DDR{ B, C,D}. If a bit is set the respec-
tive pin can be used for writing and if not the pin is indicated to be used for reading. To write a
value the special defines PORT{ B, C,D} are available and to read the defines PIN{ B,C,D} exist.

e Open the lettherebelight.c in the source folder and try to understand what the code does.
The function _delay-ms allows us to wait for specified amount of milliseconds. Can you
toggle arbitrary leds?

e Change the example code to try to toggle the state of a single led and then toggle the next
led to get an moving led light efffect. Use the following operations to set and unset single
bits. You need to handle the case if you toggle the last led - you can either start again
from the first led or you can go into the opposite direction. Try to implement both effects.

Set bit N in A: A=A|(l1<<N)
Unset bit N in A: A=A& ~(1<<N)

e Change the data direction of the zeroth pin on B to use it as an input. There are defines
to simplify the usage of the pins and also the code readability. E.g. the N th pin on
port is also accessible by PBN. To check the current state of pin we can use for example
PINB & (1 << PB0). Change your program so that the moving led behaviour is inverted
while the button is pressed (There should be only on led that is off and it is moving).

