
Lab Course - Robot Vision WS 2012/13 - Assignment 3

Lab Course: Robot Vision WS 2012/2013
Philipp Heise, Brian Jensen, Sebastian Klose

Assignment 3 - Due: 03.12.2012

In this assignment sheet, you are going to work with stereo data. The goal is to create a motion
estimation system–making use of calibrated stereo input–referred to as Visual Odometry. You
will be using a class of techniques typically known as Structure from Motion (SfM) in the
computer vision community or Visual Simultaneous Localization and Mapping (VSLAM) in the
robotics community. You will be working with the kitti dataset files you already met in sheet
1. We are also providing some additional bag files with different trajectories and environments:

Dataset Link Size

http://www6.in.tum.de/~kloses/rvc/kitti_01.bag 988MB
http://www6.in.tum.de/~kloses/rvc/kitti_03.bag 717MB
http://www6.in.tum.de/~kloses/rvc/kitti_05.bag 2.4GB
http://www6.in.tum.de/~kloses/rvc/kitti_06.bag 960MB
http://www6.in.tum.de/~kloses/rvc/kitti_07.bag 960MB
http://www6.in.tum.de/~kloses/rvc/kitti_10.bag 1.1GB

NOTE: All the Kiti datasets provided contain rectified images. If you use other datasets you will
likely need to perform stereo rectification prior to any of the processing steps in this sheet.

Exercise 1 Sparse Stereo Matching

The first step in the your visual motion estimation process is to estimate the 3D position for
a sparse set of robustly matched points between the left and right views of a calibrated stereo
system.

1. (Visual Odometry Package)

• Create a new package named stereo vo <GroupName> within your repository. You
are going to reuse the feature descriptors from the last sheet, so you should make
your new package depend on your package from assignment sheet 2.

2. (Synchronized Stereo Subscription) You will need to subscribe to two image topics at
once, together with the associated camera info topics. Moreover you need to ensure
that the images synchronized and correspond to the same time step.

• You can use http://www.ros.org/wiki/message_filters to achieve time syn-
chronous subscription. (e.g. approximate or exact sync.).

• There is also a special and useful class for stereo calibration data (StereoCameraModel)
in the image geomerty package: http://www.ros.org/wiki/image_geometry.

3. (Feature Detection)

• Use your Harris corner detector as well as your feature descriptor implementation
from the previous assignment sheets to extract features from both input images at
each time step.

1

http://www6.in.tum.de/~kloses/rvc/kitti_01.bag
http://www6.in.tum.de/~kloses/rvc/kitti_03.bag
http://www6.in.tum.de/~kloses/rvc/kitti_05.bag
http://www6.in.tum.de/~kloses/rvc/kitti_06.bag
http://www6.in.tum.de/~kloses/rvc/kitti_07.bag
http://www6.in.tum.de/~kloses/rvc/kitti_10.bag
http://www.ros.org/wiki/message_filters
http://www.ros.org/wiki/image_geometry


Lab Course - Robot Vision WS 2012/13 - Assignment 3

• All important parameters governing your implementation should again be available
over dynamic reconfigure.

4. (Feature Matching and Disparity Computation)

• Match the extracted features from the left image to the right image from the same
time step. You can start by using your general matching function from the previous
sheet, with the additional constraint that feature matches must be in the same
horizontal line in both images.

• Disparity should be within a useful range. Range thresholds should be given over
dynamic reconfigure as minimum depth and maximum depth in meters.

• Experiment with different techniques to speed up and improve your implementation,
for example:

– Create a row lookup table for your features.

– Preemptively exclude features matches that are outside of valid disparity range.

– Perform consistency checking: match from left to right and from rigth to left,
only accepting matches equal in both directions.

– Soften the requirement that features matches must be in the same line.

– Enforce the ordering constraint: matched features along one line in the left
image must be in the same order along the corresponding line in the right
image.

Choose the parameters and implementation that deliver the best results.

• Create 3D points from your matches using the left matching point’s x, y and disparity
value (You can use functions of the StereoCameraModel).

