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Template Tracking using 
Linear Predictors
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Goals

• baseline 
implementation of 
ALPs

• tracking of BMW lab 
car using this approach

• estimation of position 
and orientation 
relative to known floor 
plane

• live (real-time) 
tracking should be 
possible on desktop pc
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Bundle Adjustment 
Evaluation
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Bundle Adjustment 
Evaluation

• Libraries of interest:

• g2o (Freiburg)

• ceres-solver (google)

• GTSAM (Giorgia-Tech)

• Goals:

• Definition of common message interface for “Keyframe” 
based SLAM like Bundle Adjustment

• Implementation as nodelets

• Selection of appropriate test datasets

• Visualization in rViz

• Evaluation criteria: speed, accuracy, robustness
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Keyframe-Based SLAM
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Keyframe-Based SLAM
• Goals:

• Extend code from sheet 3 & 4 to use 
Keyframes

• Trajectory output in real-time

• Map-Optimization in separate thread 
(nodelet)

• input trace from kinect (lab-car)
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Real-Time Spherical Mosaicing 
using whole image alignment
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Real-Time Spherical Mosaicing 
using whole image alignment
• spherical panoramas using direct image alignment 

methods

• “keyframe” style optimization

• GPU implementation using OpenCL possible

• Applications:

• Panoramas, In-Situ Stitching

• S. Lovegrove and A. J. Davison, “Real-time spherical 
mosaicing using whole image alignment,” presented at 
the ECCV'10: Proceedings of the 11th European 
conference on computer vision conference on Computer 
vision: Part III, 2010.
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Pose Graph Optimization

• Pose-Graph Optimization as 
extension to existing VO 
system

• Pose-Graph on Sliding-
Window (gathered from 
3D-3D point 
correspondences)

• optimize the current pose, 
using information from all 
frames in the window (only 
optimize the pose 
parameters)

Fig. 1: Relative pose displacements z

ij

are computed from
stereo vision between poses p

i

and p

j

. Poses within a sliding
window of length M are thereafter adjusted by non-linear
least squares optimization. M = 4 in this example graph.
The bold arrow is the ego motion h(p̂3, p̂4) which is the
output of our algorithm after adjusting the graph.

in Section V.

II. RELATED WORK

Many approaches to estimating the vehicle’s ego motion
from stereo cameras [6], [8], [10] are incremental in nature.
The motion is computed for each consecutive image pair and
accumulated over time. Usually an error term describing the
fit of motion and point matches is minimized. These methods
are characterized by low computational complexity. How-
ever, their accuracy is somewhat limited and ego positions
drift rather severely over time.
Better results are usually obtained by Simultaneous Local-
ization and Mapping (SLAM) like approaches [15], [4], [13],
[5]. SLAM is the problem of computing a map of previously
unknown terrain while simultaneously localizing the robot
within the map. Thereto, a set of landmarks (associated
with salient features in the image), the current ego velocity
and position are stacked into one single vector which is
sequentially estimated from point correspondences by e.g.
Extended Kalman Filters (EKFs). Fusing measurements from
multiple time steps has increased the accuracy considerably.
However, the use of EKFs has shown some disadvantages:
The state covariance may diverge due to linearization errors
[9] and landmark associations are irreversible. State updates
of landmark miss associations are inevitably “baked” into
the state vector causing catastrophic results. Therefore the
computer vision front end which provides point matches
is of utmost importance in practical implementations. In
contrast, the system presented here merely requires feature
correspondences between two frames and does not depend
on feature tracks.
Today the best performing systems are bundle adjustment
(BA) like methods [17], [1], [11]. The scene structure and
ego motion is estimated such that the reprojection error of
all point features onto all camera images is simultaneously
minimized. Jointly optimizing scene structure and ego mo-

tion improves over the down sides of EKF like methods as
mentioned above. Linearization errors are mitigated. The key
seems to be the joint consideration of measurements of a
given time window. However, the scene structure is often
only a means to an end and discarded immediately thereafter.
We propose to estimate motion by joint optimization of
measurements over multiple time steps without computing
scene structure, hence yielding a lean minimization problem.
Using pose displacements induced by registering laser scans
to build large maps has been recently proposed by Konolige
and co-workers in [12]. The work aims at building large 2D
maps of the environment and no focus is laid on motion esti-
mation. In our work we are using stereo cameras exhibiting a
completely different sensor characteristic. The displacements
between poses are estimated by non-linear least squares
optimization (see [6]). This however bears the problem
of accurately and efficiently providing pose displacement
uncertainties. We solve this issue by learning a covariance
matrix data base from training imagery which we query
during online computation. Unlike [12], we integrate motion
constraints imposed by vehicle dynamics into our estimation
process. Finally we compare different parameterizations of
our method to an incremental baseline in simulations and
real world situations.

III. EGO MOTION ESTIMATION

Our method computes the ego displacements between each
pair of poses within a sliding window of length M . Thus a
connected pose graph as depicted in Figure 1 is induced.
An edge of the graph labeled z

ij

is the ego displacement
estimated between poses p

i

and p

j

. After pairwise pose
displacements are estimated within a window of length M

the pose graph is adjusted yielding the current ego motion.
First an overview of our method is given before describing
each part more thoroughly.

A. Overview

We use the constant turn rate and acceleration (CTRA)
model which was shown to be the best performing model
among the curve linear models investigated in [16]. Therefore
one such pose is defined by its position, orientation, linear
and angular velocity and linear acceleration, thus p
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and contain no height information. The state transition equa-
tion of the CTRA model is denoted by the function f(·)
and is given below. During motion estimation we exploit
that pose p

i+1 should not deviate much from its predicted
position f(p
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).
The displacements are computed by the method proposed
in [6] which is briefly reviewed in Section III-B. The ego
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Fusing GPS and Stereo 
data

• GPS and Stereo Data 
track from quadrocopter

• Optimization-based 
fusion (e.g. ceres-solver)

• Visualization of path in 
google-maps (and rviz)

Monday, December 17, 12



Path Planning using 3D 
Occupancy Grids
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Path Planning using 3D 
Occupancy Grids

• Use results of stereo-visual odometry from last two sheets

• Use the resulting point cloud to generate a 3D occupancy 
grid using octomap

• implement path-plannig algorithm on the grid

• Goal:

• Collision free navigation between two points in the map

• application to lab-car data
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Autonomous Robotino 
using RGBD Data

• Goals:

• get familiar with robotino on ROS

• use VO result from last sheet and 
apply it to kinect data on robotino

• maybe use additional sensor 
information available from 
robotino (e.g. wheel-odometry)

• position control: e.g. give relative/
absolute goal positions the 
robotino should drive to

• if possible: use outcome of 
navigation project for collision free 
navigation
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