5. (PointCloud publishing)

• Publish a PointCloud2 message from your sparse set of matched feature points:
http://www.ros.org/doc/api/sensor_msgs/html/msg/PointCloud2.html.

• Make sure to set your frame ids correctly (left camera frame).

Exercise 2 Temporal Feature Matching

The next phase of your 3D motion estimation implementation involves taking the robustly
matched 3D points gathered at each time step and finding correspondences between the left-
right feature matches at the previous time step with left-right feature matches at the current
one.

1. (Windowed Matching) A useful assumption for tracking features throughout images is
that their positions will only change gradually. Therefore a typical approach is to con-
strain the matching between features to a certain window around a predicted (or the
previous) position. You will implement a matching strategy, that finds the closest match
for a given left-to-right feature correspondence from the last frame within a user specified
radius. Experiement with different matching strategies, for example:

• Use descriptors from left and right image while enforcing the epipolar constraint.

• Employ circular matching: for a feature f t
l (left image, time step t), find match in

right image (f t
r (see Exercise 1)). For f t

r, find the matching feature in the current
right image f t+1

r . For f t+1
r find the stereo correspondence in the left image f t+1

l ,
for which you again search the correspondence in time in the previous left image f t

l .
For a correct match, you should end up with the same feature position f t

l !

At the end of this stage, you should have a set of 3D-3D correspondences.

2

http://www.ros.org/doc/api/sensor_msgs/html/msg/PointCloud2.html


Lab Course - Robot Vision WS 2012/13 - Assignment 3

2. (Visualization of the 3D Matches) To visualize your results, as in the last sheet, draw your
matches side by side into an image augmented with the appropriate views. Depending
on your matching strategy, either show all the four images or only the left or right ones
and add lines between matching feature positions.

Exercise 3 3D Pose from Correspondences

1. (3D pose estimation) Use the method of Umeyama to compute the 3D pose between
consecutive frames. A detailed explanation can be found in the original publication
”Least-squares estimation of transformation parameters between two point patterns”
(http://cis.jhu.edu/software/lddmm-similitude/umeyama.pdf).

2. (Robust estimation) In order to cope with possible outliers–primarily due to incorrect
3D-3D correspondences– and prevent incorrect point cloud esimates a naive version of
RANSAC should be implemented. A user specified number of iterations with random
minimal subsets of the 3D-3D point correspondences are performed and in each itera-
tion the set of all 3D-3D correspondences is partitioned into subsets consisting of inliers
and outliers according to some distance metric. Correspondence distances below a user
specified distance threshold are then considered inliers and all others outliers. After com-
pletion the largest subset of inliers is then used to calculate the final 3D pose estimate.

3. (Pose Publishing) Use the tf package to publish your current pose estimate.

4. (Evaluation) Compare you results with the ground-truth data provided in the bag files.

• Generate error plots for the translation and rotation using rxplot.

• For the rotational error the error quaternion should be used. For human readable
output the quaternion should also be converted to Euler angles.

Exercise 4 rviz Visualization

Now that we have the motion estimate, it’s time to visualize some additional information in
rviz. The following information should be visible in rviz when running:

• The trajectory of the computed poses from the previous exercise

• Lines from the current position, to the 3D points that are currently tracked

• The point-cloud from the first exercise

You can use rviz markers, the path-display or any other integrated rviz display. Whatever seems
most convenient to you. Optionally you could additionally implement:

• A 3D-flow visualization. Therefore you probably need additional book-keeping about those
features, that are tracked over a longer period of time, as the 3D flow vector between
consecutive frames will probably be quite small, but you can have a try.

• A visualization of the confidence in your estimate of the 3D position. Draw for each 3D
feature an ellipsoid representing the covariance of the estimated 3D position. To obtain
the covariance for a 3D estimate you have to define an accuracy metric for your matching
process and then calculate the respective variances along the axis using similar triangles.

3

http://cis.jhu.edu/software/lddmm-similitude/umeyama.pdf

